1
|
Wang S, Su W, Wu X, Dong W. Restoring Treg/Th17 cell balance in ulcerative colitis through HRas silencing and MAPK pathway inhibition. Int Immunopharmacol 2024; 130:111608. [PMID: 38428143 DOI: 10.1016/j.intimp.2024.111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 03/03/2024]
Abstract
This study investigates HRas-dependent mechanisms in the disruption of regulatory T (Treg) cells and T helper 17 (Th17) cells balance in ulcerative colitis (UC). Comprehensive RNA sequencing and bioinformatics analyses revealed elevated HRas and MAPK pathway-related protein expression in UC samples. Using a murine UC model induced by dextran sulfate sodium (DSS), HRas silencing was found to promote Treg cell differentiation and suppress Th17 cell production, effectively restoring balance. Inactivation of the MAPK pathway played a pivotal role in this rebalancing effect. In vivo experiments further confirmed that HRas silencing mitigated colon tissue damage in DSS-induced mice, emphasizing its potential as a therapeutic strategy for UC.
Collapse
Affiliation(s)
- Siwei Wang
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Wenhao Su
- Department of Gastroenterology, Renmin Hospital of Wuhan University,Wuhan 430060, PR China
| | - Xiaohan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University,Wuhan 430060, PR China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University,Wuhan 430060, PR China.
| |
Collapse
|
2
|
Gao S, Sun C, Kong J. Vitamin D Attenuates Ulcerative Colitis by Inhibiting ACSL4-Mediated Ferroptosis. Nutrients 2023; 15:4845. [PMID: 38004239 PMCID: PMC10675831 DOI: 10.3390/nu15224845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND With environmental and lifestyle changes, recent epidemiological studies have shown that the prevalence of Ulcerative Colitis (UC) is on the rise, while treatment options are limited. There is an urgent need to explore the underlying mechanisms of vitamin D (VD) as an effective treatment. METHODS Dextran sulfate sodium-induced mice and lipopolysaccharide-induced HCT116 cells were used to establish the classic UC models in vivo and in vitro, respectively. Typical symbols of inflammation (IL-6, COX-2), oxidative stress (MDA, MPO, GSH), and ferroptosis (ACSL4, GPX4, SLC7A11, and Iron) were analyzed by Western blot, Immunohistochemistry, RT-PCR, and relative assay kits. The inflammation factors and oxidative stress injury of cells transfected with ACSL4+/+ plasmids were tested by Western blot, MDA, and MPO methods. RESULTS Vitamin D attenuated the levels of COX-2, IL-6, Iron, MDA, and MPO and improved SOD1 and GSH contents in DSS + VD and LPS + VD groups, compared with model groups. Ferrostatin-1 (Fer-1) could relieve the levels of COX-2, IL-6, Iron, MDA, and MPO while increasing the contents of SOD1 and GSH in DSS + Fer-1 and LPS + Fer-1 compared to model groups. VD downregulated the expression of ACSL4 and upregulated GPX4 in tissues and cells. After transfected with ACSL4+/+ plasmids, we found VD's role of downregulating inflammation and oxidative stress was relieved. CONCLUSIONS Vitamin D can relieve UC by inhibiting ferroptosis both in mice and in cells through the negative regulation of ACSL4, providing new insight into the therapeutic function of VD on UC.
Collapse
Affiliation(s)
- Shuo Gao
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Can Sun
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Kong
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
3
|
Khodadadiyan A, Rahmanian M, Shekouh D, Golmohammadi M, Ghaedi A, Bazrgar A, Sayadi M, Bazrafshan M, Heydari A, Bazrafshan Drissi H. Evaluating the effect of vitamin D supplementation on serum levels of 25-hydroxy vitamin D, 1,25-dihydroxy vitamin D, parathyroid hormone and renin-angiotensin-aldosterone system: a systematic review and meta-analysis of clinical trials. BMC Nutr 2023; 9:132. [PMID: 37968749 PMCID: PMC10652523 DOI: 10.1186/s40795-023-00786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Vitamin D, one of the most essential micronutrients, is crucial in various health outcomes. However, previous studies showed conflicting results and uncertainty about vitamin D supplementation's optimal dosage and duration. In this study, we aimed to evaluate the vitamin D supplements efficiency on serum levels of 25-hydroxy vitamin D (25(OH)D), 1,25-dihdroxy vitamin D (1,25(OH)2D), parathyroid hormone (PTH) and renin-angiotensin-aldosterone system (RAAS) in adults. METHODS A systematic analysis of eligible and relevant randomized-controlled trials (RCT) published before April 2023 assessing the effect of vitamin D supplementations applied. The studies were identified by searching several databases, including Pubmed, Scopus, Web of Science, ProQuest, and Cochrane Register of controlled trials. RESULTS Five eligible RCTs with 346 participants in the intervention and 352 participants in the control group were assessed in our project. According to the results, there was a substantial change in 25(OH)D (SMD: 2.2, I2: 92.3, 95% Confidence Interval (CI): 1.38-3.02, P-value: 0.048) and 1,25(OH)2D (SMD:1.23, I2: 86.3, 95% CI: 0.01- 2.44, P-value < 0.010) affected by vitamin D intervention. Regarding Parathyroid hormone (PTH), however, vitamin D intervention showed a remarkable decrease (SMD: -0.75, I2: 82.4, 95% CI: (-1.3)-(-0.18), P-value < 0.010). Moreover, sensitivity analysis showed significant publication bias in terms of 25(OH)D. CONCLUSION Vitamin D supplements significantly increase the serum levels of 25(OH)D and 1,25(OH)2D and decrease PTH levels. While some studies reported decreasing effect of vitamin D supplements on RAAS activity, some reported no changes.
Collapse
Affiliation(s)
- Alireza Khodadadiyan
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Rahmanian
- Cardiovascular Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Dorsa Shekouh
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Melika Golmohammadi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arshin Ghaedi
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Bazrgar
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrab Sayadi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bazrafshan
- Cardiovascular Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Aigin Heydari
- Cardiovascular Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | | |
Collapse
|
4
|
Song WX, Yu ZH, Ren XF, Chen JH, Chen X. Role of micronutrients in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2023; 31:711-731. [DOI: 10.11569/wcjd.v31.i17.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an autoimmune intestinal disease that includes ulcerative colitis, Crohn's disease, and indeterminate colitis. Patients with IBD are often at risk for malnutrition, including micronutrient deficiencies, due to dietary restrictions and poor intestinal absorption. Micronutrients, including vitamins and minerals, play an important role in the human body's metabolism and maintenance of tissue functions. This article reviews the role of micronutrients in IBD. Micronutrients can affect the occurrence and progression of IBD by regulating immunity, intestinal flora, oxidative stress, intestinal barrier function, and other aspects. Monitoring and timely supplementation of micronutrients are important to delay progression and improve clinical symptoms in IBD patients.
Collapse
Affiliation(s)
- Wen-Xuan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zi-Han Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiang-Feng Ren
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ji-Hua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
5
|
Brennan E, Butler AE, Nandakumar M, Drage DS, Sathyapalan T, Atkin SL. Association between Organochlorine Pesticides and Vitamin D in Female Subjects. Biomedicines 2023; 11:biomedicines11051451. [PMID: 37239122 DOI: 10.3390/biomedicines11051451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
In human population studies, organochlorine pesticides (OCPs) have been linked to vitamin D deficiency. Therefore, this study examined the association between OCPs, vitamin D3 (cholecalciferol, 25(OH)D3), and the active metabolite 1,25-dihydrovitamin D3 (1,25(OH)2D3) in a cohort of non-obese women. The serum samples of 58 female participants (age-31.9 ± 4.6 years; body mass index (BMI)-25.7 ± 3.7 kg/m2) were screened for 10 indicator OCPs. 25(OH)D3 and 1,25(OH)2D3 levels were determined via isotope dilution liquid chromatography tandem mass spectrometry. In this cohort, the 25(OH)D3 and 1,25(OH)2D3 levels were 22.9 ± 11.2 ng/mL and 0.05 ± 0.02 ng/mL, respectively, with 28 participants classified as 25(OH)D3-deficient (<50 nmol/L). In the study cohort, no correlations were found between individual or total OCPs (ƩOCPs) and 25(OH)D3. p,p'-dichlorodiphenyldichloroethylene (DDE) and ƩOCPs correlated positively with 1,25(OH)2D3, with the latter being negatively correlated with estimated glomerular filtration rate (eGFR). In women with sufficient 25(OH)D3 levels, p,p'-dichlorodiphenyltrichloroethan (DDT) was positively correlated with 1,25(OH)2D3, whilst in the deficient group, hexachlorobenzene (HCB) and p,p'-(DDE) were positively correlated with 1,25(OH)2D3, β-Hexachlorocyclohexane (HCH) was positively correlated with 25(OH)D3, and none of the OCPs were associated with measures of renal function. Overall, OCPs and ƩOCPs were not associated with 25(OH)D3, suggesting that they are unrelated to vitamin D deficiency, but p,p'-DDE and ƩOCPs correlated positively with active 1,25(OH)2D3, while ƩOCPs correlated negatively with eGFR, suggesting a possible renal effect. Analysis of vitamin D deficiency revealed an association between β-HCH and 25(OH)D3, and between HCB and p,p'-DDE and 1,25(OH)2D3, suggesting that OCP effects may be enhanced in cases of vitamin D deficiency.
Collapse
Affiliation(s)
- Edwina Brennan
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E Butler
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Manjula Nandakumar
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Daniel S Drage
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 39 Kessels Road, Brisbane, QLD 4108, Australia
| | | | - Stephen L Atkin
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
6
|
Yang ZJ, Wang TT, Wang BY, Gao H, He CW, Shang HW, Lu X, Wang Y, Xu JD. Deeper insight into the role of IL-17 in the relationship beween hypertension and intestinal physiology. J Inflamm (Lond) 2022; 19:14. [PMID: 36195874 PMCID: PMC9530412 DOI: 10.1186/s12950-022-00311-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
With the incidence of hypertension increasing worldwide, more and more the mechanisms of hypertension from the perspective of immunity have found. Intestinal microbiota as well as its metabolites relationship with hypertension has attracted great attention from both clinicians and investigators. However, the associations of hypertension with lesions of a large number of immune factors including IL-17, MCP-1, IL-6, TGF-β, IL-10 and others have not been fully characterized. In this review, after introducing the immune factors as the most potent anti/pro-hypertension agents known, we provide detailed descriptions of the IL-17 involved in the pathology of hypertension, pointing out the underlying mechanisms and suggesting the clinical indications.
Collapse
Affiliation(s)
- Ze-Jun Yang
- grid.24696.3f0000 0004 0369 153XClinical Medicine of “5+3”program, School of Basic Medical Science, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XDepartment of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Tian-Tian Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bo-Ya Wang
- grid.411634.50000 0004 0632 4559Eight Program of Clinical Medicine, Peking University People’s Hospital, Beijing, China
| | - Han Gao
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Cheng-Wei He
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hong-Wei Shang
- grid.24696.3f0000 0004 0369 153XMorphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xin Lu
- grid.24696.3f0000 0004 0369 153XMorphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Wang
- grid.414373.60000 0004 1758 1243Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Lo SW, Segal JP, Lubel JS, Garg M. What do we know about the renin angiotensin system and inflammatory bowel disease? Expert Opin Ther Targets 2022; 26:897-909. [PMID: 36484415 DOI: 10.1080/14728222.2022.2157261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The renin-angiotensin system (RAS) is an important homeostatic pathway, with emerging evidence for the impact of its components on inflammation and fibrosis in gastrointestinal tissues. This review aims to review current knowledge of the physiological mechanism of RAS in inflammatory bowel disease (IBD), and potential therapeutic implications. AREAS COVERED An extensive online literature review including Pubmed, Medline, and Google Scholar was undertaken. Discussion on the components of the RAS, localization, and physiological functions in the gastrointestinal tract, preclinical, and clinical data in IBD, and the relation with SARS-Cov-2 are covered in this review. EXPERT OPINION RAS inhibition may have a role as anti-fibrotic adjunct therapy. Targeting the local gastrointestinal RAS with novel modes of delivery may be a target for future therapeutics for IBD, given the widespread availability and safety of current options as utilized in other diseases. Further insight into the mechanism and downstream effects of gastrointestinal ACE2 may lead to a better understanding of the pathogenesis of IBD.
Collapse
Affiliation(s)
- Sheng Wei Lo
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia
| | - Jonathan P Segal
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, University of Melbourne, Australia
| | - John S Lubel
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, Monash University
| | - Mayur Garg
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, University of Melbourne, Australia
| |
Collapse
|
8
|
Fletcher J, Bishop EL, Harrison SR, Swift A, Cooper SC, Dimeloe SK, Raza K, Hewison M. Autoimmune disease and interconnections with vitamin D. Endocr Connect 2022; 11:EC-21-0554. [PMID: 35196255 PMCID: PMC9010814 DOI: 10.1530/ec-21-0554] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/23/2022] [Indexed: 11/18/2022]
Abstract
Vitamin D has well-documented effects on calcium homeostasis and bone metabolism but recent studies suggest a much broader role for this secosteroid in human health. Key components of the vitamin D system, notably the vitamin D receptor (VDR) and the vitamin D-activating enzyme (1α-hydroxylase), are present in a wide array of tissues, notably macrophages, dendritic cells and T lymphocytes (T cells) from the immune system. Thus, serum 25-hydroxyvitamin D (25D) can be converted to hormonal 1,25-dihydroxyvitamin D (1,25D) within immune cells, and then interact with VDR and promote transcriptional and epigenomic responses in the same or neighbouring cells. These intracrine and paracrine effects of 1,25D have been shown to drive antibacterial or antiviral innate responses, as well as to attenuate inflammatory T cell adaptive immunity. Beyond these mechanistic observations, association studies have reported the correlation between low serum 25D levels and the risk and severity of human immune disorders including autoimmune diseases such as inflammatory bowel disease, multiple sclerosis, type 1 diabetes and rheumatoid arthritis. The proposed explanation for this is that decreased availability of 25D compromises immune cell synthesis of 1,25D leading to impaired innate immunity and over-exuberant inflammatory adaptive immunity. The aim of the current review is to explore the mechanistic basis for immunomodulatory effects of 25D and 1,25D in greater detail with specific emphasis on how vitamin D-deficiency (low serum levels of 25D) may lead to dysregulation of macrophage, dendritic cell and T cell function and increase the risk of inflammatory autoimmune disease.
Collapse
Affiliation(s)
- Jane Fletcher
- Nutrition Nurses, University Hospitals Birmingham NHS Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, UK
- School of Nursing, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Emma L Bishop
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Stephanie R Harrison
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, Leeds, UK
| | - Amelia Swift
- School of Nursing, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Sheldon C Cooper
- Gastroenterology Department, University Hospitals Birmingham NHS Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, UK
| | - Sarah K Dimeloe
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Karim Raza
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Martin Hewison
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Correspondence should be addressed to M Hewison:
| |
Collapse
|
9
|
Micronutrient Improvement of Epithelial Barrier Function in Various Disease States: A Case for Adjuvant Therapy. Int J Mol Sci 2022; 23:ijms23062995. [PMID: 35328419 PMCID: PMC8951934 DOI: 10.3390/ijms23062995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The published literature makes a very strong case that a wide range of disease morbidity associates with and may in part be due to epithelial barrier leak. An equally large body of published literature substantiates that a diverse group of micronutrients can reduce barrier leak across a wide array of epithelial tissue types, stemming from both cell culture as well as animal and human tissue models. Conversely, micronutrient deficiencies can exacerbate both barrier leak and morbidity. Focusing on zinc, Vitamin A and Vitamin D, this review shows that at concentrations above RDA levels but well below toxicity limits, these micronutrients can induce cell- and tissue-specific molecular-level changes in tight junctional complexes (and by other mechanisms) that reduce barrier leak. An opportunity now exists in critical care—but also medical prophylactic and therapeutic care in general—to consider implementation of select micronutrients at elevated dosages as adjuvant therapeutics in a variety of disease management. This consideration is particularly pointed amidst the COVID-19 pandemic.
Collapse
|
10
|
Prevalence and Relevant Factors of Micronutrient Deficiencies in Hospitalized Patients with Inflammatory Bowel Disease. Nutrition 2022; 99-100:111671. [PMID: 35551017 DOI: 10.1016/j.nut.2022.111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022]
|