1
|
Kordek D, Young L, Voda P, Kremláček J. Motion onset VEPs can see through the blur. Sci Rep 2024; 14:21296. [PMID: 39266612 PMCID: PMC11393312 DOI: 10.1038/s41598-024-72483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
Motion-onset visual evoked potentials (MO VEPs) are robust to dioptric blur when low contrast and low spatial frequency patterns are used for stimulation. To reveal mechanisms of MO VEPs robustness, we studied whether the resistance to defocus persists even when using a high-contrast checkerboard using digital defocus in the emmetropic eyes of 13 subjects (males 20-60 years). We compared the dominant components of MO VEPs to pattern-reversal VEPs (PR VEP), which are sensitive to the blur. For stimulation, we used checkerboard patterns with 15´ and 60´ checks. To defocus the checkerboard, we rendered it with a second-order Zernike polynomial ( Z 2 0 ) with an equivalent defocus of 0, 2, or 4 D. For PR VEP, the checkerboards were reversed in terms of their contrast. To evoke MO VEP, the checkerboard of 60´ checks moved for 200 ms with a speed of 5 or 10 deg/s in the cardinal directions. The MO VEP did not change in peak time (P ≥ 0.0747) or interpeak amplitude (P > 0.0772) with digital blur. In contrast, for PR VEP, the results showed a decrease in interpeak amplitude (P ≤ 6.65ˑ10-4) and an increase in peak time (P ≤ 0.0385). Thus, we demonstrated that MO VEPs evoked by checkerboard, structure containing high spatial content, can be robust to defocus.
Collapse
Affiliation(s)
- D Kordek
- Department of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czechia
| | - L Young
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - P Voda
- Department of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czechia
| | - J Kremláček
- Department of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czechia.
| |
Collapse
|
2
|
Yu B, Sui L. Effects of motion type on motion-onset and steady-state visual evoked potentials: rotation vs. flicker. Neuroreport 2024; 35:191-199. [PMID: 38305110 DOI: 10.1097/wnr.0000000000002004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The underlying mechanisms of information processing for two basic motion types, rotation and flicker, are not fully understood. Rotational and flickering animations at four speeds - 7 frames per second (fps), 8 fps, 11 fps, and 12 fps, respectively - are presented as visual stimuli. The motion-onset visual evoked potentials (VEPs) and steady-state VEPs (SSVEP) elicited by these motion stimuli were compared between the rotation and flicker motion types at time windows of 0-500 ms and 1000-5000 ms post-stimulus, respectively. The standardized low-resolution electromagnetic tomography (sLORETA) source localization was investigated as well. Four motion speeds had no effect on the whole VEP waveform in either the rotation or the flicker groups. Significant differences in motion-onset VEPs and sLORETA source localization were found between the rotation and the flicker motion types at time windows of 200-500 ms post-stimulus. For the time windows of 1000-5000 ms post-stimulus, both the rotation and flicker groups all demonstrated the characteristics of SSVEP, with the peak spectral topographies showing at the four different frequencies, which correspond to the four motion speeds. Additionally, a higher power of spectral topography at each of the four motion speeds was found in the rotation relative to the flicker stimulation. The perceptual and cognitive processes are distinct for two types of motion: rotation and flicker. In terms of motion-onset VEPs and the characteristics of SSVEP, rotating visual stimulation is superior to flicker stimulation and may be more appropriate for clinical and engineering applications.
Collapse
Affiliation(s)
- BingBing Yu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | | |
Collapse
|
3
|
Li R, Zhao X, Wang Z, Xu G, Hu H, Zhou T, Xu T. A Novel Hybrid Brain-Computer Interface Combining the Illusion-Induced VEP and SSVEP. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4760-4772. [PMID: 38015667 DOI: 10.1109/tnsre.2023.3337525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Traditional single-modality brain-computer interface (BCI) systems are limited by their reliance on a single characteristic of brain signals. To address this issue, incorporating multiple features from EEG signals can provide robust information to enhance BCI performance. In this study, we designed and implemented a novel hybrid paradigm that combined illusion-induced visual evoked potential (IVEP) and steady-state visual evoked potential (SSVEP) with the aim of leveraging their features simultaneously to improve system efficiency. The proposed paradigm was validated through two experimental studies, which encompassed feature analysis of IVEP with a static paradigm, and performance evaluation of hybrid paradigm in comparison with the conventional SSVEP paradigm. The characteristic analysis yielded significant differences in response waveforms among different motion illusions. The performance evaluation of the hybrid BCI demonstrates the advantage of integrating illusory stimuli into the SSVEP paradigm. This integration effectively enhanced the spatio-temporal features of EEG signals, resulting in higher classification accuracy and information transfer rate (ITR) within a short time window when compared to traditional SSVEP-BCI in four-command task. Furthermore, the questionnaire results of subjective estimation revealed that proposed hybrid BCI offers less eye fatigue, and potentially higher levels of concentration, physical condition, and mental condition for users. This work first introduced the IVEP signals in hybrid BCI system that could enhance performance efficiently, which is promising to fulfill the requirements for efficiency in practical BCI control systems.
Collapse
|
4
|
Stolz LA, Liu S, Asamoa E, Appelbaum LG. Neurobehavioral measures of coincidence anticipation timing. J Vis 2023; 23:16. [PMID: 37610734 PMCID: PMC10461693 DOI: 10.1167/jov.23.8.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/15/2023] [Indexed: 08/24/2023] Open
Abstract
Coincidence anticipation (CA) refers to the ability to coordinate responses to the arrival of a moving object. This study investigates the neurobehavioral processes that underlie CA through the measurement of electroencephalography (EEG) recorded during a CA task on a 17-foot plastic rail with evenly spaced LED lights. Participants responded at the anticipated moment a sequence of successively lit LEDs coincided with a stationary target. Healthy young adult participants (Mage = 21) performed six blocks with movement at 20, 30, or 40 mph and the direction either inbound or outbound relative to the participant. Behavioral results demonstrated a main effect of speed and an interaction between speed and direction, with outbound motion producing early responses and inbound motion producing delayed responses that increased at greater speeds. EEG demonstrated characteristic P1, N2, and P3-like visual evoked potentials (VEPs). VEP amplitudes revealed a significant direction by channel interaction for the P1, indicative of more medial responses for inbound motion. Significant laterality differences were present in the N2, whereas the P3 component produced significant main effects and interactions of speed and direction. This novel combination of three-dimensional CA with EEG demonstrates systematic brain responses that are tuned for motion speed and sensitive to different egocentric motion patterns thereby shedding new light on the mechanism of human visual-motor control.
Collapse
Affiliation(s)
- Louise A Stolz
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Sicong Liu
- Annenberg School of Communication, University of Pennsylvania, Philadelphia, PA, USA
| | - Edem Asamoa
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Lawrence Gregory Appelbaum
- Department of Psychiatry, University of California, San Diego, CA, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
5
|
Wang Y, Guo Y, Wei S, Wu T, Yuan Y, Zhang Y, Li X, Chen Y. Dynamic Visual Acuity After Small Incision Lenticule Extraction for Myopia Patients. Percept Mot Skills 2023; 130:403-418. [PMID: 36226374 DOI: 10.1177/00315125221133434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study we compared dynamic visual acuity (DVA) of 84 eyes (for 42 adults with myopia; M age = 28.4, SD = 6.6 years; males = 38.1%, females = 61.9%) at 40 and 80 degree per second (dps) before surgery with eyeglass corrections and after a surgical procedure - a small incision lenticule extraction (SMILE). Participants underwent binocular SMILE surgery with plano refraction targets. Their eyeglass-corrected binocular DVA at 40 and 80 dps was evaluated preoperatively, and their uncorrected binocular DVA was assessed post-operatively at 1 week, 1 month and 3 months. The mean logMAR (logarithm of the minimum angle of resolution) uncorrected and corrected distance visual acuities (UDVA and CDVA) were -0.09 and -0.11 respectively, 3 months postoperatively. The mean preoperative eyeglass-corrected DVAs at 40 and 80 dps were 0.141 and 0.184, respectively, and significant improvements were observed for 40 dps and 80 dps DVAs 3 months postoperatively. Pearson's correlations were statistically significant between the postoperative DVAs at 3 months and for both the preoperative DVA and postoperative UDVA at both 40 dps and 80 dps. The change in the DVAs at 3 months were significantly associated with the preoperative DVAs at 40 dps and 80 dps. In conclusion, myopic patients' DVAs significantly improved following SMILE in comparison to corrected preoperative visual acuity when wearing eyeglasses. The post-SMILE DVA was associated with both the preoperative DVA and the postoperative UDVA.
Collapse
Affiliation(s)
- Yuexin Wang
- Department of Ophthalmology, 66482Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| | - Yining Guo
- Department of Ophthalmology, 66482Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| | - Shanshan Wei
- Department of Ophthalmology, 66482Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| | - Tingyi Wu
- Department of Ophthalmology, 66482Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| | - Yifei Yuan
- Department of Ophthalmology, 66482Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| | - Yu Zhang
- Department of Ophthalmology, 66482Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| | - Xuemin Li
- Department of Ophthalmology, 66482Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| | - Yueguo Chen
- Department of Ophthalmology, 66482Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| |
Collapse
|
6
|
Abstract
INTRODUCTION We developed a new portable device called "VEPpeak" for the examination of visual evoked potentials (VEPs) to extend VEP examination beyond specialized electrophysiological laboratories and to simplify the use of this objective, noninvasive, and low-cost method for diagnostics of visual and central nervous system dysfunctions. METHODS VEPpeak consists of a plastic headset with a total weight of 390 g containing four EEG amplifiers, an A/D converter, a control unit, and a visual LED stimulator built in the front, vertically adjustable peak. The device is powered and controlled via USB connection from a standard PC/notebook using custom software for visual stimuli generation and for VEP recording and processing. Up to four electrodes can be placed at any scalp location or in combination with two dry electrodes incorporated into the headset. External visual stimulators, such as a tablet, can be used with synchronization. Feasibility and validation studies were conducted with 86 healthy subjects and 76 neuro-ophthalmological patients including 67 who were during the same session also tested with a conventional VEP system. RESULTS VEPpeak recordings to standard (pattern-reversal) and non-standard (motion-onset, red-green alternation) were robust and repeatable and obtained also in immobilized patients. Good comparability of results was achieved between VEPpeak and standard examination. Some systematic differences in peak latencies and amplitudes are consistent with differences in stimulus characteristics of the two compared systems. DISCUSSION VEPpeak provides an inexpensive system for clinical use requiring portability. In addition to ISCEV standard VEP protocols, free choice of stimuli and bio-signal recordings make the device universal for many electrophysiological purposes.
Collapse
|
7
|
Neural Signatures of Actively Controlled Self-Motion and the Subjective Encoding of Distance. eNeuro 2022; 9:ENEURO.0137-21.2022. [PMID: 36635239 PMCID: PMC9770018 DOI: 10.1523/eneuro.0137-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
Navigating through an environment requires knowledge about one's direction of self-motion (heading) and traveled distance. Behavioral studies showed that human participants can actively reproduce a previously observed travel distance purely based on visual information. Here, we employed electroencephalography (EEG) to investigate the underlying neural processes. We measured, in human observers, event-related potentials (ERPs) during visually simulated straight-forward self-motion across a ground plane. The participants' task was to reproduce (active condition) double the distance of a previously seen self-displacement (passive condition) using a gamepad. We recorded the trajectories of self-motion during the active condition and played it back to the participants in a third set of trials (replay condition). We analyzed EEG activity separately for four electrode clusters: frontal (F), central (C), parietal (P), and occipital (O). When aligned to self-motion onset or offset, response modulation of the ERPs was stronger, and several ERP components had different latencies in the passive as compared with the active condition. This result is in line with the concept of predictive coding, which implies modified neural activation for self-induced versus externally induced sensory stimulation. We aligned our data also to the times when subjects passed the (objective) single distance d_obj and the (subjective) single distance d_sub. Remarkably, wavelet-based temporal-frequency analyses revealed enhanced theta-band activation for F, P, and O-clusters shortly before passing d_sub. This enhanced activation could be indicative of a navigation related representation of subjective distance. More generally, our study design allows to investigate subjective perception without interfering neural activation because of the required response action.
Collapse
|
8
|
Kordek D, Voda P, Young LK, Kremlacek J. Effect of Dioptric Blur on Pattern-Reversal and Motion-Onset VEPs as Used in Clinical Research. Transl Vis Sci Technol 2022; 11:7. [PMID: 36472879 PMCID: PMC9733653 DOI: 10.1167/tvst.11.12.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose To describe the effect of dioptric blur on visual evoked potentials (VEPs) induced by motion onset (MO-VEPs). Methods The effect of dioptric blur up to 4 D on MO-VEPs was tested on 12 subjects using central, peripheral, and full-field stimulation with a low-contrast structure of concentric circles with spatial frequency <1 c/°. The results were compared to VEPs evoked by 15' and 60' checkerboard pattern-reversal (PR-VEPs). The relationship between peak time and interpeak amplitude of the dominant components was related to the level of dioptric blur using linear regression. Results The MO-VEPs did not show a significant peak prolongation (P > 0.28) or amplitude attenuation (P > 0.14) with the blur, whereas for the PR-VEPs we observed a significant decrease in amplitude (P < 0.001) and increase in peak time (P < 0.001) for both checkerboard sizes. Conclusions For MO-VEPs induced by radial motion of low contrast and low spatial frequency pattern, the change in retinal blur does not affect the peak time or the interpeak amplitude of the dominant N2 component. Translational Relevance The resistance to retinal blur that we demonstrated for MO-VEP provides a diagnostic opportunity to test the integrity of the visual system and reveal a retrobulbar impairment even in uncorrected refractive errors.
Collapse
Affiliation(s)
- David Kordek
- Department of Biophysics, Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Petr Voda
- Department of Biophysics, Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Laura K. Young
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Jan Kremlacek
- Department of Biophysics, Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Zhang X, Jiang Y, Hou W, Jiang N. Age-related differences in the transient and steady state responses to different visual stimuli. Front Aging Neurosci 2022; 14:1004188. [PMID: 36158550 PMCID: PMC9493465 DOI: 10.3389/fnagi.2022.1004188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveBrain-computer interface (BCI) has great potential in geriatric applications. However, most BCI studies in the literature used data from young population, and dedicated studies investigating the feasibility of BCIs among senior population are scarce. The current study, we analyzed the age-related differences in the transient electroencephalogram (EEG) response used in visual BCIs, i.e., visual evoked potential (VEP)/motion onset VEP (mVEP), and steady state-response, SSVEP/SSMVEP, between the younger group (age ranges from 22 to 30) and senior group (age ranges from 60 to 75).MethodsThe visual stimulations, including flicker, checkerboard, and action observation (AO), were designed with a periodic frequency. Videos of several hand movement, including grasping, dorsiflexion, the thumb opposition, and pinch were utilized to generate the AO stimuli. Eighteen senior and eighteen younger participants were enrolled in the experiments. Spectral-temporal characteristics of induced EEG were compared. Three EEG algorithms, canonical correlation analysis (CCA), task-related component analysis (TRCA), and extended CCA, were utilized to test the performance of the respective BCI systems.ResultsIn the transient response analysis, the motion checkerboard and AO stimuli were able to elicit prominent mVEP with a specific P1 peak and N2 valley, and the amplitudes of P1 elicited in the senior group were significantly higher than those in the younger group. In the steady-state analysis, SSVEP/SSMVEP could be clearly elicited in both groups. The CCA accuracies of SSVEPs/SSMVEPs in the senior group were slightly lower than those in the younger group in most cases. With extended CCA, the performance of both groups improved significantly. However, for AO targets, the improvement of the senior group (from 63.1 to 71.9%) was lower than that of the younger group (from 63.6 to 83.6%).ConclusionCompared with younger subjects, the amplitudes of P1 elicited by motion onset is significantly higher in the senior group, which might be a potential advantage for seniors if mVEP-based BCIs is used. This study also shows for the first time that AO-based BCI is feasible for the senior population. However, new algorithms for senior subjects, especially in identifying AO targets, are needed.
Collapse
Affiliation(s)
- Xin Zhang
- Bioengineering College, Chongqing University, Chongqing, China
- *Correspondence: Xin Zhang,
| | - Yi Jiang
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- The Med-X Center for Manufacturing, Sichuan University, Chengdu, China
| | - Wensheng Hou
- Bioengineering College, Chongqing University, Chongqing, China
| | - Ning Jiang
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- The Med-X Center for Manufacturing, Sichuan University, Chengdu, China
- Ning Jiang,
| |
Collapse
|
10
|
Toffoli L, Scerif G, Snowling MJ, Norcia AM, Manning C. Global motion evoked potentials in autistic and dyslexic children: A cross-syndrome approach. Cortex 2021; 143:109-126. [PMID: 34399308 PMCID: PMC8500218 DOI: 10.1016/j.cortex.2021.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/09/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022]
Abstract
Atypicalities in psychophysical thresholds for global motion processing have been reported in many neurodevelopmental conditions, including autism and dyslexia. Cross-syndrome comparisons of neural dynamics may help determine whether altered motion processing is a general marker of atypical development or condition-specific. Here, we assessed group differences in N2 peak amplitude (previously proposed as a marker of motion-specific processing) in typically developing (n = 57), autistic (n = 29) and dyslexic children (n = 44) aged 6-14 years, in two global motion tasks. High-density EEG data were collected while children judged the direction of global motion stimuli as quickly and accurately as possible, following a period of random motion. Using a data-driven component decomposition technique, we identified a reliable component that was maximal over occipital electrodes and had an N2-like peak at ~160 msec. We found no group differences in N2 peak amplitude, in either task. However, for both autistic and dyslexic children, there was evidence of atypicalities in later stages of processing that require follow up in future research. Our results suggest that early sensory encoding of motion information is unimpaired in dyslexic and autistic children. Group differences in later processing stages could reflect sustained global motion responses, decision-making, metacognitive processes and/or response generation, which may also distinguish between autistic and dyslexic individuals.
Collapse
Affiliation(s)
- Lisa Toffoli
- Department of Developmental Psychology and Socialisation, University of Padua, Padova, Italy
| | - Gaia Scerif
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - Anthony M Norcia
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Catherine Manning
- Department of Experimental Psychology, University of Oxford, Oxford, UK; School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.
| |
Collapse
|
11
|
Obereisenbuchner F, Dowsett J, Taylor PCJ. Self-initiation Inhibits the Postural and Electrophysiological Responses to Optic Flow and Button Pressing. Neuroscience 2021; 470:37-51. [PMID: 34273415 DOI: 10.1016/j.neuroscience.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
As we move through our environment, our visual system is presented with optic flow, a potentially important cue for perception, navigation and postural control. How does the brain anticipate the optic flow that arises as a consequence of our own movement? Converging evidence suggests that stimuli are processed differently by the brain if occurring as a consequence of self-initiated actions, compared to when externally generated. However, this has mainly been demonstrated with auditory stimuli. It is not clear how this occurs with optic flow. We measured behavioural, neurophysiological and head motion responses of 29 healthy participants to radially expanding, vection-inducing optic flow stimuli, simulating forward transitional motion, which were either initiated by the participant's own button-press ("self-initiated flow") or by the computer ("passive flow"). Self-initiation led to a prominent and left-lateralized inhibition of the flow-evoked posterior event-related alpha desynchronization (ERD), and a stabilisation of postural responses. Neither effect was present in control button-press-only trials, without optic flow. Additionally, self-initiation also produced a large event-related potential (ERP) negativity between 130-170 ms after optic flow onset. Furthermore, participants' visual induced motion sickness (VIMS) and vection intensity ratings correlated positively across the group - although many participants felt vection in the absence of any VIMS, none reported the opposite combination. Finally, we found that the simple act of making a button press leads to a detectable head movement even when using a chin rest. Taken together, our results indicate that the visual system is capable of predicting optic flow when self-initiated, to affect behaviour.
Collapse
Affiliation(s)
- Florian Obereisenbuchner
- MMRS - Munich Medical Research School, University Hospital, LMU Munich, Germany; Faculty of Medicine, LMU Munich, Germany.
| | - James Dowsett
- Department of Neurology, University Hospital, LMU Munich, Germany; German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Germany; Department of Psychology, LMU Munich, Germany.
| | - Paul C J Taylor
- Department of Neurology, University Hospital, LMU Munich, Germany; German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Germany; Department of Psychology, LMU Munich, Germany; Faculty of Philosophy and Philosophy of Science, LMU Munich, Germany; Munich Center for Neurosciences - Brain and Mind, LMU Munich, Germany.
| |
Collapse
|
12
|
Vision before and after scharioth macular lens implantation in patients with AMD: an electrophysiological study. Doc Ophthalmol 2021; 143:17-31. [PMID: 33392893 PMCID: PMC8266777 DOI: 10.1007/s10633-020-09814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/11/2020] [Indexed: 11/09/2022]
Abstract
Background For patients with age-related macular degeneration (AMD), a special intraocular lens implantation partially compensates for the loss in the central part of the visual field. For six months, we evaluated changes in neurophysiological parameters in patients implanted with a “Scharioth macula lens” (SML; a center near high add + 10 D and peripheral plano carrier bifocal lens designed to be located between the iris and an artificial lens). Methods Fourteen patients (5 M, 9 F, 63–87 years) with dry AMD were examined prior to and at 3 days after, as well as 1, 2, and 6 months after, implantation using pattern-reversal, motion-onset, and cognitive evoked potentials, psychophysical tests evaluating distant and near visual acuity, and contrast sensitivity. Results Near visual acuity without an external aid was significantly better six months after implantation than before implantation (Jaeger table median (lower; upper quartile): 4 (1; 6) vs. 15 (13; 17)). Distant visual acuity was significantly altered between the pre- (0.7 (0.5; 0.8) logMAR) and last postimplantation visits (0.8 (0.7; 0.8) logMAR), which matched prolongation of the P100 peak time (147 (135; 151) ms vs. 161 (141; 166) ms) of 15 arc min pattern-reversal VEPs and N2 peak time (191.5 (186.5; 214.5) ms vs. 205 (187; 218) ms) of peripheral motion-onset VEPs. Conclusion SML implantation significantly improved near vision. We also observed a slight but significant decrease in distant and peripheral vision. The most efficient electrophysiological approach to test patients with SML was the peripheral motion-onset stimulation, which evoked repeatable and readable VEPs. Supplementary Information The online version
containssupplementary material available at (10.1007/s10633-020-09814-8).
Collapse
|
13
|
Stawicki P, Volosyak I. Comparison of Modern Highly Interactive Flicker-Free Steady State Motion Visual Evoked Potentials for Practical Brain-Computer Interfaces. Brain Sci 2020; 10:E686. [PMID: 32998379 PMCID: PMC7601073 DOI: 10.3390/brainsci10100686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022] Open
Abstract
Motion-based visual evoked potentials (mVEP) is a new emerging trend in the field of steady-state visual evoked potentials (SSVEP)-based brain-computer interfaces (BCI). In this paper, we introduce different movement-based stimulus patterns (steady-state motion visual evoked potentials-SSMVEP), without employing the typical flickering. The tested movement patterns for the visual stimuli included a pendulum-like movement, a flipping illusion, a checkerboard pulsation, checkerboard inverse arc pulsations, and reverse arc rotations, all with a spelling task consisting of 18 trials. In an online experiment with nine participants, the movement-based BCI systems were evaluated with an online four-target BCI-speller, in which each letter may be selected in three steps (three trials). For classification, the minimum energy combination and a filter bank approach were used. The following frequencies were utilized: 7.06 Hz, 7.50 Hz, 8.00 Hz, and 8.57 Hz, reaching an average accuracy between 97.22% and 100% and an average information transfer rate (ITR) between 15.42 bits/min and 33.92 bits/min. All participants successfully used the SSMVEP-based speller with all types of stimulation pattern. The most successful SSMVEP stimulus was the SSMVEP1 (pendulum-like movement), with the average results reaching 100% accuracy and 33.92 bits/min for the ITR.
Collapse
Affiliation(s)
| | - Ivan Volosyak
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, 47533 Kleve, Germany;
| |
Collapse
|
14
|
Gao J, Zeng M, Dai X, Yang X, Yu H, Chen K, Hu Q, Xu J, Cheng B, Wang J. Functional Segregation of the Middle Temporal Visual Motion Area Revealed With Coactivation-Based Parcellation. Front Neurosci 2020; 14:427. [PMID: 32536850 PMCID: PMC7269029 DOI: 10.3389/fnins.2020.00427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Traditionally, the visual motion area (MT) is considered as a brain region specialized for visual motion perception. However, accumulating evidence showed that MT is also related to various functions, suggesting that it is a complex functional area and different functional subregions might exist in this area. To delineate functional subregions of this area, left and right masks of MT were defined using meta-analysis in the BrainMap database, and coactivation-based parcellation was then performed on these two masks. Two dorsal subregions (Cl1 and Cl2) and one ventral subregion (Cl3) of left MT, as well as two dorsal-anterior subregions (Cl1 and Cl2), one ventral-anterior subregion (Cl3), and an additional posterior subregion (Cl4) of right MT were identified. In addition to vision motion, distinct and specific functions were identified in different subregions characterized by task-dependent functional connectivity mapping and forward/reverse inference on associated functions. These results not only were in accordance with the previous findings of a hemispheric asymmetry of MT, but also strongly confirmed the existence of subregions in this region with distinct and specific functions. Furthermore, our results extend the special role of visual motion perception on this area and might facilitate future cognitive study.
Collapse
Affiliation(s)
- Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Zeng
- Department of Radiology, Pidu District People's Hospital, Chengdu, China
| | - Xin Dai
- School of Automation, Chongqing University, Chongqing, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing, China
| | - Haibo Yu
- Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Kai Chen
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinping Xu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Jiaojian Wang
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
15
|
Akyuz S, Pavan A, Kaya U, Kafaligonul H. Short- and long-term forms of neural adaptation: An ERP investigation of dynamic motion aftereffects. Cortex 2020; 125:122-134. [PMID: 31981892 DOI: 10.1016/j.cortex.2019.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/04/2019] [Accepted: 12/11/2019] [Indexed: 01/10/2023]
Abstract
Adaptation is essential to interact with a dynamic and changing environment, and can be observed on different timescales. Previous studies on a motion paradigm called dynamic motion aftereffect (dMAE) showed that neural adaptation can establish even in very short timescales. However, the neural mechanisms underlying such rapid form of neural plasticity is still debated. In the present study, short- and long-term forms of neural plasticity were investigated using dynamic motion aftereffect combined with EEG (Electroencephalogram). Participants were adapted to directional drifting gratings for either short (640 msec) or long (6.4 sec) durations. Both adaptation durations led to motion aftereffects on the perceived direction of a dynamic and directionally ambiguous test pattern, but the long adaptation produced stronger dMAE. In line with behavioral results, we found robust changes in the event-related potentials elicited by the dynamic test pattern within 64-112 msec time range. These changes were mainly clustered over occipital and parieto-occipital scalp sites. Within this time range, the aftereffects induced by long adaptation were stronger than those by short adaptation. Moreover, the aftereffects by each adaptation duration were in the opposite direction. Overall, these EEG findings suggest that dMAEs reflect changes in cortical areas mediating low- and mid-level visual motion processing. They further provide evidence that short- and long-term forms of motion adaptation lead to distinct changes in neural activity, and hence support the view that adaptation is an active time-dependent process which involves different neural mechanisms.
Collapse
Affiliation(s)
- Sibel Akyuz
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Faculty of Arts and Sciences, Osmaniye Korkut Ata University, Osmaniye, Turkey
| | - Andrea Pavan
- School of Psychology, University of Lincoln, Lincoln, UK
| | - Utku Kaya
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Hulusi Kafaligonul
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.
| |
Collapse
|
16
|
Manning C, Kaneshiro B, Kohler PJ, Duta M, Scerif G, Norcia AM. Neural dynamics underlying coherent motion perception in children and adults. Dev Cogn Neurosci 2019; 38:100670. [PMID: 31228678 PMCID: PMC6688051 DOI: 10.1016/j.dcn.2019.100670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 05/20/2019] [Accepted: 06/10/2019] [Indexed: 01/30/2023] Open
Abstract
Motion sensitivity increases during childhood, but little is known about the neural correlates. Most studies investigating children's evoked responses have not dissociated direction-specific and non-direction-specific responses. To isolate direction-specific responses, we presented coherently moving dot stimuli preceded by incoherent motion, to 6- to 7-year-olds (n = 34), 8- to 10-year-olds (n = 34), 10- to 12-year-olds (n = 34) and adults (n = 20). Participants reported the coherent motion direction while high-density EEG was recorded. Using a data-driven approach, we identified two stimulus-locked EEG components with distinct topographies: an early component with an occipital topography likely reflecting sensory encoding and a later, sustained positive component over centro-parietal electrodes that we attribute to decision-related processes. The component waveforms showed clear age-related differences. In the early, occipital component, all groups showed a negativity peaking at ˜300 ms, like the previously reported coherent-motion N2. However, the children, unlike adults, showed an additional positive peak at ˜200 ms, suggesting differential stimulus encoding. The later positivity in the centro-parietal component rose more steeply for adults than for the youngest children, likely reflecting age-related speeding of decision-making. We conclude that children's protracted development of coherent motion sensitivity is associated with maturation of both early sensory and later decision-related processes.
Collapse
Affiliation(s)
- Catherine Manning
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK.
| | - Blair Kaneshiro
- Department of Otolaryngology Head and Neck Surgery, Stanford University School of Medicine, Stanford University, 2452 Watson Court, Palo Alto, CA, 94303, USA
| | - Peter J Kohler
- Department of Psychology, Stanford University, Jordan Hall, 450 Serra Mall, Stanford, CA, 94305, USA
| | - Mihaela Duta
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Gaia Scerif
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Anthony M Norcia
- Department of Psychology, Stanford University, Jordan Hall, 450 Serra Mall, Stanford, CA, 94305, USA
| |
Collapse
|
17
|
VerMaas JR, Gehringer JE, Wilson TW, Kurz MJ. Children with cerebral palsy display altered neural oscillations within the visual MT/V5 cortices. NEUROIMAGE-CLINICAL 2019; 23:101876. [PMID: 31176292 PMCID: PMC6555897 DOI: 10.1016/j.nicl.2019.101876] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/12/2019] [Accepted: 05/25/2019] [Indexed: 11/19/2022]
Abstract
Cortical visual processing in visual MT/V5 is necessary for tracking movement and performing reliable visuomotor transformations. Although the role of this cortical area is well recognized, the activity of the visual MT/V5 cortical area in children with cerebral palsy (CP) has not been examined nor has its potential role in the atypical motor actions of these children been considered. This study used magnetoencephalography to image the neural activity in the motion-sensitive MT/V5 cortices of typically developing (TD) children (n = 21; mean age 14 yrs. ± 2, 12 males) and children with CP (n = 21; mean age 16 yrs. ± 4, 13 males) as they viewed a horizontally moving stimulus. Behavioral measures of visual perception were additionally assessed by having the participants press a button when the visual stimulus changed to moving in vertical direction. Our results showed that the horizontal movement of the visual stimulus evoked changes in the strength of the theta-alpha (5-10 Hz) and alpha-beta (8-20 Hz) oscillations in the visual MT/V5 area of all participants. Compared with the TD children, the children with CP had weaker alpha-beta oscillations in the visual MT/V5 cortices. In addition, the children with CP took longer to perceive a directional change of the visual stimulus and made more errors in detecting the change. Lastly, weaker alpha-beta oscillations were correlated with slower detection of the change in motion direction and less accuracy in identifying the change. This study shows that the uncharacteristic neural oscillations in the visual MT/V5 cortical area may partially account for the abnormal perceptions and motor decisions seen in children with CP.
Collapse
Affiliation(s)
- Jacy R VerMaas
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States of America; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - James E Gehringer
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States of America; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Tony W Wilson
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, United States of America; Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Max J Kurz
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States of America; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, United States of America.
| |
Collapse
|
18
|
Li W, Li M, Zhou H, Chen G, Jin J, Duan F. A Dual Stimuli Approach Combined with Convolutional Neural Network to Improve Information Transfer Rate of Event-Related Potential-Based Brain-Computer Interface. Int J Neural Syst 2018; 28:1850034. [DOI: 10.1142/s012906571850034x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Increasing command generation rate of an event-related potential-based brain-robot system is challenging, because of limited information transfer rate of a brain-computer interface system. To improve the rate, we propose a dual stimuli approach that is flashing a robot image and is scanning another robot image simultaneously. Two kinds of event-related potentials, N200 and P300 potentials, evoked in this dual stimuli condition are decoded by a convolutional neural network. Compared with the traditional approaches, this proposed approach significantly improves the online information transfer rate from 23.0 or 17.8 to 39.1 bits/min at an accuracy of 91.7%. These results suggest that combining multiple types of stimuli to evoke distinguishable ERPs might be a promising direction to improve the command generation rate in the brain-computer interface.
Collapse
Affiliation(s)
- Wei Li
- Department of Computer & Electrical Engineering and Computer Science, California State University, Bakersfield, California 93311, USA
| | - Mengfan Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Huihui Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| | - Genshe Chen
- Intelligent Fusion Technology, Germantown 41061, USA
| | - Jing Jin
- East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Feng Duan
- College of Computer and Control Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
19
|
Rezeika A, Benda M, Stawicki P, Gembler F, Saboor A, Volosyak I. Brain-Computer Interface Spellers: A Review. Brain Sci 2018; 8:brainsci8040057. [PMID: 29601538 PMCID: PMC5924393 DOI: 10.3390/brainsci8040057] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
A Brain-Computer Interface (BCI) provides a novel non-muscular communication method via brain signals. A BCI-speller can be considered as one of the first published BCI applications and has opened the gate for many advances in the field. Although many BCI-spellers have been developed during the last few decades, to our knowledge, no reviews have described the different spellers proposed and studied in this vital field. The presented speller systems are categorized according to major BCI paradigms: P300, steady-state visual evoked potential (SSVEP), and motor imagery (MI). Different BCI paradigms require specific electroencephalogram (EEG) signal features and lead to the development of appropriate Graphical User Interfaces (GUIs). The purpose of this review is to consolidate the most successful BCI-spellers published since 2010, while mentioning some other older systems which were built explicitly for spelling purposes. We aim to assist researchers and concerned individuals in the field by illustrating the highlights of different spellers and presenting them in one review. It is almost impossible to carry out an objective comparison between different spellers, as each has its variables, parameters, and conditions. However, the gathered information and the provided taxonomy about different BCI-spellers can be helpful, as it could identify suitable systems for first-hand users, as well as opportunities of development and learning from previous studies for BCI researchers.
Collapse
Affiliation(s)
- Aya Rezeika
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, 47533 Kleve, Germany.
| | - Mihaly Benda
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, 47533 Kleve, Germany.
| | - Piotr Stawicki
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, 47533 Kleve, Germany.
| | - Felix Gembler
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, 47533 Kleve, Germany.
| | - Abdul Saboor
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, 47533 Kleve, Germany.
| | - Ivan Volosyak
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, 47533 Kleve, Germany.
| |
Collapse
|
20
|
Mikulskaya E, Martin F. Visual attention to motion stimuli and its neural correlates in cannabis users. Eur J Neurosci 2017; 47:269-276. [PMID: 29266467 DOI: 10.1111/ejn.13810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/21/2017] [Accepted: 12/07/2017] [Indexed: 11/28/2022]
Abstract
Attention to motion stimuli and correct motion perception are vital for road safety. Although cannabis use has been associated with increased road crash risks, there is limited research on attentional processing of moving stimuli in cannabis users. This study investigated the neural correlates of the three-stimulus oddball task in cannabis users (n = 18) and non-users (n = 23) in response to moving stimuli. Stimulus contrast was under 16% against a low luminance background (M luminance < 16 cd/m2 ). The two groups did not differ in accuracy or in N2 peak amplitude; however, N2 latency was longer for target and standard stimuli in the cannabis group than in the control group. The cannabis group also showed a significantly reduced P3b amplitude in response to target stimuli. The AUDIT score was added as a random factor to the anova to rule out the effects of uneven alcohol consumption in the two groups. A significant group effect was found for N2 latency in response to target and standard stimuli and a significant interaction between the group, and the AUDIT score was found for the P3b peak amplitude for the distractor and standard stimuli, but not for the target stimuli. The results of this study suggest that cannabis use relates to reduced neural activity underlying attention to motion stimuli. Implications for regular early-onset cannabis use road safety are discussed.
Collapse
Affiliation(s)
- Elena Mikulskaya
- School of Psychology, University of Newcastle, Newcastle, NSW, Australia.,Tula University, TIEI, Tula, Russian
| | - Frances Martin
- School of Psychology, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
21
|
Rothen N, Bartl G, Franklin A, Ward J. Electrophysiological correlates and psychoacoustic characteristics of hearing-motion synaesthesia. Neuropsychologia 2017; 106:280-288. [PMID: 28982544 DOI: 10.1016/j.neuropsychologia.2017.08.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/08/2017] [Accepted: 08/30/2017] [Indexed: 12/24/2022]
Abstract
People with hearing-motion synaesthesia experience sounds from moving or changing (e.g. flickering) visual stimuli. This phenomenon may be one of the most common forms of synaesthesia but it has rarely been studied and there are no studies of its neural basis. We screened for this in a sample of 200+ individuals, and estimated a prevalence of 4.2%. We also document its characteristics: it tends to be induced by physically moving stimuli (more so than static stimuli which imply motion or trigger illusory motion); and the psychoacoustic features are simple (e.g. "whooshing") with some systematic correspondences to vision (e.g. faster movement is higher pitch). We demonstrate using event-related potentials that it emerges from early perceptual processing of vision. The synaesthetes have a higher amplitude motion-evoked N2 (165-185ms), with some evidence of group differences as early as 55-75ms. We discuss similarities between hearing-motion synaesthesia and previous observations that visual motion triggers auditory activity in the congenitally deaf. It is possible that both conditions reflect the maintenance of multisensory pathways found in early development that most people lose but can be retained in certain people in response to sensory deprivation (in the deaf) or, in people with normal hearing, as a result of other differences (e.g. genes predisposing to synaesthesia).
Collapse
Affiliation(s)
- Nicolas Rothen
- University of Bern, Switzerland; Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
| | - Gergely Bartl
- School of Psychology, University of Sussex, Brighton, UK; Department of Psychology, University of Roehampton, London, UK
| | - Anna Franklin
- School of Psychology, University of Sussex, Brighton, UK
| | - Jamie Ward
- School of Psychology, University of Sussex, Brighton, UK; Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK.
| |
Collapse
|
22
|
Won DO, Hwang HJ, Kim DM, Muller KR, Lee SW. Motion-Based Rapid Serial Visual Presentation for Gaze-Independent Brain-Computer Interfaces. IEEE Trans Neural Syst Rehabil Eng 2017; 26:334-343. [PMID: 28809703 DOI: 10.1109/tnsre.2017.2736600] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Most event-related potential (ERP)-based brain-computer interface (BCI) spellers primarily use matrix layouts and generally require moderate eye movement for successful operation. The fundamental objective of this paper is to enhance the perceptibility of target characters by introducing motion stimuli to classical rapid serial visual presentation (RSVP) spellers that do not require any eye movement, thereby applying them to paralyzed patients with oculomotor dysfunctions. To test the feasibility of the proposed motion-based RSVP paradigm, we implemented three RSVP spellers: 1) fixed-direction motion (FM-RSVP); 2) random-direction motion (RM-RSVP); and 3) (the conventional) non-motion stimulation (NM-RSVP), and evaluated the effect of the three different stimulation methods on spelling performance. The two motion-based stimulation methods, FM- and RM-RSVP, showed shorter P300 latency and higher P300 amplitudes (i.e., 360.4-379.6 ms; 5.5867- ) than the NM-RSVP (i.e., 480.4 ms; ). This led to higher and more stable performances for FM- and RM-RSVP spellers than NM-RSVP speller (i.e., 79.06±6.45% for NM-RSVP, 90.60±2.98% for RM-RSVP, and 92.74±2.55% for FM-RSVP). In particular, the proposed motion-based RSVP paradigm was significantly beneficial for about half of the subjects who might not accurately perceive rapidly presented static stimuli. These results indicate that the use of proposed motion-based RSVP paradigm is more beneficial for target recognition when developing BCI applications for severely paralyzed patients with complex ocular dysfunctions.
Collapse
|
23
|
Electrophysiological testing of visual function after mirror telescope implantation: a case report. Doc Ophthalmol 2016; 133:171-181. [PMID: 27832406 DOI: 10.1007/s10633-016-9563-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE The implantation of an intraocular telescope increases life quality in patients with end-stage age-related macular degeneration (AMD). The present study monitored changes in electrophysiological markers of visual processing before and during seventeen months after a novel mirror telescope implantation in two patients (OV-male 90 years, MZ-female 70 years) with the final-stage form of AMD. METHODS Visual evoked potentials were recorded to high-contrast pattern-reversal (PR-VEP for check size 40' and 10'), low-contrast motion-onset stimuli (in visual periphery M-VEP M20°, and in central part M-VEP C8°), and event-related potentials (ERPs) in the oddball visual paradigm. RESULTS MZ's more systematic responses showed attenuation and prolongation of the M-VEP M20° and the PR-VEP 40' immediately after the telescope implantation with a slow amplitude recovery with unchanged prolonged latency. The implantation completely eradicated the M-VEP C8° without any restoration. The PR-VEP 10' were not readable. Only a part of OV's PR-VEP 40' and M-VEP M20' were of a repeatable and expected morphology. These OV's VEPs were consistent with MZ's findings. The ERPs did not show any effect of implantation in both patients. Post-implantation visual acuity and reaction time overcame the pre-implantation levels. CONCLUSIONS The mirror telescope preserved peripheral vision in contrast to classic telescopes; however, the telescope concurrently reduced the luminance of the magnified retinal image, which was likely responsible for the prolongation of the VEP latencies.
Collapse
|
24
|
Wu Y, Li M, Wang J. Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events. J Neuroeng Rehabil 2016; 13:66. [PMID: 27460070 PMCID: PMC4962511 DOI: 10.1186/s12984-016-0179-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/20/2016] [Indexed: 11/12/2022] Open
Abstract
Background Steady-state visually evoked potentials (SSVEPs) can be elicited by repetitive stimuli and extracted in the frequency domain with satisfied performance. However, the temporal information of such stimulus is often ignored. In this study, we utilized repetitive visual stimuli with missing events to present a novel hybrid BCI paradigm based on SSVEP and omitted stimulus potential (OSP). Methods Four discs flickering from black to white with missing flickers served as visual stimulators to simultaneously elicit subject’s SSVEPs and OSPs. Key parameters in the new paradigm, including flicker frequency, optimal electrodes, missing flicker duration and intervals of missing events were qualitatively discussed with offline data. Two omitted flicker patterns including missing black/white disc were proposed and compared. Averaging times were optimized with Information Transfer Rate (ITR) in online experiments, where SSVEPs and OSPs were identified using Canonical Correlation Analysis in the frequency domain and Support Vector Machine (SVM)-Bayes fusion in the time domain, respectively. Results and conclusions The online accuracy and ITR (mean ± standard deviation) over nine healthy subjects were 79.29 ± 18.14 % and 19.45 ± 11.99 bits/min with missing black disc pattern, and 86.82 ± 12.91 % and 24.06 ± 10.95 bits/min with missing white disc pattern, respectively. The proposed BCI paradigm, for the first time, demonstrated that SSVEPs and OSPs can be simultaneously elicited in single visual stimulus pattern and recognized in real-time with satisfied performance. Besides the frequency features such as SSVEP elicited by repetitive stimuli, we found a new feature (OSP) in the time domain to design a novel hybrid BCI paradigm by adding missing events in repetitive stimuli.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Instrument Science and Technology, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Man Li
- Department of Instrument Science and Technology, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Jing Wang
- Department of Instrument Science and Technology, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, ShaanXi, China.
| |
Collapse
|
25
|
Mercier MR, Schwartz S, Spinelli L, Michel CM, Blanke O. Dorsal and ventral stream contributions to form-from-motion perception in a patient with form-from motion deficit: a case report. Brain Struct Funct 2016; 222:1093-1107. [PMID: 27318997 DOI: 10.1007/s00429-016-1245-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/28/2016] [Indexed: 10/21/2022]
Abstract
The main model of visual processing in primates proposes an anatomo-functional distinction between the dorsal stream, specialized in spatio-temporal information, and the ventral stream, processing essentially form information. However, these two pathways also communicate to share much visual information. These dorso-ventral interactions have been studied using form-from-motion (FfM) stimuli, revealing that FfM perception first activates dorsal regions (e.g., MT+/V5), followed by successive activations of ventral regions (e.g., LOC). However, relatively little is known about the implications of focal brain damage of visual areas on these dorso-ventral interactions. In the present case report, we investigated the dynamics of dorsal and ventral activations related to FfM perception (using topographical ERP analysis and electrical source imaging) in a patient suffering from a deficit in FfM perception due to right extrastriate brain damage in the ventral stream. Despite the patient's FfM impairment, both successful (observed for the highest level of FfM signal) and absent/failed FfM perception evoked the same temporal sequence of three processing states observed previously in healthy subjects. During the first period, brain source localization revealed cortical activations along the dorsal stream, currently associated with preserved elementary motion processing. During the latter two periods, the patterns of activity differed from normal subjects: activations were observed in the ventral stream (as reported for normal subjects), but also in the dorsal pathway, with the strongest and most sustained activity localized in the parieto-occipital regions. On the other hand, absent/failed FfM perception was characterized by weaker brain activity, restricted to the more lateral regions. This study shows that in the present case report, successful FfM perception, while following the same temporal sequence of processing steps as in normal subjects, evoked different patterns of brain activity. By revealing a brain circuit involving the most rostral part of the dorsal pathway, this study provides further support for neuro-imaging studies and brain lesion investigations that have suggested the existence of different brain circuits associated with different profiles of interaction between the dorsal and the ventral streams.
Collapse
Affiliation(s)
- Manuel R Mercier
- Laboratory of Cognitive Neuroscience, Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland.,The Functional Brain Mapping Laboratory, Department of Neuroscience, University of Geneva, Geneva, Switzerland.,Department of Neurology, University Hospital, Geneva, Switzerland.,Centre de Recherche Cerveau et Cognition (CerCo), CNRS, UMR5549, Pavillon Baudot CHU Purpan, BP 25202, 31052, Toulouse Cedex, France
| | - Sophie Schwartz
- Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland.,Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Laurent Spinelli
- Department of Neurology, University Hospital, Geneva, Switzerland
| | - Christoph M Michel
- The Functional Brain Mapping Laboratory, Department of Neuroscience, University of Geneva, Geneva, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland. .,Department of Neurology, University Hospital, Geneva, Switzerland. .,Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Chemin des Mines 9, 1202, Geneva, Switzerland.
| |
Collapse
|
26
|
Vilhelmsen K, van der Weel FRR, van der Meer ALH. A high-density EEG study of differences between three high speeds of simulated forward motion from optic flow in adult participants. Front Syst Neurosci 2015; 9:146. [PMID: 26578903 PMCID: PMC4620151 DOI: 10.3389/fnsys.2015.00146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/10/2015] [Indexed: 12/03/2022] Open
Abstract
A high-density EEG study was conducted to investigate evoked and oscillatory brain activity in response to high speeds of simulated forward motion. Participants were shown an optic flow pattern consisting of a virtual road with moving poles at either side of it, simulating structured forward motion at different driving speeds (25, 50, and 75 km/h) with a static control condition between each motion condition. Significant differences in N2 latencies and peak amplitudes between the three speeds of visual motion were found in parietal channels of interest P3 and P4. As motion speed increased, peak latency increased while peak amplitude decreased which might indicate that higher driving speeds are perceived as more demanding resulting in longer latencies, and as fewer neurons in the motion sensitive areas of the adult brain appear to be attuned to such high visual speeds this could explain the observed inverse relationship between speed and amplitude. In addition, significant differences between alpha de-synchronizations for forward motion and alpha synchronizations in the static condition were found in the parietal midline (PM) source. It was suggested that the alpha de-synchronizations reflect an activated state related to the visual processing of simulated forward motion, whereas the alpha synchronizations in response to the static condition reflect a deactivated resting period.
Collapse
Affiliation(s)
- Kenneth Vilhelmsen
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology Trondheim, Norway
| | - F R Ruud van der Weel
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology Trondheim, Norway
| | - Audrey L H van der Meer
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology Trondheim, Norway
| |
Collapse
|
27
|
Grzeschik R, Lewald J, Verhey JL, Hoffmann MB, Getzmann S. Absence of direction-specific cross-modal visual-auditory adaptation in motion-onset event-related potentials. Eur J Neurosci 2015; 43:66-77. [PMID: 26469706 DOI: 10.1111/ejn.13102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/10/2015] [Accepted: 10/08/2015] [Indexed: 11/28/2022]
Abstract
Adaptation to visual or auditory motion affects within-modality motion processing as reflected by visual or auditory free-field motion-onset evoked potentials (VEPs, AEPs). Here, a visual-auditory motion adaptation paradigm was used to investigate the effect of visual motion adaptation on VEPs and AEPs to leftward motion-onset test stimuli. Effects of visual adaptation to (i) scattered light flashes, and motion in the (ii) same or in the (iii) opposite direction of the test stimulus were compared. For the motion-onset VEPs, i.e. the intra-modal adaptation conditions, direction-specific adaptation was observed--the change-N2 (cN2) and change-P2 (cP2) amplitudes were significantly smaller after motion adaptation in the same than in the opposite direction. For the motion-onset AEPs, i.e. the cross-modal adaptation condition, there was an effect of motion history only in the change-P1 (cP1), and this effect was not direction-specific--cP1 was smaller after scatter than after motion adaptation to either direction. No effects were found for later components of motion-onset AEPs. While the VEP results provided clear evidence for the existence of a direction-specific effect of motion adaptation within the visual modality, the AEP findings suggested merely a motion-related, but not a direction-specific effect. In conclusion, the adaptation of veridical auditory motion detectors by visual motion is not reflected by the AEPs of the present study.
Collapse
Affiliation(s)
- Ramona Grzeschik
- Department of Experimental Audiology, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, Magdeburg, D-39120, Germany
| | - Jörg Lewald
- Department of Cognitive Psychology, Auditory Cognitive Neuroscience Laboratory, Ruhr University Bochum, Bochum, Germany.,Aging Research Group, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Jesko L Verhey
- Department of Experimental Audiology, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, Magdeburg, D-39120, Germany.,Department of Ophthalmology, Visual Processing Laboratory, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Michael B Hoffmann
- Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department of Ophthalmology, Visual Processing Laboratory, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Stephan Getzmann
- Aging Research Group, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
28
|
Todd NPM, Lee CS. Source analysis of electrophysiological correlates of beat induction as sensory-guided action. Front Psychol 2015; 6:1178. [PMID: 26321991 PMCID: PMC4536380 DOI: 10.3389/fpsyg.2015.01178] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 07/27/2015] [Indexed: 11/13/2022] Open
Abstract
In this paper we present a reanalysis of electrophysiological data originally collected to test a sensory-motor theory of beat induction (Todd et al., 2002; Todd and Seiss, 2004; Todd and Lee, 2015). The reanalysis is conducted in the light of more recent findings and in particular the demonstration that auditory evoked potentials contain a vestibular dependency. At the core of the analysis is a model which predicts brain dipole source current activity over time in temporal and frontal lobe areas during passive listening to a rhythm, or active synchronization, where it dissociates the frontal activity into distinct sources which can be identified as respectively pre-motor and motor in origin. The model successfully captures the main features of the rhythm in showing that the metrical structure is manifest in an increase in source current activity during strong compared to weak beats. In addition the outcomes of modeling suggest that: (1) activity in both temporal and frontal areas contribute to the metrical percept and that this activity is distributed over time; (2) transient, time-locked activity associated with anticipated beats is increased when a temporal expectation is confirmed following a previous violation, such as a syncopation; (3) two distinct processes are involved in auditory cortex, corresponding to tangential and radial (possibly vestibular dependent) current sources. We discuss the implications of these outcomes for the insights they give into the origin of metrical structure and the power of syncopation to induce movement and create a sense of groove.
Collapse
Affiliation(s)
- Neil P. M. Todd
- Faculty of Life Science, University of ManchesterManchester, UK
| | | |
Collapse
|
29
|
Comparison of visual information processing in school-age dyslexics and normal readers via motion-onset visual evoked potentials. Vision Res 2015; 111:97-104. [DOI: 10.1016/j.visres.2015.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 11/19/2022]
|
30
|
Heinrich SP, Groten M, Bach M. Relating the steady-state visual evoked potential to single-stimulus responses derived from m-sequence stimulation. Doc Ophthalmol 2015; 131:13-24. [PMID: 25743033 DOI: 10.1007/s10633-015-9492-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Steady-state visual evoked potentials have various applications, including objective acuity testing. However, a non-monotonous spatial-frequency tuning (a "notch") occurs at intermediate spatial frequencies in about half of the examinees. One possible reason lies in the temporal superposition of single-stimulus responses. This was investigated in 20 subjects. METHODS Single-stimulus responses to checkerboard onsets were estimated through deconvolution of responses to m-sequence stimulation. Based on these, steady-state responses were predicted through superposition of temporally overlapping single-stimulus responses and compared to normally recorded steady-state responses. Discrepancies were analyzed in both the time and frequency domains. RESULTS The agreement between predicted and recorded steady-state responses varied greatly among subjects, ranging from a good match including non-monotonous features of the tuning curve to substantial deviations. Although in some subjects the tuning of the recorded responses was better matched by the predicted responses than by the deconvolved m-sequence responses from which the prediction was computed, the correlation was not significantly different at the group level. In most subjects, there was only a small to moderate contribution of higher harmonics. The match between predicted and recorded responses was not always uniform across electrode locations. CONCLUSIONS Our data are consistent with temporal superposition explaining an interindividually variable part of the checksize tuning curve without being its primary determinant.
Collapse
Affiliation(s)
- Sven P Heinrich
- Sektion Funktionelle Sehforschung, Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Killianstr. 5, 79106, Freiburg, Germany,
| | | | | |
Collapse
|
31
|
Li W, Li M, Zhao J. Control of humanoid robot via motion-onset visual evoked potentials. Front Syst Neurosci 2015; 8:247. [PMID: 25620918 PMCID: PMC4287730 DOI: 10.3389/fnsys.2014.00247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 12/17/2014] [Indexed: 11/26/2022] Open
Abstract
This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP) to code people's mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task.
Collapse
Affiliation(s)
- Wei Li
- Department of Computer and Electrical Engineering and Computer Science, California State University Bakersfield, CA, USA ; School of Electrical Engineering and Automation, Tianjin University Tianjin, China
| | - Mengfan Li
- School of Electrical Engineering and Automation, Tianjin University Tianjin, China
| | - Jing Zhao
- School of Electrical Engineering and Automation, Tianjin University Tianjin, China
| |
Collapse
|
32
|
Mandel A, Helokunnas S, Pihko E, Hari R. Neuromagnetic brain responses to other person's eye blinks seen on video. Eur J Neurosci 2014; 40:2576-80. [PMID: 24796310 PMCID: PMC4215594 DOI: 10.1111/ejn.12611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/06/2014] [Indexed: 11/29/2022]
Abstract
Eye blinks, typically occurring 15-20 times per minute, rarely capture attention during face-to-face interaction. To determine the extent to which eye blinks affect the viewer's brain activity, we recorded magnetoencephalographic brain responses to natural blinks, and to the same blinks slowed down to 38% of the original speed. The stimuli were presented on video once every 2.3-6.2 s. As a control, we presented two horizontal black bars moving with the same time courses and the same extent as the eyelids in the blink video. Both types of blinks and bars elicited clear responses peaking at about 200 ms in the occipital areas, with no systematic differences between hemispheres. For the bars, these main responses were (as expected) weaker (by 24%) and later (by 33 ms) to slow-motion than normal-speed stimuli. For blinks, however, the responses to both normal-speed and slow-motion stimuli were of the same amplitude and latency. Our results demonstrate that the brain not only responds to other persons' eye blinks, but that the responses are as fast and of equal size even when the blinks are considerably slowed down. We interpret this finding to reflect the increased social salience of the slowed-down blinks that counteracted the general tendency of the brain to react more weakly and more slowly to slowly- vs. quickly-changing stimuli. This finding may relate to the social importance of facial gestures, including eye blinks.
Collapse
Affiliation(s)
- Anne Mandel
- Brain Research Unit, O.V. Lounasmaa Laboratory and MEG Core, Aalto NeuroImaging, Aalto University, PO Box 15100, 00076, Aalto, Finland
| | | | | | | |
Collapse
|
33
|
Mora-Cortes A, Manyakov NV, Chumerin N, Van Hulle MM. Language model applications to spelling with Brain-Computer Interfaces. SENSORS (BASEL, SWITZERLAND) 2014; 14:5967-93. [PMID: 24675760 PMCID: PMC4029701 DOI: 10.3390/s140405967] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 11/16/2022]
Abstract
Within the Ambient Assisted Living (AAL) community, Brain-Computer Interfaces (BCIs) have raised great hopes as they provide alternative communication means for persons with disabilities bypassing the need for speech and other motor activities. Although significant advancements have been realized in the last decade, applications of language models (e.g., word prediction, completion) have only recently started to appear in BCI systems. The main goal of this article is to review the language model applications that supplement non-invasive BCI-based communication systems by discussing their potential and limitations, and to discern future trends. First, a brief overview of the most prominent BCI spelling systems is given, followed by an in-depth discussion of the language models applied to them. These language models are classified according to their functionality in the context of BCI-based spelling: the static/dynamic nature of the user interface, the use of error correction and predictive spelling, and the potential to improve their classification performance by using language models. To conclude, the review offers an overview of the advantages and challenges when implementing language models in BCI-based communication systems when implemented in conjunction with other AAL technologies.
Collapse
Affiliation(s)
- Anderson Mora-Cortes
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Campus Gasthuisberg, O&N2, Herestraat 49, Leuven B-3000, Belgium.
| | - Nikolay V Manyakov
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Campus Gasthuisberg, O&N2, Herestraat 49, Leuven B-3000, Belgium.
| | - Nikolay Chumerin
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Campus Gasthuisberg, O&N2, Herestraat 49, Leuven B-3000, Belgium.
| | - Marc M Van Hulle
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Campus Gasthuisberg, O&N2, Herestraat 49, Leuven B-3000, Belgium.
| |
Collapse
|
34
|
Kubova Z, Kuba M, Kremlacek J, Langrova J, Szanyi J, Vit F, Chutna M. Difficulties of motion-onset VEP interpretation in school-age children. Doc Ophthalmol 2014; 128:121-9. [DOI: 10.1007/s10633-014-9429-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/12/2014] [Indexed: 11/28/2022]
|
35
|
Combining findings from gaze and electroencephalography recordings to study timing in a visual tracking task. Neuroreport 2013; 24:968-72. [PMID: 24064410 DOI: 10.1097/wnr.0000000000000020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Electroencephalography (EEG) and gaze data have traditionally been separated in neurocognitive studies because of the artefacts that even small controlled eye movements produce. Study of gaze control in a visual tracking task provides information about an individual's prospective control. By including gaze events in the EEG analysis, we studied prospective control and its neural correlates during deceleration in a visual tracking task. Adult participants followed with their gaze a small car moving horizontally on a large screen, where the final approach of the car was temporarily occluded, and pushed a button to stop the car at the reappearance point. Two gaze events, the behavioural push button response and the nonbehavioural stimulus onset, were used to time-lock the averaged event-related potential (ERP) waveform. A significant effect of deceleration on peak amplitude in parietal channel Pz (P<0.05) was found when ERP waveforms were time-locked to the prospective gaze shift over the occluder. The peak decreased in amplitude as car deceleration increased when participants successfully stopped the car, indicating successful deceleration discrimination. No such effect was found when ERP waveforms were time-locked to any of the other events. Thus, a traditional stimulus onset time-locking procedure is likely to distort the averaged signal and consequently hide important Pz-peak amplitude differences on the prospective timing of decelerating object motion during occlusion. This study shows the importance of including behavioural data when studying neural correlates of prospective control and proposes active incorporation of behavioural data into the EEG analysis.
Collapse
|
36
|
Langrová J, Kremláček J, Kuba M, Kubová Z, Szanyi J. Gender impact on electrophysiological activity of the brain. Physiol Res 2013; 61:S119-27. [PMID: 23130897 DOI: 10.33549/physiolres.932421] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Gender is presumed to be one of the factors causing interindividual variability in the brain's electrophysiological parameters. Our aim was to characterize the role of gender in visual evoked potentials (VEPs), event-related potentials (ERPs), visual mismatch negativity (vMMN) and the spectral characteristics of the EEG. We examined 42 healthy volunteers (21 women and 21 men, aged 20-29 years). We measured VEPs in response to pattern-reversal and motion-onset stimulation, ERPs in an oddball paradigm and vMMN in response to a combination of motion directions presented in the visual periphery. P100 peak latency for 40' reversal VEPs was significantly shorter in women than in men as determined using a non-parametric Wilcoxon signed-rank test. In addition, women showed higher relative EEG spectral power in the alpha band (p=0.023) and lower power in the theta band (p=0.004). Our results in this small but homogeneous group of subjects confirm previously reported gender influences on pattern-reversal VEPs and the EEG frequency spectrum. Gender should be taken into consideration in establishing norms on these measures. We found no statistically significant differences between women and men for any of the other stimuli presented.
Collapse
Affiliation(s)
- J Langrová
- Department of Pathophysiology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic.
| | | | | | | | | |
Collapse
|
37
|
Spared cognitive processing of visual oddballs despite delayed visual evoked potentials in patient with partial recovery of vision after 53years of blindness. Vision Res 2013; 81:1-5. [DOI: 10.1016/j.visres.2012.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/29/2012] [Accepted: 12/08/2012] [Indexed: 11/17/2022]
|
38
|
Molloy C, Doyle LW, Makrides M, Anderson PJ. Docosahexaenoic Acid and Visual Functioning in Preterm Infants: A Review. Neuropsychol Rev 2012; 22:425-37. [DOI: 10.1007/s11065-012-9216-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 10/04/2012] [Indexed: 11/30/2022]
|
39
|
Schaeff S, Treder MS, Venthur B, Blankertz B. Exploring motion VEPs for gaze-independent communication. J Neural Eng 2012; 9:045006. [PMID: 22832017 DOI: 10.1088/1741-2560/9/4/045006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Xie J, Xu G, Wang J, Zhang F, Zhang Y. Steady-state motion visual evoked potentials produced by oscillating Newton's rings: implications for brain-computer interfaces. PLoS One 2012; 7:e39707. [PMID: 22724028 PMCID: PMC3378577 DOI: 10.1371/journal.pone.0039707] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/25/2012] [Indexed: 11/18/2022] Open
Abstract
In this study, we utilize a special visual stimulation protocol, called motion reversal, to present a novel steady-state motion visual evoked potential (SSMVEP)-based BCI paradigm that relied on human perception of motions oscillated in two opposite directions. Four Newton's rings with the oscillating expansion and contraction motions served as visual stimulators to elicit subjects' SSMVEPs. And four motion reversal frequencies of 8.1, 9.8, 12.25 and 14 Hz were tested. According to Canonical Correlation Analysis (CCA), the offline accuracy and ITR (mean ± standard deviation) over six healthy subjects were 86.56±9.63% and 15.93±3.83 bits/min, respectively. All subjects except one exceeded the level of 80% mean accuracy. Circular Hotelling's T-Squared test () also demonstrated that most subjects exhibited significantly strong stimulus-locked SSMVEP responses. The results of declining exponential fittings exhibited low-adaptation characteristics over the 100-s stimulation sequences in most experimental conditions. Taken together, these results suggest that the proposed paradigm can provide comparable performance with low-adaptation characteristic and less visual discomfort for BCI applications.
Collapse
Affiliation(s)
- Jun Xie
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Guanghua Xu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- * E-mail:
| | - Jing Wang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Feng Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yizhuo Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
41
|
van Steenbergen H, Band GPH, Hommel B. Reward valence modulates conflict-driven attentional adaptation: electrophysiological evidence. Biol Psychol 2012; 90:234-41. [PMID: 22504294 DOI: 10.1016/j.biopsycho.2012.03.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 11/16/2022]
Abstract
Recent findings suggest that, relative to negative feedback, positive feedback counteracts conflict processing and subsequent attentional adaptation. Here we hypothesize that this interaction may direct adjustments in perception and action via the anterior cingulate cortex (ACC). We recorded EEG while participants performed an arrow flanker task with monetary gain or loss as arbitrary reward feedback between trials. As predicted, we found a reduction in conflict-driven adaptation for trials in which conflict was followed by monetary gain (vs. monetary loss), a behavioral effect accompanied by a modulation in early visual processing related to the processing of the distracters. Moreover, time-frequency analyses showed that ongoing fronto-central theta oscillations induced by previous conflict sustained longer after loss than after gain, an interaction presumably reflecting ACC modulation. These data provide a first important step toward understanding the neural mechanism underlying the affective regulation of conflict-driven behavior.
Collapse
|
42
|
Kuba M, Kremláček J, Langrová J, Kubová Z, Szanyi J, Vít F. Aging effect in pattern, motion and cognitive visual evoked potentials. Vision Res 2012; 62:9-16. [PMID: 22503557 DOI: 10.1016/j.visres.2012.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 02/14/2012] [Accepted: 03/19/2012] [Indexed: 11/29/2022]
Abstract
An electrophysiological study on the effect of aging on the visual pathway and various levels of visual information processing (primary cortex, associate visual motion processing cortex and cognitive cortical areas) was performed. We examined visual evoked potentials (VEPs) to pattern-reversal, motion-onset (translation and radial motion) and visual stimuli with a cognitive task (cognitive VEPs - P300 wave) at luminance of 17 cd/m(2). The most significant age-related change in a group of 150 healthy volunteers (15-85 years of age) was the increase in the P300 wave latency (2 ms per 1 year of age). Delays of the motion-onset VEPs (0.47 ms/year in translation and 0.46 ms/year in radial motion) and the pattern-reversal VEPs (0.26 ms/year) and the reductions of their amplitudes with increasing subject age (primarily in P300) were also found to be significant. The amplitude of the motion-onset VEPs to radial motion remained the most constant parameter with increasing age. Age-related changes were stronger in males. Our results indicate that cognitive VEPs, despite larger variability of their parameters, could be a useful criterion for an objective evaluation of the aging processes within the CNS. Possible differences in aging between the motion-processing system and the form-processing system within the visual pathway might be indicated by the more pronounced delay in the motion-onset VEPs and by their preserved size for radial motion (a biologically significant variant of motion) compared to the changes in pattern-reversal VEPs.
Collapse
Affiliation(s)
- Miroslav Kuba
- Faculty of Medicine in Hradec Králové, Dept. of Pathophysiology, Electrophysiological Laboratory, Charles University in Prague, Hradec Králové, Czech Republic.
| | | | | | | | | | | |
Collapse
|
43
|
Kremláček J, Hulan M, Kuba M, Kubová Z, Langrová J, Vít F, Szanyi J. Role of latency jittering correction in motion-onset VEP amplitude decay during prolonged visual stimulation. Doc Ophthalmol 2012; 124:211-23. [DOI: 10.1007/s10633-012-9321-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
|
44
|
Jiraskova N, Kuba M, Kremlacek J, Rozsival P. Normal sensory and absent cognitive electrophysiological responses in functional visual loss following chemical eye burn. Doc Ophthalmol 2011; 123:51-7. [PMID: 21647683 DOI: 10.1007/s10633-011-9275-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/10/2011] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To present a unique case of a 34-year-old patient with unilateral functional visual loss after chemical burn with normal visual evoked potentials (VEPs) and absent cognitive response (P300 wave). METHODS Visual functions, complete ophthalmic and neurologic examinations including computed tomography of the brain, electrophysiological testing of the visual pathway up to the cognitive brain cortex were evaluated. Data were collected prospectively during 1-year follow-up and compared with data from published case series and a literature review. RESULTS No abnormalities were found that could account for such a rapid monocular loss of vision with exception of absence of the P300 wave in the affected eye during cognitive tasks. Vision slowly improved during 1 year without any treatment. CONCLUSIONS Functional vision loss is a diagnosis of exclusion. In the event of reduced vision in the context of a normal ocular health examination, all other pathology must be ruled out before the diagnosis of functional visual loss is established. Complex visual electrophysiological testing is the preferred tool for objective examination of such disorders.
Collapse
Affiliation(s)
- Nada Jiraskova
- Department of Ophthalmology, Charles University in Prague, Hradec Kralove, Czech Republic.
| | | | | | | |
Collapse
|
45
|
Jednoróg K, Marchewka A, Tacikowski P, Heim S, Grabowska A. Electrophysiological evidence for the magnocellular-dorsal pathway deficit in dyslexia. Dev Sci 2011; 14:873-80. [DOI: 10.1111/j.1467-7687.2011.01037.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Kremlacek J, Valis M, Masopust J, Urban A, Zumrova A, Talab R, Kuba M, Kubova Z, Langrova J. An Electrophysiological Study of Visual Processing in Spinocerebellar Ataxia Type 2 (SCA2). THE CEREBELLUM 2010; 10:32-42. [DOI: 10.1007/s12311-010-0220-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Plomp G, Michel CM, Herzog MH. Electrical source dynamics in three functional localizer paradigms. Neuroimage 2010; 53:257-67. [PMID: 20600987 DOI: 10.1016/j.neuroimage.2010.06.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/10/2010] [Accepted: 06/15/2010] [Indexed: 11/30/2022] Open
Abstract
The visual cortex exhibits functional specialization that can be routinely demonstrated using hemodynamic measures like fMRI and PET. To understand the dynamic nature of cortical processes, however, source imaging with a high temporal resolution is necessary. Here, we asked how well distributed EEG source localization (LAURA) identifies functionally specialized visual processes. We tested three stimulus paradigms commonly used in fMRI with the aim to localize striate cortex, motion-sensitive areas, and face-sensitive areas. EEG source localization showed initial activations in striate and extra-striate areas at around 70ms after stimulus onset. These were quickly followed by extensive cortical, as well as subcortical activation. Functional motion and face-selective areas were localized with margins of below 2cm, at around 170 and 150ms, respectively. The results furthermore show for the first time that the C1 component has generators in the insula and frontal eye fields, but also in subcortical areas like the parahippocampus and the thalamus.
Collapse
Affiliation(s)
- Gijs Plomp
- Laboratory of Psychophysics, Brain Mind Institute, Ecole Polytechnique Fédéral de Lausanne, Lausanne, Switzerland.
| | | | | |
Collapse
|
48
|
Kubová Z, Kremlácek J, Valis M, Langrová J, Szanyi J, Vít F, Kuba M. Visual evoked potentials to pattern, motion and cognitive stimuli in Alzheimer's disease. Doc Ophthalmol 2010; 121:37-49. [PMID: 20524039 DOI: 10.1007/s10633-010-9230-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
The aim of our study was to verify reported visual dysfunctions of patients with Alzheimer disease with the use of several variants of VEPs and visual ERPs and to learn whether these methods can be useful in diagnostics of AD. We tested 15 patients (6 women and 9 men, aged from 58 to 87) with mild to moderate Alzheimer disease (12-23 points of Mini Mental State Examination) and 15 age, gender and education level matched controls. The examination consisted of VEPs to pattern-reversal and motion-onset stimulation (to translational and radial movement) and of visual ERPs recorded during an odd-ball test. The subjects were instructed to signalize target stimuli by pressing of a button, which enabled to evaluate also the reaction time. While pattern-reversal VEPs were comparable in patients and controls, there were significantly smaller N2 peak amplitudes of motion-onset VEPs in patients with AD (in particular in radial moving stimuli outside the central 20 deg of the visual field), which suggests a dysfunction of the motion-processing (magnocellular) system or the dorsal cortical stream. ERPs, having significantly longer latencies in patients than in controls, distinguished well both groups. However, the individual AD diagnostics based on ERPs seems to be limited by rather high inter-individual variability of the ERP latencies. The ERPs might, however, be useful in disease progress and therapy effect estimation. Electrophysiological parameters did not correlate with neuropsychological ADAS cog test (Alzheimer Disease Assessment Scale--cognitive part).
Collapse
Affiliation(s)
- Z Kubová
- Department of Pathophysiology, Faculty of Medicine, Charles University, Simkova 870, 50038 Hradec Králové, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
49
|
Grzeschik R, Böckmann-Barthel M, Mühler R, Hoffmann MB. Motion-onset auditory-evoked potentials critically depend on history. Exp Brain Res 2010; 203:159-68. [DOI: 10.1007/s00221-010-2221-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 03/05/2010] [Indexed: 11/30/2022]
|
50
|
Roach NW, McGraw PV. Dynamics of spatial distortions reveal multiple time scales of motion adaptation. J Neurophysiol 2009; 102:3619-26. [PMID: 19812288 PMCID: PMC2804431 DOI: 10.1152/jn.00548.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 09/30/2009] [Indexed: 12/05/2022] Open
Abstract
Prolonged exposure to consistent visual motion can significantly alter the perceived direction and speed of subsequently viewed objects. These perceptual aftereffects have provided invaluable tools with which to study the mechanisms of motion adaptation and draw inferences about the properties of underlying neural populations. Behavioral studies of the time course of motion aftereffects typically reveal a gradual process of adaptation spanning a period of multiple seconds. In contrast, neurophysiological studies have documented multiple motion adaptation effects operating over similar, or substantially faster (i.e., sub-second) time scales. Here we investigated motion adaptation by measuring time-dependent changes in the ability of moving stimuli to distort the perceived position of briefly presented static objects. The temporal dynamics of these motion-induced spatial distortions reveal the operation of two dissociable mechanisms of motion adaptation with differing properties. The first is rapid (subsecond), acts to limit the distortions induced by continuing motion, but is not sufficient to produce an aftereffect once the motion signal disappears. The second gradually accumulates over a period of seconds, does not modulate the size of distortions produced by continuing motion, and produces repulsive aftereffects after motion offset. These results provide new psychophysical evidence for the operation of multiple mechanisms of motion adaptation operating over distinct time scales.
Collapse
Affiliation(s)
- Neil W Roach
- School of Psychology, The University of Nottingham, University Park, Nottingham, UK.
| | | |
Collapse
|