1
|
Matos TL, Souza PFN, de Moraes MEA, Rabenhorst SHB, Mesquita FP, Montenegro RC. Molecular characterization and biomarker discovery in gastric cancer progression through transcriptome meta-analysis. Comput Biol Med 2024; 183:109276. [PMID: 39447404 DOI: 10.1016/j.compbiomed.2024.109276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Gastric cancer (GC) is a leading cause of cancer-related deaths globally. It is a multifactorial, molecularly heterogeneous disease whose carcinogenic patterns are not yet well established, requiring the development of new tools for better understanding and identifying gastric carcinogenesis. From this point of view, this study aims to compare transcriptome profiles from The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) and a human-merged dataset to identify potential biomarkers and therapeutic targets. Principal component analysis (PCA) revealed shared and distinct gene expression patterns between datasets. Differential expression analysis identified key genes with altered expression across non-malignant and malignant samples. Six genes, including SERPINE1 and CLDN9, were significantly associated with patient survival. The findings underscore the molecular diversity of GC and highlight novel biomarkers for early diagnosis and therapeutic strategies. Further validation in clinical specimens is necessary.
Collapse
Affiliation(s)
- Thiago Loreto Matos
- Pharmacogenetics Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, 60430-160, Brazil
| | - Pedro Filho Noronha Souza
- Pharmacogenetics Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, 60430-160, Brazil
| | - Maria Elisabete Amaral de Moraes
- Pharmacogenetics Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, 60430-160, Brazil
| | - Silvia Helena Barem Rabenhorst
- Molecular Genetics Laboratory, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, 60430-160, Brazil
| | - Felipe Pantoja Mesquita
- Pharmacogenetics Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, 60430-160, Brazil.
| | - Raquel Carvalho Montenegro
- Pharmacogenetics Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, 60430-160, Brazil
| |
Collapse
|
2
|
Bai HX, Qiu XM, Xu CH, Guo JQ. MiRNA-145-5p inhibits gastric cancer progression via the serpin family E member 1- extracellular signal-regulated kinase-1/2 axis. World J Gastrointest Oncol 2024; 16:2123-2140. [PMID: 38764835 PMCID: PMC11099451 DOI: 10.4251/wjgo.v16.i5.2123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) regulate gene expression and play a critical role in cancer physiology. However, there is still a limited understanding of the function and regulatory mechanism of miRNAs in gastric cancer (GC). AIM To investigate the role and molecular mechanism of miRNA-145-5p (miR145-5p) in the progression of GC. METHODS Real-time polymerase chain reaction (RT-PCR) was used to detect miRNA expression in human GC tissues and cells. The ability of cancer cells to migrate and invade was assessed using wound-healing and transwell assays, respectively. Cell proliferation was measured using cell counting kit-8 and colony formation assays, and apoptosis was evaluated using flow cytometry. Expression of the epithelial-mesenchymal transition (EMT)-associated protein was determined by Western blot. Targets of miR-145-5p were predicated using bioinformatics analysis and verified using a dual-luciferase reporter system. Serpin family E member 1 (SERPINE1) expression in GC tissues and cells was evaluated using RT-PCR and immunohistochemical staining. The correlation between SERPINE1 expression and overall patient survival was determined using Kaplan-Meier plot analysis. The association between SERPINE1 and GC progression was also tested. A rescue experiment of SERPINE1 overexpression was conducted to verify the relationship between this protein and miR-145-5p. The mechanism by which miR-145-5p influences GC progression was further explored by assessing tumor formation in nude mice. RESULTS GC tissues and cells had reduced miR-145-5p expression and SERPINE1 was identified as a direct target of this miRNA. Overexpression of miR-145-5p was associated with decreased GC cell proliferation, invasion, migration, and EMT, and these effects were reversed by forcing SERPINE1 expression. Kaplan-Meier plot analysis revealed that patients with higher SERPINE1 expression had a shorter survival rate than those with lower SERPINE1 expression. Nude mouse tumorigenesis experiments confirmed that miR-145-5p targets SERPINE1 to regulate extracellular signal-regulated kinase-1/2 (ERK1/2). CONCLUSION This study found that miR-145-5p inhibits tumor progression and is expressed in lower amounts in patients with GC. MiR-145-5p was found to affect GC cell proliferation, migration, and invasion by negatively regulating SERPINE1 levels and controlling the ERK1/2 pathway.
Collapse
Affiliation(s)
- Hong-Xia Bai
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan 250000, Shandong Province, China
- Department of Gastroenterology, Liaocheng People’s Hospital, Liaocheng 252000, Shandong Province, China
| | - Xue-Mei Qiu
- Department of Reproductive Center, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang 277000, Shandong Province, China
| | - Chun-Hong Xu
- Department of Gastroenterology, Liaocheng People’s Hospital, Liaocheng 252000, Shandong Province, China
| | - Jian-Qiang Guo
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan 250000, Shandong Province, China
| |
Collapse
|
3
|
Chen W, Chen Y, Hui T. microRNA-143 interferes the EGFR-stimulated glucose metabolism to re-sensitize 5-FU resistant colon cancer cells via targeting hexokinase 2. J Chemother 2023; 35:539-549. [PMID: 36546770 DOI: 10.1080/1120009x.2022.2157617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
5-Fluorouracil (5-FU) is one of the frequently used chemotherapeutic agents against colorectal cancer (CRC). However, 5-FU treatment remains clinical challenges since a large fraction of patients with CRC developed resistance to 5-FU-based chemotherapies. Hexokinase 2 (HK II), coding for a rate-limiting enzyme of glutamine metabolism, is responsible for the dysregulated glycolysis of cancers. In this study, we report epidermal growth factor receptor (EGFR) and HK II were overexpressed in colon cancers and positively correlated with 5-FU resistance of CRC. In addition, expression of miR-143 was remarkedly suppressed in 5-FU resistant CRC patients and colon cancer cells. Moreover, miR-143 expression was effectively downregulated by EGFR and inversely associated with HK II expression in CRC cells. We identified HK II as a direct target of miR-143 in colon cancer cells. Overexpression of miR-143 inhibited glycolysis rate through direct targeting HK II, leading to re-sensitization of 5-FU resistant colon cancer cells to 5-FU treatment. Rescue experiments validated that recovering HK II in miR-143-overexpressing cells restored 5-FU resistance of CRC cells. In general, our study reveals critical roles of miR-143, which is a downstream effector of EGFR in 5-FU resistant CRC cells through direct targeting HK II, indicating miR-143 is an effectively therapeutic target for the treatment of patients with chemoresistant CRC.
Collapse
Affiliation(s)
- Wenshan Chen
- Department of Anorectal, Xinchang Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Yun Chen
- Department of Anorectal, Xinchang Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Tong Hui
- Department of Anorectal, Shanxi Provincial People's Hospital, Shanxi Province, China
| |
Collapse
|
4
|
Wang B, Gu B, Zhang T, Li X, Wang N, Ma C, Xiang L, Wang Y, Gao L, Yu Y, Song K, He P, Wang Y, Zhu J, Chen H. Good or bad: Paradox of plasminogen activator inhibitor 1 (PAI-1) in digestive system tumors. Cancer Lett 2023; 559:216117. [PMID: 36889376 DOI: 10.1016/j.canlet.2023.216117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
The fibrinolytic system is involved in many physiological functions, among which the important members can interact with each other, either synergistically or antagonistically to participate in the pathogenesis of many diseases. Plasminogen activator inhibitor 1 (PAI-1) acts as a crucial element of the fibrinolytic system and functions in an anti-fibrinolytic manner in the normal coagulation process. It inhibits plasminogen activator, and affects the relationship between cells and extracellular matrix. PAI-1 not only involved in blood diseases, inflammation, obesity and metabolic syndrome but also in tumor pathology. Especially PAI-1 plays a different role in different digestive tumors as an oncogene or cancer suppressor, even a dual role for the same cancer. We term this phenomenon "PAI-1 paradox". PAI-1 is acknowledged to have both uPA-dependent and -independent effects, and its different actions can result in both beneficial and adverse consequences. Therefore, this review will elaborate on PAI-1 structure, the dual value of PAI-1 in different digestive system tumors, gene polymorphisms, the uPA-dependent and -independent mechanisms of regulatory networks, and the drugs targeted by PAI-1 to deepen the comprehensive understanding of PAI-1 in digestive system tumors.
Collapse
Affiliation(s)
- Bofang Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Baohong Gu
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Tao Zhang
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xuemei Li
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Na Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Chenhui Ma
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lin Xiang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yunpeng Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lei Gao
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yang Yu
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Kewei Song
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Puyi He
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yueyan Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jingyu Zhu
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Chen
- Lanzhou University Second Hospital, Lanzhou, Gansu, China; Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China; Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
5
|
Alfieri M, Meo L, Ragno P. Posttranscriptional Regulation of the Plasminogen Activation System by Non-Coding RNA in Cancer. Int J Mol Sci 2023; 24:ijms24020962. [PMID: 36674481 PMCID: PMC9860977 DOI: 10.3390/ijms24020962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023] Open
Abstract
Various species of non-coding RNAs (ncRNAs) may act as functional molecules regulating diverse biological processes. In cancer cell biology, ncRNAs include RNAs that regulate the expression of oncogenes and tumor suppressor genes through various mechanisms. The urokinase (uPA)-mediated plasminogen activation system (PAS) includes uPA, its inhibitors PAI-1 and PAI-2 and its specific cellular receptor uPAR; their increased expression represents a negative prognostic factor in several cancers. Here, we will briefly describe the main uPA-mediated PAS components and ncRNA species; then, we will review more recent evidence of the roles that ncRNAs may play in regulating the expression and functions of uPA-mediated PAS components in cancer.
Collapse
Affiliation(s)
- Mariaevelina Alfieri
- Clinical Pathology, Pausilipon Hospital, A.O.R.N Santobono-Pausilipon, 80123 Naples, Italy
| | - Luigia Meo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Correspondence: ; Tel.: +39-089-969456
| |
Collapse
|
6
|
Entezari M, Taheriazam A, Orouei S, Fallah S, Sanaei A, Hejazi ES, Kakavand A, Rezaei S, Heidari H, Behroozaghdam M, Daneshi S, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. LncRNA-miRNA axis in tumor progression and therapy response: An emphasis on molecular interactions and therapeutic interventions. Biomed Pharmacother 2022; 154:113609. [PMID: 36037786 DOI: 10.1016/j.biopha.2022.113609] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic factors are critical regulators of biological and pathological mechanisms and they could interact with different molecular pathways. Targeting epigenetic factors has been an idea approach in disease therapy, especially cancer. Accumulating evidence has highlighted function of long non-coding RNAs (lncRNAs) as epigenetic factors in cancer initiation and development and has focused on their association with downstream targets. microRNAs (miRNAs) are the most well-known targets of lncRNAs and present review focuses on lncRNA-miRNA axis in malignancy and therapy resistance of tumors. LncRNA-miRNA regulates cell death mechanisms such as apoptosis and autophagy in cancers. This axis affects tumor metastasis via regulating EMT and MMPs. Besides, lncRNA-miRNA axis determines sensitivity of tumor cells to chemotherapy, radiotherapy and immunotherapy. Based on the studies, lncRNAs can be affected by drugs and genetic tools in cancer therapy and this may affect expression level of miRNAs as their downstream targets, leading to cancer suppression/progression. LncRNAs have both tumor-promoting and tumor-suppressor functions in cancer and this unique function of lncRNAs has complicated their implication in tumor therapy. LncRNA-miRNA axis can also affect other signaling networks in cancer such as PI3K/Akt, STAT3, Wnt/β-catenin and EZH2 among others. Notably, lncRNA/miRNA axis can be considered as a signature for diagnosis and prognosis in cancers.
Collapse
Affiliation(s)
- Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Shayan Fallah
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Arezoo Sanaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Hajar Heidari
- Department of Biomedical Sciences School of Public Health University at Albany State University of New York, Albany, NY 12208, USA
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran
| | - Sepideh Mirzaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Islamic Republic of Iran.
| |
Collapse
|
7
|
Ye D, Liu Y, Chen Y, Li G, Sun B, Peng J, Xu Q. Identification of lncRNA biomarkers in hepatocellular carcinoma by comprehensive analysis of the lncRNA-mediated ceRNA network. Front Genet 2022; 13:832952. [PMID: 36105104 PMCID: PMC9465287 DOI: 10.3389/fgene.2022.832952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022] Open
Abstract
Growing evidence implicates that miRNAs can interact with long non-coding RNAs (lncRNAs) to regulate target mRNAs through competitive interactions. However, this mechanism that regulate tumorigenesis and cancer progression remains largely unexplored. Long non-coding RNAs (lncRNAs) act as competing endogenous RNAs (ceRNAs), which play a significant role in regulating gene expression. The purpose of our study was to determine potential lncRNA biomarkers to predict the prognosis of HCC by comprehensive analysis of a ceRNA network. The edgeR package was used to obtain the differentially expressed RNA datasets by analyzing 370 HCC tissues and 50 adjacent non-HCC tissues from The Cancer Genome Atlas (TCGA). Through investigating the differentially expressed between HCC tissues and adjacent non-HCC tissues, a total of 947 lncRNAs, 52 miRNAs, and 1,650 mRNAs were obtained. The novel constructed ceRNA network incorporated 99 HCC-specific lncRNAs, four miRNAs, and 55 mRNAs. Survival analysis identified 22 differentially expressed mRNAs, four miRNAs, and nine lncRNAs which were associated with overall survival (OS) time in HCC (p < 0.05), and further exploration was performed to assess the correlation of these differentially expressed genes with tumor stage. The Interpretation of the potential functions of these differentially expressed genes in HCC was realized by Gene ontology (GO) and KEGG pathway enrichment analyses. Seven lncRNAs were confirmed based on univariate Cox regression analysis, lasso COX regression analysis and multivariate Cox regression analysis to construct a predictive model in HCC patients which were related to the prognosis of OS. In summary, ceRNAs contributed to explore the mechanism of tumorigenesis and development, and a model with seven lncRNAs might be potential biomarker to predict the prognosis of HCC. These findings supported the need to studies on the mechanisms involved in the regulation of HCC by ceRNAs.
Collapse
Affiliation(s)
- Dingde Ye
- Medicine School of Southeast University Nanjing Drum Tower Hospital, Nanjing, China
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yaping Liu
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yanuo Chen
- Medicine School of Southeast University Nanjing Drum Tower Hospital, Nanjing, China
| | - Guoqiang Li
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Beicheng Sun
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Beicheng Sun, ; Jin Peng, ; Qingxiang Xu,
| | - Jin Peng
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Beicheng Sun, ; Jin Peng, ; Qingxiang Xu,
| | - Qingxiang Xu
- Medicine School of Southeast University Nanjing Drum Tower Hospital, Nanjing, China
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Beicheng Sun, ; Jin Peng, ; Qingxiang Xu,
| |
Collapse
|
8
|
Kulkarni A, Gayathrinathan S, Nair S, Basu A, Al-Hilal TA, Roy S. Regulatory Roles of Noncoding RNAs in the Progression of Gastrointestinal Cancers and Health Disparities. Cells 2022; 11:cells11152448. [PMID: 35954293 PMCID: PMC9367924 DOI: 10.3390/cells11152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023] Open
Abstract
Annually, more than a million individuals are diagnosed with gastrointestinal (GI) cancers worldwide. With the advancements in radio- and chemotherapy and surgery, the survival rates for GI cancer patients have improved in recent years. However, the prognosis for advanced-stage GI cancers remains poor. Site-specific GI cancers share a few common risk factors; however, they are largely distinct in their etiologies and descriptive epidemiologic profiles. A large number of mutations or copy number changes associated with carcinogenesis are commonly found in noncoding DNA regions, which transcribe several noncoding RNAs (ncRNAs) that are implicated to regulate cancer initiation, metastasis, and drug resistance. In this review, we summarize the regulatory functions of ncRNAs in GI cancer development, progression, chemoresistance, and health disparities. We also highlight the potential roles of ncRNAs as therapeutic targets and biomarkers, mainly focusing on their ethnicity-/race-specific prognostic value, and discuss the prospects of genome-wide association studies (GWAS) to investigate the contribution of ncRNAs in GI tumorigenesis.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sharan Gayathrinathan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Soumya Nair
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Anamika Basu
- Copper Mountain College, Joshua Tree, CA 92252, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Taslim A. Al-Hilal
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- Correspondence:
| |
Collapse
|
9
|
Chen J, Sun M, Huang L, Fang Y. The Long noncoding RNA LINC00200 Promotes the Malignant Progression of MYCN-Amplified Neuroblastoma via Binding to Insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) to Enhance the Stability of of Zic family member 2 (ZIC2) mRNA. Pathol Res Pract 2022; 237:154059. [DOI: 10.1016/j.prp.2022.154059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 12/09/2022]
|
10
|
Trevisani F, Floris M, Vago R, Minnei R, Cinque A. Long Non-Coding RNAs as Novel Biomarkers in the Clinical Management of Papillary Renal Cell Carcinoma Patients: A Promise or a Pledge? Cells 2022; 11:1658. [PMID: 35626699 PMCID: PMC9139553 DOI: 10.3390/cells11101658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/22/2022] Open
Abstract
Papillary renal cell carcinoma (pRCC) represents the second most common subtype of renal cell carcinoma, following clear cell carcinoma and accounting for 10-15% of cases. For around 20 years, pRCCs have been classified according to their mere histopathologic appearance, unsupported by genetic and molecular evidence, with an unmet need for clinically relevant classification. Moreover, patients with non-clear cell renal cell carcinomas have been seldom included in large clinical trials; therefore, the therapeutic landscape is less defined than in the clear cell subtype. However, in the last decades, the evolving comprehension of pRCC molecular features has led to a growing use of target therapy and to better oncological outcomes. Nonetheless, a reliable molecular biomarker able to detect the aggressiveness of pRCC is not yet available in clinical practice. As a result, the pRCC correct prognosis remains cumbersome, and new biomarkers able to stratify patients upon risk of recurrence are strongly needed. Non-coding RNAs (ncRNAs) are functional elements which play critical roles in gene expression, at the epigenetic, transcriptional, and post-transcriptional levels. In the last decade, ncRNAs have gained importance as possible biomarkers for several types of diseases, especially in the cancer universe. In this review, we analyzed the role of long non-coding RNAs (lncRNAs) in the prognosis of pRCC, with a particular focus on their networking. In fact, in the competing endogenous RNA hypothesis, lncRNAs can bind miRNAs, resulting in the modulation of the mRNA levels targeted by the sponged miRNA, leading to additional regulation of the target gene expression and increasing complexity in the biological processes.
Collapse
Affiliation(s)
- Francesco Trevisani
- Urological Research Institute, San Raffaele Scientific Institute, 20132 Milano, Italy;
- Unit of Urology, San Raffaele Scientific Institute, 20132 Milano, Italy
- Biorek s.r.l., San Raffaele Scientific Institute, 20132 Milano, Italy;
| | - Matteo Floris
- Nephrology, Dialysis, and Transplantation Division, G. Brotzu Hospital, University of Cagliari, 09134 Cagliari, Italy; (M.F.); (R.M.)
| | - Riccardo Vago
- Urological Research Institute, San Raffaele Scientific Institute, 20132 Milano, Italy;
| | - Roberto Minnei
- Nephrology, Dialysis, and Transplantation Division, G. Brotzu Hospital, University of Cagliari, 09134 Cagliari, Italy; (M.F.); (R.M.)
| | - Alessandra Cinque
- Biorek s.r.l., San Raffaele Scientific Institute, 20132 Milano, Italy;
| |
Collapse
|
11
|
Evaluation of Important Molecular Pathways and Candidate Diagnostic Biomarkers of Noninvasive to Invasive Stages in Gastric Cancer by In Silico Analysis. JOURNAL OF ONCOLOGY 2021; 2021:5571413. [PMID: 34054953 PMCID: PMC8131151 DOI: 10.1155/2021/5571413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
Gastric cancer affects millions of people each year; it is the fifth deadliest cancer globally. Due to failure to perform routine tests such as endoscopy, it is usually diagnosed in the invasive stages. Therefore, finding diagnostic biomarkers in blood can help to speed up the initial diagnosis of cancer. This study aimed to find appropriate diagnostic biomarkers in the extracellular matrix of noninvasive to invasive stages of gastric cancer patients, using bioinformatics analysis. First, we selected the appropriate datasets from the GEO database. We evaluated the genes' signaling pathways, biological processes, and molecular functions. More accurately, we assessed the genes, in which their protein products are released into the extracellular matrix; we evaluated their protein network. Then, we validated the candidate proteins in the GEPIA and TCGA databases. The extracellular matrix, tyrosine kinase receptors, and immune response pathways are effective factors, which are related to the highly expressed genes and metabolism; cell cycle pathways are also impressive on low-expression genes. 69 highly expressed proteins are released into the extracellular matrix. After drawing the protein network, 5 proteins were selected as more suitable candidates for further studies. These proteins' expression significantly increases in the human samples, and the survival chart showed up to about 80% mortality in the individuals over time. With integrated bioinformatics analysis, BGN, LOX, MMP-9, SERPINE1, and TGFB1 proteins have been selected as suitable diagnostic biomarkers for noninvasive to invasive stages of gastric cancer. Further studies are needed to evaluate more precise mechanisms between these proteins.
Collapse
|
12
|
Dong LM, Zhang XL, Mao MH, Li YP, Zhang XY, Xue DW, Liu YL. LINC00511/miRNA-143-3p Modulates Apoptosis and Malignant Phenotype of Bladder Carcinoma Cells via PCMT1. Front Cell Dev Biol 2021; 9:650999. [PMID: 33898446 PMCID: PMC8063617 DOI: 10.3389/fcell.2021.650999] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/01/2021] [Indexed: 01/20/2023] Open
Abstract
Bladder cancer has easy recurrence characteristics, but its occurrence and development mechanism are still unclear. Non-coding RNA is a kind of RNA that exists widely and cannot be translated into proteins, which has played a key role in the regulation of biological functions of tumor cells. However, the regulation mechanism of non-coding RNA on bladder tumors is not fully understood. By microarray analysis and database analysis, we found that LINC00511 was significantly highly expressed in bladder cancer. The expressions of LINC00511, miR-143-3p, and PCMT in bladder cancer tissues and cells were detected by quantitative reverse transcription–polymerase chain reaction. The relationship between the expressions of miR-143-3p and PCMT1 and the clinicopathological parameters of the tumor was analyzed. The proliferation and invasion of bladder cancer cells were detected by MTT assay and Transwell assay. The expression levels of E-cadherin and vimentin in bladder cancer cells were detected by Western blot. Cell apoptosis was detected by flow cytometry. In vivo, TCCSUP or SW780 cells were inoculated into BALB/c nude mice to detect tumor volume and weight. Bioinformatics and dual luciferase reporter gene were used to analyze the relationship between LINC00511 and miR-143-3p and its downstream target gene PCMT1. The results showed that LINC00511 could target miR-143-3p/PCMT1 to regulate the proliferation, migration, and apoptosis of bladder cancer TCCSUP or SW780 cells and promote the occurrence and development of bladder cancer.
Collapse
Affiliation(s)
- Li-Ming Dong
- Department of Urologic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xi-Ling Zhang
- Department of Urologic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ming-Huan Mao
- Department of Urologic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan-Pei Li
- Department of Urologic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xi-Yan Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong-Wei Xue
- Department of Urologic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi-Li Liu
- Department of Urologic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Mao Y, Chen R, Xia M, Guo P, Zeng F, Huang J, He M. Identification of an immune-based mRNA-lncRNA signature for overall survival in cervical squamous cell carcinoma. Future Oncol 2021; 17:2365-2380. [PMID: 33724869 DOI: 10.2217/fon-2020-1153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To better predict the survival of cervical squamous cell carcinoma (CESC) patients, we aimed to construct a signature according to different immune infiltration. Methods: We downloaded the RNA sequences of CESC patients from the Cancer Genome Atlas database. By using single-sample gene set enrichment analysis, we separated the samples into high- and low-immunity groups. Then we separated the samples into training and testing datasets and performed the following analyses: univariate, least absolute shrinkage and selection operator analysis, multivariate Cox regression analyses and weighted gene coexpression network analysis using R software. Gene ontology and Kyoto Encyclopedia of Genes and Genomes studies were performed using the Database for Annotation, Visualization and Integrated Discovery website. Results & conclusion: We finally identified a signature with three mRNAs and two lncRNAs: ADGRG5, HSH2D, ZMAT4, RBAKDN and LINC00200. In short, our study constructed an mRNA-lncRNA signature related to immune infiltration to better predict the survival of CESC patients.
Collapse
Affiliation(s)
- Yifang Mao
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| | - Run Chen
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| | - Meng Xia
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| | - Peng Guo
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| | - Feitianzhi Zeng
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| | - Jiaming Huang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| | - Mian He
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| |
Collapse
|