1
|
Ahmad F, Ma L, Wei W, Liu Y, Hakim I, Daugherty A, Mujahid S, Radin AA, Chua MS, So S. Identification and validation of microtubule depolymerizing agent, CYT997, as a potential drug candidate for hepatocellular carcinoma. Liver Int 2023; 43:2794-2807. [PMID: 37833852 DOI: 10.1111/liv.15756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a typically fatal malignancy with limited treatment options and poor survival rates, despite recent FDA approvals of newer treatment options. We aim to address this unmet need by using a proprietary computational drug discovery platform that identifies drug candidates with the potential to advance rapidly and successfully through preclinical studies. METHODS We generated an in silico model of HCC biology to identify the top 10 small molecules with predicted efficacy. The most promising candidate, CYT997, was tested for its in vitro effects on cell viability and cell death, colony formation, cell cycle changes, and cell migration/invasion in HCC cells. We used an HCC patient-derived xenograft (PDX) mouse model to assess its in vivo efficacy. RESULTS CYT997 was significantly more cytotoxic against HCC cells than against primary human hepatocytes, and sensitized HCC cells to sorafenib. It arrested cell cycle at the G2/M phase with associated up-regulations of p21, p-MEK1/2, p-ERK, and down-regulation of cyclin B1. Cell apoptosis and senescence-like morphology were also observed. CYT997 inhibited HCC cell migration and invasion, and down-regulated the expressions of acetylated tubulins, β-tubulin, glypican-3 (GPC3), β-catenin, and c-Myc. In vivo, CYT997 (20 mg/kg, three times weekly by oral gavage) significantly inhibited PDX growth, while being non-toxic to mice. Immunohistochemistry confirmed the down-regulation of GPC3, c-Myc, and Ki-67, supporting its anti-proliferative effect. CONCLUSION CYT997 is a potentially efficacious and non-toxic drug candidate for HCC therapy. Its ability to down-regulate GPC3, β-catenin, and c-Myc highlights a novel mechanism of action.
Collapse
Affiliation(s)
- Faiz Ahmad
- Asian Liver Center, Department of Surgery, School of Medicine, Stanford, California, USA
| | - Li Ma
- Asian Liver Center, Department of Surgery, School of Medicine, Stanford, California, USA
| | - Wei Wei
- Asian Liver Center, Department of Surgery, School of Medicine, Stanford, California, USA
| | - Yi Liu
- Asian Liver Center, Department of Surgery, School of Medicine, Stanford, California, USA
| | - Isaac Hakim
- Aria Pharmaceuticals, Palo Alto, California, USA
| | | | - Sana Mujahid
- Aria Pharmaceuticals, Palo Alto, California, USA
| | | | - Mei-Sze Chua
- Asian Liver Center, Department of Surgery, School of Medicine, Stanford, California, USA
| | - Samuel So
- Asian Liver Center, Department of Surgery, School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Zhu P, Li T, Li Q, Gu Y, Shu Y, Hu K, Chen L, Peng X, Peng J, Hao L. Mechanism and Role of Endoplasmic Reticulum Stress in Osteosarcoma. Biomolecules 2022; 12:1882. [PMID: 36551309 PMCID: PMC9775044 DOI: 10.3390/biom12121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor, often occurring in children and adolescents. The etiology of most patients is unclear, and the current conventional treatment methods are chemotherapy, radiotherapy, and surgical resection. However, the sensitivity of osteosarcoma to radiotherapy and chemotherapy is low, and the prognosis is poor. The development of new and useful treatment strategies for improving patient survival is an urgent need. It has been found that endoplasmic reticulum (ER) stress (ERS) affects tumor angiogenesis, invasion, etc. By summarizing the literature related to osteosarcoma and ERS, we found that the unfolded protein response (UPR) pathway activated by ERS has a regulatory role in osteosarcoma proliferation, apoptosis, and chemoresistance. In osteosarcoma, the UPR pathway plays an important role by crosstalk with autophagy, oxidative stress, and other pathways. Overall, this article focuses on the relationship between ERS and osteosarcoma and reviews the potential of drugs or gene targets associated with ERS for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Peijun Zhu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Ting Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qingqing Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yawen Gu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yuan Shu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Kaibo Hu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jie Peng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
3
|
Wang Z, Yin F, Xu J, Zhang T, Wang G, Mao M, Wang Z, Sun W, Han J, Yang M, Jiang Y, Hua Y, Cai Z. CYT997(Lexibulin) induces apoptosis and autophagy through the activation of mutually reinforced ER stress and ROS in osteosarcoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:44. [PMID: 30704503 PMCID: PMC6357486 DOI: 10.1186/s13046-019-1047-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/16/2019] [Indexed: 11/18/2022]
Abstract
Background Osteosarcoma (OS) is a common malignant cancer in children and adolescents and has a cure rate that has not improved in the last two decades. CYT997 (lexibulin) is a novel potent microtubule-targeting agent with various anticancer activities, such as proliferation inhibition, vascular disruption, and cell cycle arrest and apoptosis induction, in multiple cancers. However, the direct cytotoxic mechanisms of CYT997 have not yet been fully characterized. Methods We evaluated apoptosis and autophagy in human osteosarcomas after treatment with CYT997 and investigated the underlying mechanisms. To explore relationships, we used the reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC), PERK inhibitor GSK2606414, ERO1 inhibitor EN460 and mitochondrial targeted protection peptide elamipretide. BALB/c-nu mice were inoculated with 143B tumor cells to investigate the in vivo effect of CYT997. Results We explored the efficacy and mechanism of CYT997 in osteosarcoma (OS) in vitro and in vivo and demonstrated that CYT997 potently suppresses cell viability and induces apoptosis and autophagy. CYT997 triggered production of ROS and exerted lethal effects via endoplasmic reticulum (ER) stress in OS cells. NAC attenuated these effects. The PERK inhibitor GSK2606414, which can block the ER stress pathway, reduced ROS production and enhanced cell viability. Moreover, activation of ERO1 in the ER stress pathway was responsible for inducing ROS production. ROS produced by the mitochondrial pathway also aggravate ER stress. Protection of mitochondria can reduce apoptosis and autophagy. Finally, CYT997 prominently reduced tumor growth in vivo. Conclusions This study suggests that CYT997 induces apoptosis and autophagy in OS cells by triggering mutually enhanced ER stress and ROS and may thus be a promising agent against OS. Electronic supplementary material The online version of this article (10.1186/s13046-019-1047-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zongyi Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Fei Yin
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Jing Xu
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Tao Zhang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Ming Mao
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Zhuoying Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Wei Sun
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Jing Han
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Mengkai Yang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Yafei Jiang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China.
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China.
| |
Collapse
|
4
|
The therapeutic potential of cell cycle targeting in multiple myeloma. Oncotarget 2017; 8:90501-90520. [PMID: 29163849 PMCID: PMC5685770 DOI: 10.18632/oncotarget.18765] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/11/2017] [Indexed: 12/15/2022] Open
Abstract
Proper cell cycle progression through the interphase and mitosis is regulated by coordinated activation of important cell cycle proteins (including cyclin-dependent kinases and mitotic kinases) and several checkpoint pathways. Aberrant activity of these cell cycle proteins and checkpoint pathways results in deregulation of cell cycle progression, which is one of the key hallmarks of cancer. Consequently, intensive research on targeting these cell cycle regulatory proteins identified several candidate small molecule inhibitors that are able to induce cell cycle arrest and even apoptosis in cancer cells. Importantly, several of these cell cycle regulatory proteins have also been proposed as therapeutic targets in the plasma cell malignancy multiple myeloma (MM). Despite the enormous progress in the treatment of MM the past 5 years, MM still remains most often incurable due to the development of drug resistance. Deregulated expression of the cyclins D is observed in virtually all myeloma patients, emphasizing the potential therapeutic interest of cyclin-dependent kinase inhibitors in MM. Furthermore, other targets have also been identified in MM, such as microtubules, kinesin motor proteins, aurora kinases, polo-like kinases and the anaphase promoting complex/cyclosome. This review will provide an overview of the cell cycle proteins and checkpoint pathways deregulated in MM and discuss the therapeutic potential of targeting proteins or protein complexes involved in cell cycle control in MM.
Collapse
|
5
|
Banerjee S, Hwang DJ, Li W, Miller DD. Current Advances of Tubulin Inhibitors in Nanoparticle Drug Delivery and Vascular Disruption/Angiogenesis. Molecules 2016; 21:molecules21111468. [PMID: 27827858 PMCID: PMC6272853 DOI: 10.3390/molecules21111468] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 01/05/2023] Open
Abstract
Extensive research over the last decade has resulted in a number of highly potent tubulin polymerization inhibitors acting either as microtubule stabilizing agents (MSAs) or microtubule destabilizing agents (MDAs). These inhibitors have potent cytotoxicity against a broad spectrum of human tumor cell lines. In addition to cytotoxicity, a number of these tubulin inhibitors have exhibited abilities to inhibit formation of new blood vessels as well as disrupt existing blood vessels. Tubulin inhibitors as a vascular disrupting agents (VDAs), mainly from the MDA family, induce rapid tumor vessel occlusion and massive tumor necrosis. Thus, tubulin inhibitors have become increasingly popular in the field of tumor vasculature. However, their pharmaceutical application is halted by a number of limitations including poor solubility and toxicity. Thus, recently, there has been considerable interests in the nanoparticle drug delivery of tubulin inhibitors to circumvent those limitations. This article reviews recent advances in nanoparticle based drug delivery for tubulin inhibitors as well as their tumor vasculature disruption properties.
Collapse
Affiliation(s)
- Souvik Banerjee
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| |
Collapse
|
6
|
Chen X, Yang C, Xu Y, Zhou H, Liu H, Qian W. The microtubule depolymerizing agent CYT997 effectively kills acute myeloid leukemia cells via activation of caspases and inhibition of PI3K/Akt/mTOR pathway proteins. Exp Ther Med 2013; 6:299-304. [PMID: 24137178 PMCID: PMC3786882 DOI: 10.3892/etm.2013.1161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/07/2013] [Indexed: 12/22/2022] Open
Abstract
The orally active microtubule-depolymerizing agent CYT997 is potently cytotoxic to a variety of tumors in vitro and in vivo. However, the effects of this agent on acute myeloid leukemia (AML) cells and its mechanisms are unknown. The present study demonstrated that CYT997 effectively inhibited the growth of AML cells in vitro. Treatment of AML cells with CYT997 resulted in G2/M phase cell cycle arrest, and induced apoptosis through the activation of extrinsic and intrinsic apoptotic pathways. Furthermore, CYT997 induced cell death in CD123+ leukemia cells and significantly reduced leukemia colony formation. CYT997 was also demonstrated to exert dual effects on the expression of PI3K/Akt and mechanistic target of rampamycin (mTOR) signaling pathway proteins. Therefore, CTY997, used alone or in combination with chemotherapy, may represent a promising approach for the treatment of AML.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Hematology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015
| | | | | | | | | | | |
Collapse
|
7
|
Feng R, Li S, Lu C, Andreas C, Stolz DB, Mapara MY, Lentzsch S. Targeting the microtubular network as a new antimyeloma strategy. Mol Cancer Ther 2011; 10:1886-96. [PMID: 21825007 DOI: 10.1158/1535-7163.mct-11-0234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We identified nocodazole as a potent antimyeloma drug from a drug screening library provided by the Multiple Myeloma Research Foundation. Nocodazole is a benzimidazole that was originally categorized as a broad-spectrum anthelmintic drug with antineoplastic properties. We found that nocodazole inhibited growth and induced apoptosis of primary and multiresistant multiple myeloma cells cultured alone and in the presence of bone marrow stromal cells. Nocodazole caused cell-cycle prophase and prometaphase arrest accompanied by microtubular network disarray. Signaling studies indicated that increased expression of Bim protein and reduced X-linked inhibitor of apoptosis protein and Mcl-1(L) levels were involved in nocodazole-induced apoptosis. Further investigation showed Bcl-2 phosphorylation as a critical mediator of cell death, triggered by the activation of c-jun-NH(2) kinase (JNK) instead of p38 kinase or extracellular signal-regulated kinases. Treatment with JNK inhibitor decreased Bcl-2 phosphorylation and subsequently reduced nocodazole-induced cell death. Nocodazole combined with dexamethasone significantly inhibited myeloma tumor growth and prolonged survival in a human xenograft mouse model. Our studies show that nocodazole has potent antimyeloma activity and that targeting the microtubular network might be a promising new treatment approach for multiple myeloma.
Collapse
Affiliation(s)
- Rentian Feng
- Division of Hematology/Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Monaghan KA, Khong T, Burns CJ, Spencer A. The novel JAK inhibitor CYT387 suppresses multiple signalling pathways, prevents proliferation and induces apoptosis in phenotypically diverse myeloma cells. Leukemia 2011; 25:1891-9. [PMID: 21788946 DOI: 10.1038/leu.2011.175] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Janus kinases (JAKs) are involved in various signalling pathways exploited by malignant cells. In multiple myeloma (MM), the interleukin-6/JAK/signal transducers and activators of transcription (IL-6/JAK/STAT) pathway has been the focus of research for a number of years and IL-6 has an established role in MM drug resistance. JAKs therefore make a rational drug target for anti-MM therapy. CYT387 is a novel, orally bioavailable JAK1/2 inhibitor, which has recently been described. This preclinical evaluation of CYT387 for treatment of MM demonstrated that CYT387 was able to prevent IL-6-induced phosphorylation of STAT3 and greatly decrease IL-6- and insulin-like growth factor-1-induced phosphorylation of AKT and extracellular signal-regulated kinase in human myeloma cell lines (HMCL). CYT387 inhibited MM proliferation in a time- and dose-dependent manner in 6/8 HMCL, and this was not abrogated by the addition of exogenous IL-6 (3/3 HMCL). Cell cycling was inhibited with a G(2)/M accumulation of cells, and apoptosis was induced by CYT387 in all HMCL tested (3/3). CYT387 synergised in killing HMCL when used in combination with the conventional anti-MM therapies melphalan and bortezomib. Importantly, apoptosis was also induced in primary patient MM cells (n=6) with CYT387 as a single agent, and again synergy was seen when combined with conventional therapies.
Collapse
Affiliation(s)
- K A Monaghan
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
9
|
Singh AV, Bandi M, Raje N, Richardson P, Palladino MA, Chauhan D, Anderson KC. A novel vascular disrupting agent plinabulin triggers JNK-mediated apoptosis and inhibits angiogenesis in multiple myeloma cells. Blood 2011; 117:5692-700. [PMID: 21454451 PMCID: PMC3110026 DOI: 10.1182/blood-2010-12-323857] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/24/2011] [Indexed: 12/19/2022] Open
Abstract
Previous studies have established a role of vascular-disrupting agents as anti- cancer agents. Plinabulin is a novel vascular-disrupting agent that exhibits potent interruption of tumor blood flow because of the disruption of tumor vascular endothelial cells, resulting in tumor necrosis. In addition, plinabulin exerts a direct action on tumor cells, resulting in apoptosis. In the present study, we examined the anti-multiple myeloma (MM) activity of plinabulin. We show that low concentrations of plinabulin exhibit a potent antiangiogenic action on vascular endothelial cells. Importantly, plinabulin also induces apoptotic cell death in MM cell lines and tumor cells from patients with MM, associated with mitotic growth arrest. Plinabulin-induced apoptosis is mediated through activation of caspase-3, caspase-8, caspase-9, and poly(ADP-ribose) polymerase cleavage. Moreover, plinabulin triggered phosphorylation of stress response protein JNK, as a primary target, whereas blockade of JNK with a biochemical inhibitor or small interfering RNA strategy abrogated plinabulin-induced mitotic block or MM cell death. Finally, in vivo studies show that plinabulin was well tolerated and significantly inhibited tumor growth and prolonged survival in a human MM.1S plasmacytoma murine xenograft model. Our study therefore provides the rationale for clinical evaluation of plinabulin to improve patient outcome in MM.
Collapse
Affiliation(s)
- Ajita V Singh
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|