1
|
Marangoni D, Placidi G, D'Agostino E, De Siena E, Attinà G, Mastrangelo S, Ruggiero A, Colosimo C, Falsini B. Longitudinal changes in retinal ganglion cell function in optic pathway glioma evaluated by photopic negative response. Exp Eye Res 2024; 246:110012. [PMID: 39059735 DOI: 10.1016/j.exer.2024.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Photopic negative response (PhNR), an index of retinal ganglion cell (RGC) function, is impaired in patients with optic pathway gliomas (OPGs). The aim of this longitudinal study was to evaluate whether PhNR deteriorates over time in OPG patients. Fourteen pediatric patients affected by OPG (4 males and 10 females, mean age 12.4 ± 5.7 years, 8 with neurofibromatosis type 1 [NF1]) with ≥12 months of follow-up and ≥2 evaluations, were included in this retrospective study. All patients had received chemotherapy, with or without OPG surgical resection, at least 5 years prior to the study. At baseline, all patients underwent a complete ophthalmological examination. Follow-up included clinical examination and PhNR measurement as well as brain MRI (according to pediatric oncologist indications) every 6 or 12 months. Mean follow-up duration was 16.7 ± 7.5 months (range 12-36 months). Photopic electroretinograms were elicited by 2.0 cd-s/m2 Ganzfeld white flashes presented on a steady 20 cd/m2 white background. The PhNR amplitude was measured as the difference between baseline and the maximal negative amplitude (minimum) of the negative wave, following the photopic b-wave. Compared to baseline, mean PhNR amplitude was significantly decreased at the end of follow-up (p = 0.008). NF1-related OPGs exhibited a decline in PhNR amplitude (p = 0.005) and an increase in PhNR peak-time during the follow-up (p = 0.013), whereas sporadic OPGs showed no significant changes. Tumor size remained stable in all patients on MRI. PhNR amplitude decreased over the observation period, suggesting progressive RGC dysfunction in NF1-related pediatric OPGs, despite stable size on MRI imaging. PhNR could serve as a non-invasive objective tool for assessing longitudinal changes in RGC function in the clinical management of childhood OPG.
Collapse
Affiliation(s)
- Dario Marangoni
- University Eye Clinic, Department of Medicine, Surgery and Health Science, University of Trieste, Strada di Fiume, 447, 34129, Trieste, Italy.
| | - Giorgio Placidi
- Ophthalmology Unit, Department of NeuroScience, Sensory Organs and Chest, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136, Rome, Italy
| | - Elena D'Agostino
- Ophthalmology Unit, Department of NeuroScience, Sensory Organs and Chest, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136, Rome, Italy
| | - Elisa De Siena
- Ophthalmology Unit, Department of NeuroScience, Sensory Organs and Chest, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136, Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136, Rome, Italy
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136, Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136, Rome, Italy
| | - Cesare Colosimo
- Radiology and Neuroradiology Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136, Rome, Italy
| | - Benedetto Falsini
- Ophthalmology Unit, Department of NeuroScience, Sensory Organs and Chest, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136, Rome, Italy
| |
Collapse
|
2
|
Hermas A, Tsilfidis C, Karanjia R, Miller G, Kantungane AL, El-Salibi A, Kherani IN, Bali S, Coupland S. Sensitivity and specificity of the uniform field electroretinogram in glaucoma detection in comparison to the pattern electroretinogram. Doc Ophthalmol 2024; 148:97-106. [PMID: 38243039 DOI: 10.1007/s10633-023-09960-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/06/2023] [Indexed: 01/21/2024]
Abstract
PURPOSE To determine the ability of the photopic negative response (PhNR) of the uniform field electroretinogram (UF-ERG) to identify early glaucomatous changes in comparison to the checkerboard and bar stimuli of the pattern electroretinogram (PERG). METHODS Forty-nine glaucoma patients were classified into two groups: glaucoma-suspect (23 eyes) and early to moderate glaucoma (30 eyes), based on their clinical examination and the results of standard automated perimetry. Thirty patients (30 eyes) with intraocular pressures (IOP) of 21 mmHg or less, with no history of reported high IOP, were included as controls. PERG and UF-ERG recordings were obtained on a Diagnosys D-341 Attaché-Envoy System. Visual field testing was done only for glaucoma-suspect and glaucoma patients. RESULTS All three tests (PERG bar stimulus, PERG checkerboard stimulus and PhNR) displayed significantly prolonged peak times for glaucoma and glaucoma-suspect patients, with delays ranging from 7.8 to 14.8%, depending on the test. The PERG bar stimulus also showed a significantly lower N95 amplitude for both glaucoma groups (with reductions of 26.0% and 33.0% for glaucoma-suspect and glaucoma groups, respectively). The PERG checkerboard N95 amplitude component had high sensitivity for detecting glaucoma patients but a low specificity (97% and 37%, respectively; AUC = 0.61). Overall, the PhNR peak time showed the highest sensitivity and specificity (77% and 90%, respectively; AUC = 0.87). CONCLUSIONS PERG bar stimuli and the PhNR of the UF-ERG can be used in the clinical setting to detect glaucoma-related changes in glaucoma-suspect and glaucoma patients. However, our data confirm that the PhNR peak time has the best combined sensitivity and specificity.
Collapse
Affiliation(s)
- Asma Hermas
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Catherine Tsilfidis
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Ophthalmology, University of Ottawa, Ottawa, ON, Canada
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rustum Karanjia
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Ophthalmology, University of Ottawa, Ottawa, ON, Canada
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- University of Ottawa Eye Institute, Ottawa, ON, Canada
| | - Garfield Miller
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Ophthalmology, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Eye Institute, Ottawa, ON, Canada
| | - Ange-Lynca Kantungane
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- University of Ottawa Eye Institute, Ottawa, ON, Canada
| | | | - Irfan N Kherani
- Department of Ophthalmology and Visual Sciences, University of Toronto, Toronto, ON, Canada
| | - Shveta Bali
- University of Ottawa Eye Institute, Ottawa, ON, Canada
| | - Stuart Coupland
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Ophthalmology, University of Ottawa, Ottawa, ON, Canada
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- University of Ottawa Eye Institute, Ottawa, ON, Canada
| |
Collapse
|
3
|
Bekollari M, Dettoraki M, Stavrou V, Glotsos D, Liaparinos P. Computer-Aided Discrimination of Glaucoma Patients from Healthy Subjects Using the RETeval Portable Device. Diagnostics (Basel) 2024; 14:349. [PMID: 38396388 PMCID: PMC10888400 DOI: 10.3390/diagnostics14040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Glaucoma is a chronic, progressive eye disease affecting the optic nerve, which may cause visual damage and blindness. In this study, we present a machine-learning investigation to classify patients with glaucoma (case group) with respect to normal participants (control group). We examined 172 eyes at the Ophthalmology Clinic of the "Elpis" General Hospital of Athens between October 2022 and September 2023. In addition, we investigated the glaucoma classification in terms of the following: (a) eye selection and (b) gender. Our methodology was based on the features extracted via two diagnostic optical systems: (i) conventional optical coherence tomography (OCT) and (ii) a modern RETeval portable device. The machine-learning approach comprised three different classifiers: the Bayesian, the Probabilistic Neural Network (PNN), and Support Vectors Machines (SVMs). For all cases examined, classification accuracy was found to be significantly higher when using the RETeval device with respect to the OCT system, as follows: 14.7% for all participants, 13.4% and 29.3% for eye selection (right and left, respectively), and 25.6% and 22.6% for gender (male and female, respectively). The most efficient classifier was found to be the SVM compared to the PNN and Bayesian classifiers. In summary, all aforementioned comparisons demonstrate that the RETeval device has the advantage over the OCT system for the classification of glaucoma patients by using the machine-learning approach.
Collapse
Affiliation(s)
- Marsida Bekollari
- Department of Biomedical Engineering, University of West Attica, Ag. Spyridonos, 12243 Athens, Greece; (M.B.); (D.G.)
| | - Maria Dettoraki
- Department of Ophthalmology, “Elpis” General Hospital, 11522 Athens, Greece
| | - Valentina Stavrou
- Department of Ophthalmology, “Elpis” General Hospital, 11522 Athens, Greece
| | - Dimitris Glotsos
- Department of Biomedical Engineering, University of West Attica, Ag. Spyridonos, 12243 Athens, Greece; (M.B.); (D.G.)
| | - Panagiotis Liaparinos
- Department of Biomedical Engineering, University of West Attica, Ag. Spyridonos, 12243 Athens, Greece; (M.B.); (D.G.)
| |
Collapse
|
4
|
Tsay K, Safari S, Abou-Samra A, Kremers J, Tzekov R. Pre-stimulus bioelectrical activity in light-adapted ERG under blue versus white background. Vis Neurosci 2023; 40:E004. [PMID: 38087845 PMCID: PMC11016353 DOI: 10.1017/s0952523823000032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/13/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
To compare the baseline signal between two conditions used to generate the photopic negative response (PhNR) of the full-field electroretinogram (ERG): red flash on a blue background (RoB) and white flash on a white background (LA3). The secondary purpose is to identify how the level of pre-stimulus signal affects obtaining an unambiguous PhNR component. A retrospective chart review was conducted on four cohorts of patients undergoing routine ERG testing. In each group, LA3 was recorded the same way while RoB was generated differently using various luminances of red and blue light. The background bioelectrical activity 30 ms before the flash was extracted, and the root mean square (RMS) of the signal was calculated and compared between RoB and LA3 using Wilcoxon test. Pre-stimulus noise was significantly higher under RoB stimulation versus LA3 in all four conditions for both right and left eyes (ratio RoB/LA3 RMS 1.70 and 1.57 respectively, p < 0.033). There was also no significant difference between the RMS of either LA3 or RoB across protocols, indicating that the baseline noise across cohorts were comparable. Additionally, pre-stimulus noise was higher in signals where PhNR was not clearly identifiable as an ERG component versus signals with the presence of unambiguous PhNR component under RoB in all four groups for both eyes (p < 0.05), whereas the difference under LA3 was less pronounced. Our study suggests that LA3 produces less background bioelectrical activity, likely due to decreased facial muscle activity. As it seems that the pre-stimulus signal level affects PhNR recordability, LA3 may also produce a better-quality signal compared to RoB. Therefore, until conditions for a comparable bioelectrical activity under RoB are established, we believe that LA3 should be considered at least as a supplementary method to evaluate retinal ganglion cell function by ERG.
Collapse
Affiliation(s)
- Katherine Tsay
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Sara Safari
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Jan Kremers
- University Hospital Erlangen, Erlangen, Germany
| | - Radouil Tzekov
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA
| |
Collapse
|
5
|
Wang J, Wang Y, Guan W, Zhao YE. Full-field electroretinogram recorded with skin electrodes in 6- to 12-year-old children. Doc Ophthalmol 2023; 147:179-188. [PMID: 37530953 PMCID: PMC10638173 DOI: 10.1007/s10633-023-09944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 07/04/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE To determine the full-field electroretinogram (ffERG) parameters, including the light-adapted (LA) 3 ERG and the photopic negative response (PhNR), in 6- to 12-year-old children. METHODS ffERG data were obtained from 214 eyes of 214 healthy subjects. The amplitudes and peak time of the ffERG responses were obtained from children divided into 6- to 8-year-old and 9- to 12-year-old groups. Using a skin electrode, electrical signals were measured in response to white stimulating light and white background light (LA 3 ERG). A blue background light and red flashes were then used to elicit the PhNR. RESULTS The a-wave amplitude ranged from 0.40 to 9.20 μV, the b-wave ranged from 4.70 to 30.80 μV, and the PhNR ranged from 1.30 to 39.90 μV. The b-wave peak time (33.20 ms) of 6- to 8-year-old groups was slightly shorter than that of the 9- to 12-year-old groups (33.60 ms, P = 0.01), but no differences in amplitudes or in peak time of other components. There were significant correlations between the amplitudes (a-wave and b-wave: r = 0.43, p < 0.001; a-wave and PhNR: r = 0.25, p < 0.001; b-wave and PhNR: r = 0.45, p < 0.001). There was a moderate correlation between the a-wave and b-wave peak time (r = 0.31, P < 0.001). CONCLUSIONS We determined the largest dataset of the LA 3 ERG and PhNR parameters in a population of healthy children, aged 6-12 years, which may provide a useful reference value when evaluating children with potential retinal defects.
Collapse
Affiliation(s)
- Jiajun Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Disease, Wenzhou, Zhejiang, China
| | - Yalan Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Disease, Wenzhou, Zhejiang, China
| | - Weichen Guan
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Disease, Wenzhou, Zhejiang, China
| | - Yun-E Zhao
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- National Clinical Research Center for Ocular Disease, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Leo SM, Neveu MM, Yu-Wai-Man P, Mahroo OA, Robson AG. The diagnostic accuracy of photopic negative responses evoked by broadband and chromatic stimuli in a clinically heterogeneous population. Doc Ophthalmol 2023; 147:165-177. [PMID: 37889400 PMCID: PMC10638186 DOI: 10.1007/s10633-023-09956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE To compare the diagnostic accuracy of the photopic negative response (PhNR) elicited by red-blue (RB) and white-white (WW) stimuli, for detection of retinal ganglion cell (RGC) dysfunction in a heterogeneous clinical cohort. METHODS Adults referred for electrophysiological investigations were recruited consecutively for this single-centre, prospective, paired diagnostic accuracy study. PhNRs were recorded to red flashes (1.5 cd·s·m-2) on a blue background (10 cd·m-2) and to white flashes on a white background (the latter being the ISCEV standard LA 3 stimulus). PhNR results were compared with a reference test battery assessing RGC/optic nerve structure and function including optical coherence tomography (OCT) retinal nerve fibre layer thickness and mean RGC volume measurements, fundus photography, pattern electroretinography and visual evoked potentials. Primary outcome measures were differences in sensitivity and specificity of the two PhNR methods. RESULTS Two hundred and forty-three participants were initially enrolled, with 200 (median age 54; range 18-95; female 65%) meeting inclusion criteria. Sensitivity was 53% (95% confidence intervals [CI] 39% to 68%) and 62% (95% CI 48% to 76%), for WW and RB PhNRs, respectively. Specificity was 80% (95% CI 74% to 86%) and 78% (95% CI 72% to 85%), respectively. There was a statistically significant difference between sensitivities (p = 0.046) but not specificities (p = 0.08) of the two methods. Receiver operator characteristic (ROC) area under the curve (AUC) values were 0.73 for WW and 0.74 for RB PhNRs. CONCLUSION PhNRs to red flashes on a blue background may be more sensitive than white-on-white stimuli, but there is no significant difference between specificities. This study highlights the value and potential convenience of using white-on-white stimuli, already used widely for routine ERG assessment.
Collapse
Affiliation(s)
- Shaun M Leo
- Moorfields Eye Hospital, 162 City Road, London, EC1V 2PD, UK
| | - Magella M Neveu
- Moorfields Eye Hospital, 162 City Road, London, EC1V 2PD, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Patrick Yu-Wai-Man
- Moorfields Eye Hospital, 162 City Road, London, EC1V 2PD, UK
- Institute of Ophthalmology, University College London, London, UK
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospital, Cambridge, UK
| | - Omar A Mahroo
- Moorfields Eye Hospital, 162 City Road, London, EC1V 2PD, UK
- Institute of Ophthalmology, University College London, London, UK
- Section of Ophthalmology, King's College London, St Thomas' Hospital Campus, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital Campus, London, UK
- Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Anthony G Robson
- Moorfields Eye Hospital, 162 City Road, London, EC1V 2PD, UK.
- Institute of Ophthalmology, University College London, London, UK.
| |
Collapse
|
7
|
Bekollari M, Dettoraki M, Stavrou V, Skouroliakou A, Liaparinos P. Investigating the Structural and Functional Changes in the Optic Nerve in Patients with Early Glaucoma Using the Optical Coherence Tomography (OCT) and RETeval System. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094504. [PMID: 37177707 PMCID: PMC10181589 DOI: 10.3390/s23094504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
The present manuscript introduces an investigation of the structural and functional changes in the optic nerve in patients undergoing glaucoma treatment by comparing optical coherence tomography (OCT) measurements and RETeval system parameters. For such a purpose, 140 eyes were examined at the Ophthalmology Clinic of the "Elpis" General Hospital of Athens between October 2022 and April 2023. A total of 59 out of 140 eyes were from patients with early glaucoma under treatment (case group), 63 were healthy eyes (control group) and 18 were excluded. The experimental measurements were statistically analyzed using the SPSS software package. The main outcomes are summarized below: (i) there was no statistical difference between the right and left eye for both groups, (ii) statistical differences were found between age interval subgroups (30-54 and 55-80 years old) for the control group, mainly for the time response part of the RETeval parameters. Such difference was not indicated by the OCT system, and (iii) a statistical difference occurred between the control and case group for both OCT (through the retinal nerve fiber layer-RNFL thickness) and the RETeval parameters (through the photopic negative response-PhNR). RNFL was found to be correlated to b-wave (ms) and W-ratio parameters. In conclusion, the PhNR obtained by the RETeval system could be a valuable supplementary tool for the objective examination of patients with early glaucoma.
Collapse
Affiliation(s)
- Marsida Bekollari
- Department of Biomedical Engineering, University of West Attica, Ag. Spyridonos, 12243 Athens, Greece
| | - Maria Dettoraki
- Department of Ophthalmology, "Elpis" General Hospital, 11522 Athens, Greece
| | - Valentina Stavrou
- Department of Ophthalmology, "Elpis" General Hospital, 11522 Athens, Greece
| | - Aikaterini Skouroliakou
- Department of Biomedical Engineering, University of West Attica, Ag. Spyridonos, 12243 Athens, Greece
| | - Panagiotis Liaparinos
- Department of Biomedical Engineering, University of West Attica, Ag. Spyridonos, 12243 Athens, Greece
| |
Collapse
|
8
|
Yamashita T, Kato K, Kondo M, Miki A, Araki S, Goto K, Ieki Y, Kiryu J. Photopic negative response recorded with RETeval system in eyes with optic nerve disorders. Sci Rep 2022; 12:9091. [PMID: 35641565 PMCID: PMC9156775 DOI: 10.1038/s41598-022-12971-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Electroretinography (ERG) is used to evaluate the physiological status of the retina and optic nerve. The purpose of this study was to determine the usefulness of ERGs recorded with the RETeval system in diagnosing optic nerve diseases. Forty-eight patients with optic nerve disorders, including optic neuritis, ischemic optic neuropathy, traumatic optic neuropathy, and dominant optic atrophy, and 36 normal control subjects were studied. The amplitudes of the photopic negative response (PhNR) were recorded with the RETeval system without mydriasis. The circumpapillary retinal nerve fiber layer thickness (cpRNFLT) was determined by optical coherence tomography (OCT). The significance of the correlations between the PhNR and cpRNFLT parameters were determined, and the receiver operating curve (ROC) analyses were performed for the PhNR and cpRNFLT. Patients with optic nerve disorders had significantly smaller PhNRs compared to the control subjects (P = 0.001). The ROC analyses indicated that both PhNR and cpRNFLT had comparable diagnostic abilities of detecting optic nerve disorders with PhNR at 0.857 and cpRNFLT at 0.764. The PhNR components recorded with the RETeval system have comparable diagnostic abilities as the cpRNFLT in diagnosing optic nerve disorders.
Collapse
Affiliation(s)
- Tsutomu Yamashita
- Department of Orthoptics, Faculty of Rehabilitation, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan. .,Department of Ophthalmology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Kumiko Kato
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Atsushi Miki
- Department of Orthoptics, Faculty of Rehabilitation, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan.,Department of Ophthalmology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Syunsuke Araki
- Department of Ophthalmology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Katsutoshi Goto
- Department of Ophthalmology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Yoshiaki Ieki
- Department of Ophthalmology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Junichi Kiryu
- Department of Ophthalmology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
9
|
Barbano L, Ziccardi L, Antonelli G, Nicoletti CG, Landi D, Mataluni G, Falsini B, Marfia GA, Centonze D, Parisi V. Multifocal Electroretinogram Photopic Negative Response: A Reliable Paradigm to Detect Localized Retinal Ganglion Cells' Impairment in Retrobulbar Optic Neuritis Due to Multiple Sclerosis as a Model of Retinal Neurodegeneration. Diagnostics (Basel) 2022; 12:diagnostics12051156. [PMID: 35626311 PMCID: PMC9139610 DOI: 10.3390/diagnostics12051156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
The measure of the full-field photopic negative response (ff-PhNR) of light-adapted full-field electroretinogram (ff-ERG) allows to evaluate the function of the innermost retinal layers (IRL) containing primarily retinal ganglion cells (RGCs) and other non-neuronal elements of the entire retina. The aim of this study was to acquire functional information of localized IRL by measuring the PhNR in response to multifocal stimuli (mfPhNR). In this case-control observational and retrospective study, we assessed mfPhNR responses from 25 healthy controls and from 20 patients with multiple sclerosis with previous history of optic neuritis (MS-ON), with full recovery of visual acuity, IRL morphological impairment, and absence of morpho-functional involvement of outer retinal layers (ORL). MfPhNR response amplitude densities (RADs) were measured from concentric rings (R) with increasing foveal eccentricity: 0−5° (R1), 5−10° (R2), 10−15° (R3), 15−20° (R4), and 20−25° (R5) from retinal sectors (superior-temporal (ST), superior-nasal (SN), inferior-nasal (IN), and inferior-temporal (IT)); between 5° and 20° and from retinal sectors (superior (S), temporal (T), inferior (I), and nasal (N)); and within 5° to 10° and within 10° and 20° from the fovea. The mfPhNR RAD values observed in all rings or sectors in MS-ON eyes were significantly reduced (p < 0.01) with respect to control ones. Our results suggest that mfPhNR recordings may detect localized IRL dysfunction in the pathologic condition of selective RGCs neurodegeneration.
Collapse
Affiliation(s)
- Lucilla Barbano
- IRCCS—Fondazione Bietti, Via Livenza 1, 00198 Rome, Italy; (L.B.); (G.A.); (V.P.)
| | - Lucia Ziccardi
- IRCCS—Fondazione Bietti, Via Livenza 1, 00198 Rome, Italy; (L.B.); (G.A.); (V.P.)
- Correspondence: ; Tel.: +39-06-85356727; Fax: +39-06-84242333
| | - Giulio Antonelli
- IRCCS—Fondazione Bietti, Via Livenza 1, 00198 Rome, Italy; (L.B.); (G.A.); (V.P.)
| | - Carolina Gabri Nicoletti
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy; (C.G.N.); (D.L.); (G.M.); (G.A.M.); (D.C.)
| | - Doriana Landi
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy; (C.G.N.); (D.L.); (G.M.); (G.A.M.); (D.C.)
| | - Giorgia Mataluni
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy; (C.G.N.); (D.L.); (G.M.); (G.A.M.); (D.C.)
| | - Benedetto Falsini
- Ophthalmology Department, IRCCS—Fondazione Policlinico Universitario A. Gemelli, Catholic University, Largo F. Vito 1, 00168 Rome, Italy;
| | - Girolama Alessandra Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy; (C.G.N.); (D.L.); (G.M.); (G.A.M.); (D.C.)
| | - Diego Centonze
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy; (C.G.N.); (D.L.); (G.M.); (G.A.M.); (D.C.)
- Unit of Neurology and Neurorehabilitation, IRCCS—Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Vincenzo Parisi
- IRCCS—Fondazione Bietti, Via Livenza 1, 00198 Rome, Italy; (L.B.); (G.A.); (V.P.)
| |
Collapse
|
10
|
Awwad MH, Nada O, Hamdi MM, El-Shazly AAEF, Elwan S. Correlation Between Optical Coherence Tomography and Photopic Negative Response of Flash Electroretinography in Ganglion Cell Complex Assessment in Glaucoma Patients. Clin Ophthalmol 2022; 16:893-904. [PMID: 35356699 PMCID: PMC8958198 DOI: 10.2147/opth.s356436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/11/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose To investigate the correlation between the photopic negative response (PhNR) of the light-adapted flash electroretinography (ERG) and measurements of standard automated perimetry (SAP) and optical coherence tomography (OCT) in assessment of retinal ganglion cells’ (RGCs) affection in glaucoma. Patients and Methods A cross-sectional study included 40 eyes of glaucoma patients and 40 eyes of age- and gender-matched normal subjects. Participants underwent a complete ophthalmologic assessment, SAP, OCT, and light-adapted flash ERG using the extended PhNR protocol of the International Society for Clinical Electrophysiology of Vision (ISCEV). Glaucomatous eyes were divided into 3 subgroups: mild (n = 15), moderate (n = 11) and severe glaucoma (n = 14) according to the mean deviation (MD) of SAP. Measurements of SAP, OCT and ERG parameters were analyzed, and correlations between PhNR measurements and other study measurements were evaluated. Results PhNR amplitudes and PhNR/b-wave ratios were significantly reduced in glaucoma cases compared to healthy controls, and they showed a significant and progressive decline across the three glaucoma subgroups (P < 0.05). An exception to this is PT (b-wave peak to PhNR trough) PhNR amplitude where its reduction was statistically non-significant when comparing between controls and mild glaucoma cases (P = 0.178), and between moderate and severe glaucoma cases (P = 0.714). PhNR amplitudes and PhNR/b-wave ratios correlated significantly with SAP and OCT parameters (P < 0.05). Conclusion PhNR correlates well with SAP and OCT parameters in glaucoma assessment. PhNR could be a valuable supplementary tool for objective assessment of the RGCs’ function in glaucoma.
Collapse
Affiliation(s)
- Mohammad Hasan Awwad
- Ophthalmology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Correspondence: Mohammad Hasan Awwad, Misr Lel Tayaran St., New Nozha, Cairo, 11843, Egypt, Tel +201003604524, Email
| | - Ossama Nada
- Ophthalmology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Momen Mahmoud Hamdi
- Ophthalmology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Sheriff Elwan
- Ophthalmology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Yang JJ, Huang CH, Yang CH, Yang CM, Lin CW, Ho TC, Lin CP, Hsieh YT, Yeh PT, Lai TT, Chen PL, Chen TC. The Clinical Contribution of Full-Field Electroretinography and 8-Year Experiences of Application in a Tertiary Medical Center. J Pers Med 2021; 11:jpm11101022. [PMID: 34683163 PMCID: PMC8539721 DOI: 10.3390/jpm11101022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022] Open
Abstract
Electroretinography (ERG) is an important and well-established examination for retinal and visual pathway diseases. This study reviewed the medical records of patients who received full-field ERG (ffERG) at a single medical center between 2012 and 2019, which was an 8-year experience in the clinical contribution of ERG. Based on the indication for scheduling ffERG and the final diagnosis, patients could be classified into six groups: ‘retinal dystrophies’, ‘other retinal or macular diseases’, ‘optic neuropathies’, ‘visual complaints’, ‘systemic diseases’, and ‘others’. A total of 1921 full-field electroretinograms (ffERGs) (1655 patients) were included. The average number of ffERGs performed per year was 262 and the number of annual ffERGs was constant. The ‘retinal dystrophies’ group accounted for 36.5% of the studied population, followed by the ‘other retinal or macular diseases’ group (20.2%). The most common systemic disease was central nervous system disease. The rates of abnormal ffERGs in the ‘systemic diseases’, ‘optic neuropathies’, and ‘visual complaints’ groups were 27.3%, 22.6%, and 10.1%, respectively (p < 0.001). Higher rates were found in patients <20 years old in the ‘systemic diseases’ and ‘optic neuropathies’ groups; epilepsy and optic nerve atrophy were the most common diagnoses, respectively. In brief, by quantifying the functional response in the retina, ffERG is indispensable for diagnosis and prognosis in ophthalmologic and multidisciplinary practice.
Collapse
Affiliation(s)
- Jung-Je Yang
- Department of Medical Education, National Taiwan University Hospital, Taipei 10002, Taiwan;
| | - Chu-Hsuan Huang
- Department of Ophthalmology, Cathay General Hospital, Taipei 10002, Taiwan;
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-H.Y.); (C.-M.Y.); (C.-W.L.); (T.-C.H.); (C.-P.L.); (Y.-T.H.); (P.-T.Y.); (T.-T.L.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-H.Y.); (C.-M.Y.); (C.-W.L.); (T.-C.H.); (C.-P.L.); (Y.-T.H.); (P.-T.Y.); (T.-T.L.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chao-Wen Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-H.Y.); (C.-M.Y.); (C.-W.L.); (T.-C.H.); (C.-P.L.); (Y.-T.H.); (P.-T.Y.); (T.-T.L.)
| | - Tzyy-Chang Ho
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-H.Y.); (C.-M.Y.); (C.-W.L.); (T.-C.H.); (C.-P.L.); (Y.-T.H.); (P.-T.Y.); (T.-T.L.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chang-Ping Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-H.Y.); (C.-M.Y.); (C.-W.L.); (T.-C.H.); (C.-P.L.); (Y.-T.H.); (P.-T.Y.); (T.-T.L.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yi-Ting Hsieh
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-H.Y.); (C.-M.Y.); (C.-W.L.); (T.-C.H.); (C.-P.L.); (Y.-T.H.); (P.-T.Y.); (T.-T.L.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Po-Ting Yeh
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-H.Y.); (C.-M.Y.); (C.-W.L.); (T.-C.H.); (C.-P.L.); (Y.-T.H.); (P.-T.Y.); (T.-T.L.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Tso-Ting Lai
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-H.Y.); (C.-M.Y.); (C.-W.L.); (T.-C.H.); (C.-P.L.); (Y.-T.H.); (P.-T.Y.); (T.-T.L.)
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan;
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-H.Y.); (C.-M.Y.); (C.-W.L.); (T.-C.H.); (C.-P.L.); (Y.-T.H.); (P.-T.Y.); (T.-T.L.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan;
- Correspondence: ; Tel.: +886-2-23123456 (ext. 63783)
| |
Collapse
|
12
|
Abstract
PRéCIS:: Four parameters of the noninvasive, portable RETeval electroretinogram (ERG) system were found to correlate with visual field mean deviation and optical coherence tomography (OCT) thickness parameters, and may therefore be suitable for glaucoma detection. PURPOSE To investigate the RETeval full-field ERG parameters for accuracy of separating glaucoma and normal eyes, and correlation with glaucoma severity. PATIENTS AND METHODS Sixty-two eyes of 62 primary open-angle glaucoma patients [visual field mean deviation (MD) range: -0.44 to -31.15 dB] and 39 eyes of 39 healthy controls underwent one RETeval test (photopic negative response protocol), OCT imaging, and Humphrey 30-2 visual field testing. The glaucoma patients were divided into early (MD≥-6dB, n=33) and moderate-to-advanced (MD<-6 dB, n=29) groups. RESULTS Significant correlations were found between the best-performing 4 RETeval ERG parameters and the glaucoma severity measures (MD and OCT thickness parameters) for all eyes, all glaucoma eyes and the moderate-to-advanced glaucoma eyes [photopic negative response amplitude at 72 ms (PhNR 72) and MD: r=-0.333, -0.414, and -0.485, respectively, P≤0.008; PhNR 72 and average circumpapillary retinal nerve fiber layer thickness; r=-0.429, -0.450, and -0.542, respectively, P≤0.002]. Except for P-ratio, there was no significant difference between the area under the receiver-operating characteristic (AUROC) values of the OCT thickness parameters (range: 0.927 to 0.938) and the 4 best-performing RETeval ERG parameters (range: 0.839 to 0.905) in the early glaucoma versus control separation. For differentiating the control and the moderate-to-advanced glaucoma eyes, the AUROC values of the 4 best-performing RETeval ERG parameters ranged between 0.924 and 0.958, and no significant difference was found between them and those of the OCT parameters. CONCLUSIONS The noninvasive, portable RETeval full-field ERG device may be useful to detect glaucoma in moderate-to-advanced stages.
Collapse
|
13
|
Al-Nosairy KO, Prabhakaran GT, Pappelis K, Thieme H, Hoffmann MB. Combined Multi-Modal Assessment of Glaucomatous Damage With Electroretinography and Optical Coherence Tomography/Angiography. Transl Vis Sci Technol 2020; 9:7. [PMID: 33200048 PMCID: PMC7645242 DOI: 10.1167/tvst.9.12.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/30/2020] [Indexed: 01/22/2023] Open
Abstract
Purpose To compare the diagnostic performance and to evaluate the interrelationship of electroretinographical and structural and vascular measures in glaucoma. Methods For 14 eyes of 14 healthy controls and 15 eyes of 12 patients with glaucoma ranging from preperimetric to advanced stages optical coherence tomography (OCT), OCT-angiography (OCT-A), and electrophysiological measures (multifocal photopic negative response ratio [mfPhNR] and steady-state pattern electroretinography [ssPERG]) were applied to assess changes in retinal structure, microvasculature, and function, respectively. The diagnostic performance was assessed via area-under-curve (AUC) measures obtained from receiver operating characteristics analyses. The interrelation of the different measures was assessed with correlation analyses. Results The mfPhNR, ssPERG amplitude, parafoveal (pfVD) and peripapillary vessel density (pVD), macular ganglion cell inner plexiform layer thickness (mGCIPL) and peripapillary retinal nerve fiber layer thickness (pRNFL) were significantly reduced in glaucoma. The AUC for mfPhNR was highest among diagnostic modalities (AUC: 0.88, 95% confidence interval: 0.75-1.0, P < 0.001), albeit not statistically different from that for macular (mGCIPL: 0.76, 0.58-0.94, P < 0.05; pfVD: 0.81, 0.65-0.97, P < 0.01) or peripapillary imaging (pRNFL: 0.85, 0.70-1.0, P < 0.01; pVD: 0.82, 0.68-0.97, P < 0.01). Combined functional/vascular measures yielded the highest AUC (mfPhNR-pfVD: 0.94, 0.85-1.0, P < 0.001). The functional/structural measure correlation (mfPhNR-mGCIPL correlation coefficient [rs]: 0.58, P = 0.001; mfPhNR-pRNFL rs: 0.66, P < 0.001) was stronger than the functional-vascular correlation (mfPhNR-pfVD rs: 0.29, P = 0.13; mfPhNR-pVD rs: 0.54, P = 0.003). Conclusions The combination of ERG measures and OCT-A improved diagnostic performance and enhanced understanding of pathophysiology in glaucoma. Translational Relevance Multimodal assessment of glaucoma damage improves diagnostics and monitoring of disease progression.
Collapse
Affiliation(s)
| | | | - Konstantinos Pappelis
- Department of Ophthalmology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Hagen Thieme
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael B. Hoffmann
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
14
|
Al-Nosairy KO, Thieme H, Hoffmann MB. Diagnostic performance of multifocal photopic negative response, pattern electroretinogram and optical coherence tomography in glaucoma. Exp Eye Res 2020; 200:108242. [PMID: 32926894 DOI: 10.1016/j.exer.2020.108242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022]
Abstract
The photopic negative response of the electroretinogram reflects retinal ganglion cell function and consequently aids diagnosis of optic nerve diseases including glaucoma. In this study, we assessed the efficacy of stimulation parameters for electroretinographic recordings of the multifocal photopic negative response (mfPhNR) for the detection of glaucoma and compared the diagnostic accuracy of electrophysiological, structural and functional measures of glaucoma. We compared the diagnostic performance of the mfPhNR for 6 different stimulation rates in a cohort of 24 controls, 10 glaucoma suspects (GLAS ) and 16 glaucoma participants (GLAG). A cross-modal comparison of the mfPhNR/b wave ratio was performed with the pattern electroretinogram (PERG), and the peripapillary retinal nerve fiber layer (pRNFL) thickness. These analyses were based on area under curves (AUC) obtained from receiver-operating-characteristics (ROC) and step-wise regression analyses. We found that compared to the other mfPhNR-conditions, the PhNR/b-wave ratio for the fastest stimulation condition had the highest AUC for GLAS (0.84, P = 0.008, 95%CI: 0.71- 0.98), while the other modalities, i.e., PERG-amplitude and pRNFL had AUCs of 0.78 (P= 0.039), and 0.74 (P < 0.05), respectively. For GLAG , the respective AUCs were 0.78 (P= 0.004), 0.85 (P< 0.001) and 0.87 (P< 0.001). pRNFL was the significant predictor for both mfPhNR/b-wave ratio [t (48) = 4, P = 0.0002] and for PERG amplitude [t (48) = 3.4, P = 0.001]. In conclusion, fast mfPhNR protocols outperform other multifocal PhNR protocols in the identification of glaucomatous damage especially for GLAS and thus aid the early detection of glaucoma, indicating its value as a surrogate marker of early stage ganglion cell dysfunction.
Collapse
Affiliation(s)
| | - Hagen Thieme
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael B Hoffmann
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
15
|
Prencipe M, Perossini T, Brancoli G, Perossini M. The photopic negative response (PhNR): measurement approaches and utility in glaucoma. Int Ophthalmol 2020; 40:3565-3576. [PMID: 32737731 PMCID: PMC7669808 DOI: 10.1007/s10792-020-01515-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
Purpose Visual electrophysiological testing continues to generate interest among glaucoma experts because of its potential help in clarifying disease pathophysiology and promoting early detection of glaucomatous damage. The photopic negative response (PhNR) is a slow negative component of the full-field electroretinogram that has been shown to provide specific information about retinal ganglion cells (RGCs) activity. The purpose of this article is to review the literature to explore the currently available measurement methods and the utility of PhNR in glaucoma diagnostic process. Methods We gathered publications related to the origins, types of stimuli used, measurements methods and applications of the PhNR of ERG in animal models and humans through a search of the literature cited in PubMed. Search terms were: “PhNR”, “photopic negative response”, “glaucoma”, “glaucomatous optic neuropathy”, “ERG”, “electroretinogram”. Results The most reliable PhNR measurements are obtained using a red stimulus on a blue background, without requiring refractive correction, fixation monitoring, or ocular media transparency. Given its direct correlation with RGCs response, the PhNR measured as baseline-to-trough (BT) represents the most reliable parameter of evaluation. Glaucoma patients with evident perimetric defects show pathologic PhNR values. Even though the PhNR is promising in detecting early RGCs impairment, distinguishing between healthy subjects and suspect patients at risk of developing glaucomatous damage still remains challenging. Conclusion The PhNR is a useful additional tool to explore disorders that affect the innermost retina, including glaucoma and other forms of optic neuropathy. In particular, comparing reports of the standard examinations (optic disc assessment, OCT RNFL measurement, standard automated perimetry) with the results of electrophysiological tests may be helpful in solving clinical diagnostic and management dilemmas. On the one hand, the PhNR of the ERG can examine the parvocellular pathways; on the other hand, the steady-state pattern ERG optimized for glaucoma screening (PERGLA) can explore the magnocellular pathways. This could give ophthalmologists a useful feedback to identify early RGCs alterations suggestive of glaucoma, stratify the risk and potentially monitor disease progression.
Collapse
Affiliation(s)
- Matteo Prencipe
- Department of Surgical, Medical, Molecular Pathology and of Critical Area, University of Pisa, Pisa, Italy.
| | - Tommaso Perossini
- Studio Oculistico Associato Mario and Tommaso Perossini, Livorno, Italy
| | | | - Mario Perossini
- Studio Oculistico Associato Mario and Tommaso Perossini, Livorno, Italy
| |
Collapse
|
16
|
The photopic negative response of the Light-adapted 3.0 ERG in clinical settings. Doc Ophthalmol 2019; 140:115-128. [DOI: 10.1007/s10633-019-09723-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 09/16/2019] [Indexed: 11/27/2022]
|
17
|
Honda H, Anraku A, Ishida K, Enomoto N, Tomita G. Relationship between Macular Vessel Density and Focal Electroretinograms in Early Normal Tension Glaucoma. Curr Eye Res 2019; 44:753-759. [DOI: 10.1080/02713683.2019.1593464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hakuei Honda
- Department of Ophthalmology, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Ayako Anraku
- Department of Ophthalmology, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Kyoko Ishida
- Department of Ophthalmology, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Nobuko Enomoto
- Department of Ophthalmology, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Goji Tomita
- Department of Ophthalmology, Toho University Ohashi Medical Center, Tokyo, Japan
| |
Collapse
|
18
|
Hui F, Tang J, Hadoux X, Coote M, Crowston JG. Optimizing a Portable ERG Device for Glaucoma Clinic: The Effect of Interstimulus Frequency on the Photopic Negative Response. Transl Vis Sci Technol 2018; 7:26. [PMID: 30619646 PMCID: PMC6314062 DOI: 10.1167/tvst.7.6.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/12/2018] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to investigate the effect of interstimulus frequency on the photopic negative response (PhNR) in the clinical electroretinogram (ERG) in glaucoma and healthy eyes. Methods Participants with open angle glaucoma (n = 15) and age-matched controls (n = 20) were recruited. Photopic ERGs were recorded in one eye using five frequencies (1-5 Hz) delivered in random order. ERGs were analyzed for changes to amplitude and timing between groups and interstimulus frequency. Coefficient of variation (CoV) was used to examine variability within recordings for each frequency. Results While the a-wave and b-wave showed minimal alteration, the PhNR was highly sensitive to changes in interstimulus frequency. The PhNR signal was largest at 1 Hz and steadily diminished with higher frequencies in both control and glaucoma groups. Significant differences in PhNR amplitude were found between controls and glaucoma groups at 2 and 3 Hz. While 1 Hz delivered the largest PhNR, it also showed a significantly greater CoV compared to other frequencies. Conclusions An interstimulus frequency of 2 Hz was optimal for recording the PhNR, creating a good balance between testing time and signal quality. A higher frequency could be used to further shorten clinical testing times; however, this may compromise its clinical utility by dampening the PhNR. Translational Relevance Here we show the importance of considering flash interstimulus frequency when designing ERG protocols for recording the PhNR as while higher frequencies can shorten test times, they also have considerable effects on the PhNR.
Collapse
Affiliation(s)
- Flora Hui
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jessica Tang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Xavier Hadoux
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Michael Coote
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Jonathan G Crowston
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Tang J, Hui F, Hadoux X, Sarossy M, van Wijngaarden P, Coote M, Crowston JG. A Comparison of the RETeval Sensor Strip and DTL Electrode for Recording the Photopic Negative Response. Transl Vis Sci Technol 2018; 7:27. [PMID: 30619647 PMCID: PMC6314057 DOI: 10.1167/tvst.7.6.27] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/12/2018] [Indexed: 12/02/2022] Open
Abstract
PURPOSE To compare the RETeval sensor strip and Dawson-Trick-Litzkow (DTL) electrodes for recording the photopic negative response (PhNR) using a portable electroretinogram (ERG) device in eyes with and without glaucoma. METHODS Twenty-six control and 31 glaucoma or glaucoma-suspect participants were recruited. Photopic ERGs were recorded with sensor strip and DTL electrodes in random order using the LKC RETeval device. Stimuli consisted of brief, red flashes (1.7 cd.s/m2) on a blue background (photopic 10 cd/m2). The PhNR amplitude was measured from baseline to trough and also expressed as a ratio over the b-wave amplitude. RESULTS The sensor strip-recorded PhNR amplitude was significantly attenuated (mean ± standard deviation [SD], 4.8 ± 2.1 vs. 12.7 ± 4.8 μV, P < 0.0001), with lower signal-to-noise ratio (SNR; 5.5 ± 2.1 vs. 8.1 ± 3.9, P < 0.0001), and a trend toward a larger PhNR/b-wave ratio compared with DTL electrodes. The PhNR amplitude, implicit time and PhNR/b-wave ratio correlated with visual field mean light sensitivity, although this fell short of significance for the sensor strip recorded PhNR amplitude. The electrodes demonstrated similar intersession repeatability with a coefficient of repeatability of ±27% and ±28% for the DTL and sensor strip, respectively. CONCLUSIONS Sensor strip electrodes are a viable alternative for recording reproducible PhNRs, especially when values are normalized to the b-wave. However, DTL electrodes should be considered in cases of attenuated PhNR, or in elevated noise levels, due to its better signal-to-noise quality. TRANSLATIONAL RELEVANCE Sensor strip electrodes can simplify PhNR recordings in the clinic, potentially eliminating the need for an experienced operator.
Collapse
Affiliation(s)
- Jessica Tang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Flora Hui
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Xavier Hadoux
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Marc Sarossy
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Michael Coote
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Jonathan G Crowston
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Tang J, Hui F, Coote M, Crowston JG, Hadoux X. Baseline Detrending for the Photopic Negative Response. Transl Vis Sci Technol 2018; 7:9. [PMID: 30258702 PMCID: PMC6152608 DOI: 10.1167/tvst.7.5.9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/05/2018] [Indexed: 11/24/2022] Open
Abstract
Purpose The photopic negative response (PhNR) of the light-adapted electroretinogram (ERG) holds promise as an objective marker of retinal ganglion cell function. We compared baseline detrending methods to improve PhNR repeatability without compromising its diagnostic ability in glaucoma. Methods Photopic ERGs were recorded in 20 glaucoma and 18 age-matched control participants. A total of 50 brief, red-flashes (1.6 cd.s/m2) on a blue background (10 photopic cd/m2) were delivered using the RETeval device. Detrending methods compared were: (1) increasing the high-pass filter from 1 to 10 Hz and (2) estimating and removing the trend with an increasing polynomial (order from 1–10) applied to the prestimulus interval, prestimulus and postsignal interval, or the whole ERG signal. Coefficient of repeatability (COR%), unpaired Student's t-test, and area under the receiver operating characteristic curve (AUC) were used to compare the detrending methods. Results Most detrending methods improved PhNR test–retest repeatability compared to the International Society for Clinical Electrophysiology of Vision (ISCEV) recommended 0.3 to 300 Hz band-pass filter (COR% ± 200%). In particular, detrending with a polynomial (order 3) applied to the whole signal performed the best (COR% ± 44%) while achieving similar diagnostic ability as ISCEV band-pass (AUC 0.74 vs. 0.75, respectively). However, over-correcting with higher orders of processing can cause waveform distortion and reduce diagnostic ability. Conclusions Baseline detrending can improve the PhNR repeatability without compromising its clinical use in glaucoma. Further studies exploring more complex processing methods are encouraged. Translational Relevance Baseline detrending can significantly improve the quality of the PhNR.
Collapse
Affiliation(s)
- Jessica Tang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Flora Hui
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Michael Coote
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Jonathan G Crowston
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Xavier Hadoux
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
21
|
Huang W, Gao F, Hu F, Huang J, Wang M, Xu P, Zhang R, Chen J, Sun X, Zhang S, Wu J. Asiatic Acid Prevents Retinal Ganglion Cell Apoptosis in a Rat Model of Glaucoma. Front Neurosci 2018; 12:489. [PMID: 30079010 PMCID: PMC6062646 DOI: 10.3389/fnins.2018.00489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/29/2018] [Indexed: 01/20/2023] Open
Abstract
Asiatic acid (AA), a pentacyclic triterpene derived from the tropical medicinal plant Centella asiatica, has been widely used as an antioxidant and anti-inflammatory agent. Evidence regarding the neuroprotective properties of AA is emerging. However, the protective effects of AA and its mechanism in glaucoma are poorly understood. In the current study, we investigate the neuroprotective effect and mechanism of AA on retinal ganglion cells (RGCs) in a rat model of glaucoma. Elevated intraocular pressure (IOP) was induced in adult rats by injecting microspheres into the anterior chamber. AA was intravitreally injected into glaucomatous rats. RGC densities were analyzed by evaluating surviving RGC number of the retinal flatmounts and retinal sections, and the apoptotic cell number were evaluated by analyzing retinal sections. RGC function was assessed by measuring the photopic negative response (PhNR). Retinal Bcl-2, Bax, and cleaved caspase-3 expression were determined using a Simple Western System, real-time PCR and immunofluorescence staining. AA reduced the loss of RGCs and decreased the apoptotic RGC number. AA exerted neuroprotective effects and ameliorated retinal dysfunction in impaired RGCs in a rat model of glaucoma. AA protected RGCs by upregulating the expression of the antiapoptotic protein Bcl-2 and downregulating the expression of the pro-apoptotic proteins Bax and caspase-3. This study has provided important evidence indicating that AA may be a potential therapeutic agent for glaucoma.
Collapse
Affiliation(s)
- Wanjing Huang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Fengjuan Gao
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Fangyuan Hu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Jiancheng Huang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, China
| | - Min Wang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Ping Xu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Rong Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Junyi Chen
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Xinghuai Sun
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Shenghai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| |
Collapse
|
22
|
Joshi NR, Ly E, Viswanathan S. Intensity response function of the photopic negative response (PhNR): effect of age and test-retest reliability. Doc Ophthalmol 2017; 135:1-16. [PMID: 28508299 DOI: 10.1007/s10633-017-9591-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/03/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE To assess the effect of age and test-retest reliability of the intensity response function of the full-field photopic negative response (PhNR) in normal healthy human subjects. METHODS Full-field electroretinograms (ERGs) were recorded from one eye of 45 subjects, and 39 of these subjects were tested on two separate days with a Diagnosys Espion System (Lowell, MA, USA). The visual stimuli consisted of brief (<5 ms) red flashes ranging from 0.00625 to 6.4 phot cd.s/m2, delivered on a constant 7 cd/m2 blue background. PhNR amplitudes were measured at its trough from baseline (BT) and from the preceding b-wave peak (PT), and b-wave amplitude was measured at its peak from the preceding a-wave trough or baseline if the a-wave was not present. The intensity response data of all three ERG measures were fitted with a generalized Naka-Rushton function to derive the saturated amplitude (V max), semisaturation constant (K) and slope (n) parameters. Effect of age on the fit parameters was assessed with linear regression, and test-retest reliability was assessed with the Wilcoxon signed-rank test and Bland-Altman analysis. Holm's correction was applied to account for multiple comparisons. RESULTS V max of BT was significantly smaller than that of PT and b-wave, and the V max of PT and b-wave was not significantly different from each other. The slope parameter n was smallest for BT and the largest for b-wave and the difference between the slopes of all three measures were statistically significant. Small differences observed in the mean values of K for the different measures did not reach statistical significance. The Wilcoxon signed-rank test indicated no significant differences between the two test visits for any of the Naka-Rushton parameters for the three ERG measures, and the Bland-Altman plots indicated that the mean difference between test and retest measurements of the different fit parameters was close to zero and within 6% of the average of the test and retest values of the respective parameters for all three ERG measurements, indicating minimal bias. While the coefficient of reliability (COR, defined as 1.96 times the standard deviation of the test and retest difference) of each fit parameter was more or less comparable across the three ERG measurements, the %COR (COR normalized to the mean test and retest measures) was generally larger for BT compared to both PT and b-wave for each fit parameter. The Naka-Rushton fit parameters did not show statistically significant changes with age for any of the ERG measures when corrections were applied for multiple comparisons. However, the V max of BT demonstrated a weak correlation with age prior to correction for multiple comparisons, and the effect of age on this parameter showed greater significance when the measure was expressed as a ratio of the V max of b-wave from the same subject. CONCLUSION V max of the BT amplitude measure of PhNR at the best was weakly correlated with age. None of the other parameters of the Naka-Rushton fit to the intensity response data of either the PhNR or the b-wave showed any systematic changes with age. The test-retest reliability of the fit parameters for PhNR BT amplitude measurements appears to be lower than those of the PhNR PT and b-wave amplitude measurements.
Collapse
Affiliation(s)
- Nabin R Joshi
- College of Optometry, State University of New York, 33 West 42nd Street, New York, NY, 10036, USA
| | - Emma Ly
- Southern California College of Optometry, Marshall B. Ketchum University, Fullerton, CA, USA
| | - Suresh Viswanathan
- College of Optometry, State University of New York, 33 West 42nd Street, New York, NY, 10036, USA.
| |
Collapse
|
23
|
Comparing three different modes of electroretinography in experimental glaucoma: diagnostic performance and correlation to structure. Doc Ophthalmol 2017; 134:111-128. [PMID: 28243926 DOI: 10.1007/s10633-017-9578-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE To compare diagnostic performance and structure-function correlations of multifocal electroretinogram (mfERG), full-field flash ERG (ff-ERG) photopic negative response (PhNR) and transient pattern-reversal ERG (PERG) in a non-human primate (NHP) model of experimental glaucoma (EG). METHODS At baseline and after induction of chronic unilateral IOP elevation, 43 NHP had alternating weekly recordings of retinal nerve fiber layer thickness (RNFLT) by spectral domain OCT (Spectralis) and retinal function by mfERG (7F slow-sequence stimulus, VERIS), ff-ERG (red 0.42 log cd-s/m2 flashes on blue 30 scotopic cd/m2 background, LKC UTAS-E3000), and PERG (0.8° checks, 99% contrast, 100 cd/m2 mean, 5 reversals/s, VERIS). All NHP were followed at least until HRT-confirmed optic nerve head posterior deformation, most to later stages. mfERG responses were filtered into low- and high-frequency components (LFC, HFC, >75 Hz). Peak-to-trough amplitudes of LFC features (N1, P1, N2) and HFC RMS amplitudes were measured and ratios calculated for HFC:P1 and N2:P1. ff-ERG parameters included A-wave (at 10 ms), B-wave (trough-to-peak) and PhNR (baseline-to-trough) amplitudes as well as PhNR:B-wave ratio. PERG parameters included P50 and N95 amplitudes as well as N95:P50 ratio and N95 slope. Diagnostic performance of retinal function parameters was compared using the area under the receiver operating characteristic curve (A-ROC) to discriminate between EG and control eyes. Correlations to RNFLT were compared using Steiger's test. RESULTS Study duration was 15 ± 8 months. At final follow-up, structural damage in EG eyes measured by RNFLT ranged from 9% above baseline (BL) to 58% below BL; 29/43 EG eyes (67%) and 0/43 of the fellow control eyes exhibited significant (>7%) loss of RNFLT from BL. Using raw parameter values, the largest A-ROC findings for mfERG were: HFC (0.82) and HFC:P1 (0.90); for ff-ERG: PhNR (0.90) and PhNR:B-wave (0.88) and for PERG: P50 (0.64) and N95 (0.61). A-ROC increased when data were expressed as % change from BL, but the pattern of results persisted. At 95% specificity, the diagnostic sensitivity of mfERG HFC:P1 ratio was best, followed by PhNR and PERG. The correlation to RNFLT was stronger for mfERG HFC (R = 0.65) than for PhNR (R = 0.59) or PERG N95 (R = 0.36), (p = 0.20, p = 0.0006, respectively). The PhNR flagged a few EG eyes at the final time point that had not been flagged by mfERG HFC or PERG. CONCLUSIONS Diagnostic performance and structure-function correlation were strongest for mfERG HFC as compared with ff-ERG PhNR or PERG in NHP EG.
Collapse
|
24
|
Van Alstine AW, Viswanathan S. Test-retest reliability of the multifocal photopic negative response. Doc Ophthalmol 2016; 134:25-36. [PMID: 28035520 DOI: 10.1007/s10633-016-9569-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/20/2016] [Indexed: 11/26/2022]
Abstract
PURPOSE To assess the test-retest reliability of the multifocal photopic negative response (mfPhNR) of normal human subjects. METHODS Multifocal electroretinograms were recorded from one eye of 61 healthy adult subjects on two separate days using a Visual Evoked Response Imaging System software version 4.3 (EDI, San Mateo, California). The visual stimulus delivered on a 75-Hz monitor consisted of seven equal-sized hexagons each subtending 12° of visual angle. The m-step exponent was 9, and the m-sequence was slowed to include at least 30 blank frames after each flash. Only the first slice of the first-order kernel was analyzed. The mfPhNR amplitude was measured at a fixed time in the trough from baseline (BT) as well as at the same fixed time in the trough from the preceding b-wave peak (PT). Additionally, we also analyzed BT normalized either to PT (BT/PT) or to the b-wave amplitude (BT/b-wave). The relative reliability of test-retest differences for each test location was estimated by the Wilcoxon matched-pair signed-rank test and intraclass correlation coefficients (ICC). Absolute test-retest reliability was estimated by Bland-Altman analysis. RESULTS The test-retest amplitude differences for neither of the two measurement techniques were statistically significant as determined by Wilcoxon matched-pair signed-rank test. PT measurements showed greater ICC values than BT amplitude measurements for all test locations. For each measurement technique, the ICC value of the macular response was greater than that of the surrounding locations. The mean test-retest difference was close to zero for both techniques at each of the test locations, and while the coefficient of reliability (COR-1.96 times the standard deviation of the test-retest difference) was comparable for the two techniques at each test location when expressed in nanovolts, the %COR (COR normalized to the mean test and retest amplitudes) was superior for PT than BT measurements. The ICC and COR were comparable for the BT/PT and BT/b-wave ratios and were better than the ICC and COR for BT but worse than PT. CONCLUSION mfPhNR amplitude measured at a fixed time in the trough from the preceding b-wave peak (PT) shows greater test-retest reliability when compared to amplitude measurement from baseline (BT) or BT amplitude normalized to either the PT or b-wave amplitudes.
Collapse
Affiliation(s)
| | - Suresh Viswanathan
- College of Optometry, State University of New York, 33 West 42nd Street, New York, NY, 10036, USA.
| |
Collapse
|