1
|
Luo T, Zhang FX, Zhao K, Gao HY, Zhang SG, Wang L, Dou GF, Liu T, Yu M, Zhan YQ, Chen H, Yang XM, Li CY. Preclinical Pharmacokinetics, Tissue Distribution, and Primary Safety Evaluation of Indo5, a Novel Selective Inhibitor of c-Met and Trks. Front Pharmacol 2021; 12:711126. [PMID: 34447310 PMCID: PMC8383318 DOI: 10.3389/fphar.2021.711126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
The compound [3-(1H-benzimidazol-2-methylene)-5-(2-methylphenylaminosulfo)-2-indolone], known as Indo5, is a novel selective inhibitor of c-Met and Trks, and it is a promising anticancer candidate against hepatocellular carcinoma (HCC). Assessing the pharmacokinetic properties, tissue distribution, and toxicity of Indo5 is critical for its medicinal evaluation. A series of sensitive and specific liquid chromatography-tandem mass spectrometry methods were developed and validated to determine the concentration of Indo5 in rat plasma and tissue homogenates. These methods were then applied to investigate the pharmacokinetics and tissue distribution of Indo5 in rats. After intravenous injection of Indo5, the maximum concentration (Cmax) and the time at which Cmax was reached (Tmax) were 1,565.3 ± 286.2 ng/ml and 1 min, respectively. After oral administration, Cmax and Tmax were 54.7 ± 10.4 ng/ml and 2.0 ± 0.48 h, respectively. We calculated the absolute oral bioavailability of Indo5 in rats to be 1.59%. Following intravenous injection, the concentrations of Indo5 in various tissues showed the following order: liver > kidney ≈ heart > lung ≈ large intestine ≈ small intestine ≈ stomach > spleen > brain ≈ testes; hence, Indo5 distributed highest in the liver and could not cross the blood–brain or blood–testes barriers. Continuous injection of Indo5 for 21 days did not lead to liver injury, considering unchanged ALT and AST levels, normal histological architecture of the liver, and normal number and frequencies of immune cells in the liver, indicating a very low toxicity of Indo5 in vivo. Collectively, our findings provide a comprehensive understanding of the biological actions of Indo5 in vivo and further support its development as an antitumor treatment for HCC patients.
Collapse
Affiliation(s)
- Teng Luo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Beijing Institute of Radiation Medicine, Beijing, China.,Institute of NBC Defence, Beijing, China
| | - Fei-Xiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Ke Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Hui-Ying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | | | - Lin Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Gui-Fang Dou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ting Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yi-Qun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xiao-Ming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Pharmaceutical Formulations with P-Glycoprotein Inhibitory Effect as Promising Approaches for Enhancing Oral Drug Absorption and Bioavailability. Pharmaceutics 2021; 13:pharmaceutics13071103. [PMID: 34371794 PMCID: PMC8309061 DOI: 10.3390/pharmaceutics13071103] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023] Open
Abstract
P-glycoprotein (P-gp) is crucial in the active transport of various substrates with diverse structures out of cells, resulting in poor intestinal permeation and limited bioavailability following oral administration. P-gp inhibitors, including small molecule drugs, natural constituents, and pharmaceutically inert excipients, have been exploited to overcome P-gp efflux and enhance the oral absorption and bioavailability of many P-gp substrates. The co-administration of small molecule P-gp inhibitors with P-gp substrates can result in drug–drug interactions and increased side effects due to the pharmacological activity of these molecules. On the other hand, pharmaceutically inert excipients, including polymers, surfactants, and lipid-based excipients, are safe, pharmaceutically acceptable, and are not absorbed from the gut. Notably, they can be incorporated in pharmaceutical formulations to enhance drug solubility, absorption, and bioavailability due to the formulation itself and the P-gp inhibitory effects of the excipients. Different formulations with inherent P-gp inhibitory activity have been developed. These include micelles, emulsions, liposomes, solid lipid nanoparticles, polymeric nanoparticles, microspheres, dendrimers, and solid dispersions. They can bypass P-gp by different mechanisms related to their properties. In this review, we briefly introduce P-gp and P-gp inhibitors, and we extensively summarize the current development of oral drug delivery systems that can bypass and inhibit P-gp to improve the oral absorption and bioavailability of P-gp substrates. Since many drugs are limited by P-gp-mediated efflux, this review is helpful for designing suitable formulations of P-gp substrates to enhance their oral absorption and bioavailability.
Collapse
|
3
|
Oda CMR, Silva JDO, Fernandes RS, Braga AV, Machado RDR, Coelho MDM, Cassali GD, Reis DC, de Barros ALB, Leite EA. Encapsulating paclitaxel in polymeric nanomicelles increases antitumor activity and prevents peripheral neuropathy. Biomed Pharmacother 2020; 132:110864. [PMID: 33254426 DOI: 10.1016/j.biopha.2020.110864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
Paclitaxel (PTX) has a great clinical significance as an antitumor drug, although several side effects are strongly dose-limiting. In this way, we prepared a PTX-loaded 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] polymeric micelles (PM/PTX) in an attempt to improve safety and effectiveness of conventional PTX formulation (CrEL/EtOH/PTX). In this study, we evaluated from both formulations: stability after dilution, hemocompatibility, cellular uptake, acute toxicity in healthy mice, antitumor activity, and toxicity after multiple-dose treatment. PM/PTX appeared to be more stable than CrEL/EtOH/PTX after dilution. PM/PTX did not exhibit hemolytic activity (values <1%), even at high concentrations. In vitro cellular uptake study indicated that polymeric micelles were able to deliver more PTX (5.8 %) than CrEL/EtOH (2.7 %) to 4T1 cells. In the acute toxicity evaluation in healthy mice, CrEL/EtOH/PTX (single dose of 20 mg/kg) induced peripheral neuropathy, which was not observed in PM/PTX group. Similar results were observed after tumor-bearing mice received a multiple-dose regimen (seven doses of 10 mg/kg). Worth mentioning, we also evaluated vehicles, and CrEL/EtOH alone was not capable of inducing neuropathic pain. Besides, PM/PTX exhibited a higher antitumor activity with an inhibition ratio approximately 1.5-fold higher than CrEL/EtOH/PTX group. This study suggested that PM/PTX is safer than CrEL/EtOH/PTX, and was able to improve the antitumor effectiveness in a 4T1 breast cancer model.
Collapse
Affiliation(s)
- Caroline Mari Ramos Oda
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana de Oliveira Silva
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Renata Salgado Fernandes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Alysson Vinícius Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Renes de Resende Machado
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio de Matos Coelho
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Biological Science Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Diego Carlos Reis
- Department of General Pathology, Biological Science Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - André Luís Branco de Barros
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine Amaral Leite
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Al-Kandari BM, Al-Soraj MH, Hedaya MA. Dual Formulation and Interaction Strategies to Enhance the Oral Bioavailability of Paclitaxel. J Pharm Sci 2020; 109:3386-3393. [PMID: 32745564 DOI: 10.1016/j.xphs.2020.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
A self-microemulsifying drug delivery system (SMEDDS) was developed to enhance Paclitaxel (PTX) solubility and membrane permeability, thus improve its bioavailability. Pre-formulation studies were performed to optimize PTX-SMEDDS formulation. Then, in vitro characteristics of the formulation were determined and PTX oral absorption was investigated in rabbits. The optimized PTX-SMEDDS showed emulsification time of 31 ± 4 s, droplet size of 19.4 ± 0.5 nm, poly-dispersibility index of 0.35 ± 0.08, percentage transmittance after dilution of 99 ± 0.02%, zeta potential of 36.82 ± 1.8 mv, cloud point of 78 ± 0.5 °C and infinite dilution capability. The formulation maintained its physical and chemical stability during storage at 4 °C for three months. Oral administration of 10 mg/kg of 1.5% w/w PTX-loaded SMEDDS to rabbits increased PTX bioavailability by 4.5 fold in comparison to untreated PTX suspension. While when the rabbits received 1.5% w/w PTX-loaded SMEDDS after pretreated with 1 dose and 2 doses of cyclosporine A, PTX bioavailability increased by 4.4 and 7.8 fold, respectively. This indicates that the combined effect of the SMEDDS formulation in addition to pretreatment with P-gp and CYP3A4 inhibitor, can improve the oral bioavailability of poorly soluble and poorly permeable drugs such as PTX in rabbits.
Collapse
Affiliation(s)
| | | | - Mohsen A Hedaya
- Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University.
| |
Collapse
|
5
|
Mathiyalagan R, Wang C, Kim YJ, Castro-Aceituno V, Ahn S, Subramaniyam S, Simu SY, Jiménez-Pérez ZE, Yang DC, Jung SK. Preparation of Polyethylene Glycol-Ginsenoside Rh1 and Rh2 Conjugates and Their Efficacy against Lung Cancer and Inflammation. Molecules 2019; 24:E4367. [PMID: 31795352 PMCID: PMC6930446 DOI: 10.3390/molecules24234367] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Low solubility and tumor-targeted delivery of ginsenosides to avoid off-target cytotoxicity are challenges for clinical trials. In the present study, we report on a methodology for the synthesis of polyethylene glycol (PEG)-ginsenoside conjugates through a hydrolysable ester bond using the hydrophilic polymer polyethylene glycol with the hydrophobic ginsenosides Rh1 and Rh2 to enhance water solubility and passive targeted delivery. The resulting conjugates were characterized by 1H nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectroscopy (FT-IR). 1H NMR revealed that the C-6 and C-3 sugar hydroxyl groups of Rh1 and Rh2 were esterified. The conjugates showed spherical shapes that were monitored by field-emission transmission electron microscopy (FE-TEM), and the average sizes of the particles were 62 ± 5.72 nm and 134 ± 8.75 nm for PEG-Rh1and PEG-Rh2, respectively (measured using a particle size analyzer). Owing to the hydrophilic enhancing properties of PEG, PEG-Rh1 and PEG-Rh2 solubility was greatly enhanced compared to Rh1 and Rh2 alone. The release rates of Rh1 and Rh2 were increased in lower pH conditions (pH 5.0), that for pathophysiological sites as well as for intracellular endosomes and lysosomes, compared to normal-cell pH conditions (pH 7.4). In vitro cytotoxicity assays showed that the PEG-Rh1conjugates had greater anticancer activity in a human non-small cell lung cancer cell line (A549) compared to Rh1 alone, whereas PEG-Rh2 showed lower cytotoxicity in lung cancer cells. On the other hand, both PEG-Rh1 and PEG-Rh2 showed non-cytotoxicity in a nondiseased murine macrophage cell line (RAW 264.7) compared to free Rh1 and Rh2, but PEG-Rh2 exhibited increased efficacy against inflammation by greatly inhibiting nitric oxide production. Thus, the overall conclusion of our study is that PEG conjugation promotes the properties of Rh1 for anticancer and Rh2 for inflammation treatments. Depends on the disease models, they could be potential drug candidates for further studies.
Collapse
Affiliation(s)
- Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (R.M.); (S.Y.S.); (Z.E.J.-P.)
| | - Chao Wang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (C.W.); (Y.J.K.); (V.C.-A.); (S.A.); (S.S.)
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Yeon Ju Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (C.W.); (Y.J.K.); (V.C.-A.); (S.A.); (S.S.)
| | - Verónica Castro-Aceituno
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (C.W.); (Y.J.K.); (V.C.-A.); (S.A.); (S.S.)
| | - Sungeun Ahn
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (C.W.); (Y.J.K.); (V.C.-A.); (S.A.); (S.S.)
| | - Sathiyamoorthy Subramaniyam
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (C.W.); (Y.J.K.); (V.C.-A.); (S.A.); (S.S.)
- Department of Biotechnology, Dr.N.G.P., Arts and Science College, Coimbatore 641048, Tamil Nadu, India
| | - Shakina Yesmin Simu
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (R.M.); (S.Y.S.); (Z.E.J.-P.)
| | - Zuly Elizabeth Jiménez-Pérez
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (R.M.); (S.Y.S.); (Z.E.J.-P.)
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (R.M.); (S.Y.S.); (Z.E.J.-P.)
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (C.W.); (Y.J.K.); (V.C.-A.); (S.A.); (S.S.)
| | - Seok-Kyu Jung
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (C.W.); (Y.J.K.); (V.C.-A.); (S.A.); (S.S.)
| |
Collapse
|
6
|
Cui W, Zhao H, Wang C, Chen Y, Luo C, Zhang S, Sun B, He Z. Co-encapsulation of docetaxel and cyclosporin A into SNEDDS to promote oral cancer chemotherapy. Drug Deliv 2019; 26:542-550. [PMID: 31090467 PMCID: PMC6534241 DOI: 10.1080/10717544.2019.1616237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Self-nanoemulsifying drug delivery system (SNEDDS) have been considered as a promising platform for oral delivery of many BCS (biopharmaceutics classification system) class IV drugs, such as docetaxel (DTX). However, oral chemotherapy with DTX is also restricted by its active P-glycoprotein (P-gp) efflux and hepatic first-pass metabolism. To address these challenges, we developed a novel SNEDDS co-loaded with DTX and cyclosporine A (CsA) to achieve effective inhibition of P-gp efflux and P450 enzyme metabolization, improving oral bioavailability of DTX. The SNEDDS showed uniform droplet size of about 30 nm. Additionally, the prepared SNEDDS exhibited a sequential drug release trend of CsA prior to DTX. The intestinal experiments confirmed that the membrane permeability of DTX was significantly increased in the whole intestinal tract, especially in the jejunum segment. Furthermore, the oral bioavailability of co-loaded SNEDDS was 9.2-fold and 3.4-fold higher than DTX solution and DTX SNEDDS, respectively. More importantly, it exhibited a remarkable antitumor efficacy with a reduced toxicity compared with intravenously administered DTX solution. In summary, DTX-CsA co-loaded SNEDDS is a promising platform to facilitate oral docetaxel-based chemotherapy.
Collapse
Affiliation(s)
- Weiping Cui
- a Department of Pharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Hanqing Zhao
- b School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Chen Wang
- b School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Yao Chen
- a Department of Pharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Cong Luo
- a Department of Pharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Shenwu Zhang
- a Department of Pharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Bingjun Sun
- a Department of Pharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Zhonggui He
- a Department of Pharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P. R. China
| |
Collapse
|
7
|
Wang X, Guo Y, Qiu L, Wang X, Li T, Han L, Ouyang H, Xu W, Chu K. Preparation and evaluation of carboxymethyl chitosan-rhein polymeric micelles with synergistic antitumor effect for oral delivery of paclitaxel. Carbohydr Polym 2018; 206:121-131. [PMID: 30553305 DOI: 10.1016/j.carbpol.2018.10.096] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/10/2018] [Accepted: 10/27/2018] [Indexed: 01/07/2023]
Abstract
An amphiphilic carboxymethyl chitosan-rhein (CR) conjugate was prepared, characterized, and evaluated as a potential carrier material for oral delivery of paclitaxel (PTX). CR conjugate self-assembled in aqueous environment into CR polymeric micelles (CR PMs). The drug loading capacity and entrapment efficiency of PTX-loaded CR PMs were 35.24 ± 1.58% and 86.99 ± 12.26%, respectively. Pharmacokinetic results indicate that PTX-loaded CR PMs could significantly enhance the oral bioavailability of PTX. Confocal imaging of intestinal sections verified many of CR PMs were absorbed as whole through the intestinal membrane. The cytotoxicity assays in Caco-2 cells and in vivo antitumor efficacy showed that PTX-loaded CR PMs had a stronger antitumor efficacy. A synergistic antitumor effect between CR conjugate and PTX was proven in MCF-7 cells and antitumor efficacy studies. The investigation of CR conjugate developed in this study showed that CR PMs are promising for oral delivery of water-insoluble antitumor drugs.
Collapse
Affiliation(s)
- Xiaoying Wang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yangli Guo
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Liangzhen Qiu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaying Wang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Lifeng Han
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Huizhi Ouyang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wei Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Kedan Chu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
8
|
Safety against nephrotoxicity in paclitaxel treatment: Oral nanocarrier as an effective tool in preclinical evaluation with marked in vivo antitumor activity. Regul Toxicol Pharmacol 2017; 91:179-189. [PMID: 29080846 DOI: 10.1016/j.yrtph.2017.10.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 10/18/2017] [Accepted: 10/22/2017] [Indexed: 12/16/2022]
Abstract
Oral paclitaxel (PTXL) formulations freed from cremophor® EL (CrEL) is always in utmost demand by the cancerous patients due to toxicities associated with the currently marketed formulation. In our previous investigation [Int. J. Pharm. 2014; 460:131], we have developed an oral oil based nanocarrier for the lipophilic drug, PTXL to target bioavailability issue and patient compliance. Here, we report in vivo antitumor activity and 28-day sub-chronic toxicity of the developed PTXL nanoemulsion. It was observed that the apoptotic potential of oral PTXL nanoemulsion significantly inhibited the growth of solid tumor (59.2 ± 7.17%; p < 0.001) without causing any explicit toxicity. The 6.5 mg/kg and 3 mg/kg oral PTXL nanoemulsion dose did not cause any notable alteration in haematological, biochemical/structural characteristics during 28-day sub-chronic toxicity studies in the experimental mice. Whereas, the toxicity of 12.8 mg/kg body weight dose showed decrease in RBC, haemoglobin and neutrophil counts. In contrast, marketed PTXL (Taxol®) was found to be comparatively more toxic to the experimental animals. Taxol® treatment resulted glomerulonephritis in histopathological examination, which could be correlated with increased level of creatinine and associated nephrotoxicity. This investigations conclude that the developed oral nanoemulsion presents a viable therapeutics bio-system to step towards clinical application as well as substitute CrEL based PTXL formulations.
Collapse
|
9
|
Wei Y, Pu X, Zhao L. Preclinical studies for the combination of paclitaxel and curcumin in cancer therapy (Review). Oncol Rep 2017; 37:3159-3166. [PMID: 28440434 DOI: 10.3892/or.2017.5593] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/10/2017] [Indexed: 11/05/2022] Open
Abstract
Cancer is one of the most common causes of death and remains the first in China and the second in the US. The common treatments for cancer include surgery, radiation, chemotherapy, targeted therapy and immunotherapy, while chemotherapy remains one of the most important treatments. However, the efficacy of chemotherapy is limited due to drug induced-toxicities and resistance, particularly multiple drug resistance (MDR). Therefore, discovery and development of novel therapeutic drugs and/or combination therapy are urgently needed to reduce toxicity and improve efficacy. Paclitaxel has been widely used to treat various cancers including cervical, breast, ovarian, brain, bladder, prostate, liver and lung cancers. However, its therapeutic efficacy is limited and MDR is a major obstacle. Recently, numerous preclinical studies have shown that the combination of paclitaxel and curcumin may be an ideal strategy to reverse MDR and synergistically improve their therapeutic efficacy in cancer therapy. This review mainly focuses on the current development and progress of the combination of paclitaxel and curcumin in cancer therapy preclinically.
Collapse
Affiliation(s)
- Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646099, P.R. China
| | - Xinlin Pu
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, P.R. China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646099, P.R. China
| |
Collapse
|
10
|
Pathak K, Sharma V, Sharma M. Optimization, in vitro cytotoxicity and penetration capability of deformable nanovesicles of paclitaxel for dermal chemotherapy in Kaposi sarcoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1671-83. [PMID: 26360303 DOI: 10.3109/21691401.2015.1080169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although much research has been published on ways to overcome the low oral bioavailability of paclitaxel, exploration of novel drug delivery systems that can target paclitaxel deep in to the dermal areas in AIDS-related Kaposi sarcoma (KS) have not yet been reported. Our aim was to develop deformable nanovesicles of paclitaxel capable of being used in dermal chemotherapy, especially deep into the dermal areas of AIDS related KS. Deformable nanovesicular formulations (TS1-TS15) composed of soya lecithin and span80 were prepared by the rotary evaporation sonication method within the constraints of our Box-Behnken design. The formulations were subjected to vesicle characterization and ex vivo permeation. The optimized vesicular suspension was formulated as a gel and assessed for in vitro cytotoxicity and penetration characteristics by confocal laser scanning microscopy (CLSM). TS9 with vesicle size characteristics of 185.76 ± 2.15 nm, zeta potential of -23.2 mV, deformability index = 138.02 and cumulative drug permeation of 89.80 ± 1.84% was identified as the optimized formulation. TEM revealed spherical vesicles with firm boundaries that were stable at 4 °C. TS9 was developed as carbopol 934P gel (TG) and compared with the control gel (CG) made with the pure drug (paclitaxel). TG showed significantly higher (p < 0.05) in vitro drug permeation and flux compared to the CG. In vitro cytotoxicity study on KSY-1 cell lines revealed higher IC50 (≤17) for TS against IC50 ≤19 for TG. CLSM confirmed the penetrating potential of transfersomes via TG to the dermal layers of skin, the proposed target site. Conclusively, deformable nonovesicles of paclitaxel appear as a feasible alternative to the conventional formulations of paclitaxel in the management of AIDS-related KS.
Collapse
Affiliation(s)
- Kamla Pathak
- a Department of Pharmaceutics , Rajiv Academy for Pharmacy , N.H. #2, Delhi-Mathura Road, P.O. Chhatikara , Mathura , Uttar Pradesh , India
| | - Vijay Sharma
- a Department of Pharmaceutics , Rajiv Academy for Pharmacy , N.H. #2, Delhi-Mathura Road, P.O. Chhatikara , Mathura , Uttar Pradesh , India
| | - Meenu Sharma
- a Department of Pharmaceutics , Rajiv Academy for Pharmacy , N.H. #2, Delhi-Mathura Road, P.O. Chhatikara , Mathura , Uttar Pradesh , India
| |
Collapse
|
11
|
Cai Q, Deng X, Li Z, An D, Shen T, Zhong M. Effects of lipid vehicle and P-glycoprotein inhibition on the mesenteric lymphatic transport of paclitaxel in unconscious, lymph duct-cannulated rats. Drug Deliv 2014; 23:147-53. [PMID: 24786483 DOI: 10.3109/10717544.2014.907841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qingqing Cai
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, P.R. China and
| | - Xinxian Deng
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, P.R. China
| | - Zhongdong Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, P.R. China and
| | - Dianyun An
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, P.R. China
| | - Teng Shen
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, P.R. China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, P.R. China and
| |
Collapse
|
12
|
Calleja P, Espuelas S, Corrales L, Pio R, Irache JM. Pharmacokinetics and antitumor efficacy of paclitaxel-cyclodextrin complexes loaded in mucus-penetrating nanoparticles for oral administration. Nanomedicine (Lond) 2014; 9:2109-21. [PMID: 24471503 DOI: 10.2217/nnm.13.199] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The authors report a novel approach for enhancing the oral absorption of paclitaxel (PTX) by encapsulation in poly(anhydride) nanoparticles (NPs) containing cyclodextrins and poly(ethylene glycol). MATERIALS & METHODS Formulations were prepared using the solvent displacement method. Subsequently, pharmacokinetics and organ distribution assays were evaluated after oral administration into C57BL/6J mice. In addition, antitumor efficacy studies were performed in a subcutaneous tumor model of Lewis lung carcinoma. RESULTS PTX-loaded NPs displayed sizes between 190-300 nm. Oral NPs achieved drug plasma levels for at least 24 h, with an oral bioavailability of 55-80%. Organ distribution studies revealed that PTX, orally administered in NPs, underwent a similar distribution to intravenous Taxol(®) (Bristol-Myers Squibb, NJ, USA). For in vivo antitumor assays, oral strategy maintained a slower tumor growth than intravenous Taxol. CONCLUSION PTX orally administered in poly(anhydride) NPs, combined with cyclodextrins and poly(ethylene glycol), displayed sustained plasma levels and significant antitumor effect in a syngenic tumor model of carcinoma in mice.
Collapse
Affiliation(s)
- Patricia Calleja
- Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Navarra, Calle de Irunlarrea, 1, 31080, Pamplona, Spain
| | | | | | | | | |
Collapse
|
13
|
Choudhury H, Gorain B, Karmakar S, Biswas E, Dey G, Barik R, Mandal M, Pal TK. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform. Int J Pharm 2014; 460:131-43. [DOI: 10.1016/j.ijpharm.2013.10.055] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 12/28/2022]
|
14
|
Stuurman FE, Nuijen B, Beijnen JH, Schellens JHM. Oral anticancer drugs: mechanisms of low bioavailability and strategies for improvement. Clin Pharmacokinet 2013; 52:399-414. [PMID: 23420518 DOI: 10.1007/s40262-013-0040-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of oral anticancer drugs has increased during the last decade, because of patient preference, lower costs, proven efficacy, lack of infusion-related inconveniences, and the opportunity to develop chronic treatment regimens. Oral administration of anticancer drugs is, however, often hampered by limited bioavailability of the drug, which is associated with a wide variability. Since most anticancer drugs have a narrow therapeutic window and are dosed at or close to the maximum tolerated dose, a wide variability in the bioavailability can have a negative impact on treatment outcome. This review discusses mechanisms of low bioavailability of oral anticancer drugs and strategies for improvement. The extent of oral bioavailability depends on many factors, including release of the drug from the pharmaceutical dosage form, a drug's stability in the gastrointestinal tract, factors affecting dissolution, the rate of passage through the gut wall, and the pre-systemic metabolism in the gut wall and liver. These factors are divided into pharmaceutical limitations, physiological endogenous limitations, and patient-specific limitations. There are several strategies to reduce or overcome these limitations. First, pharmaceutical adjustment of the formulation or the physicochemical characteristics of the drug can improve the dissolution rate and absorption. Second, pharmacological interventions by combining the drug with inhibitors of transporter proteins and/or pre-systemic metabolizing enzymes can overcome the physiological endogenous limitations. Third, chemical modification of a drug by synthesis of a derivative, salt form, or prodrug could enhance the bioavailability by improving the absorption and bypassing physiological endogenous limitations. Although the bioavailability can be enhanced by various strategies, the development of novel oral products with low solubility or cell membrane permeability remains cumbersome and is often unsuccessful. The main reasons are unacceptable variation in the bioavailability and high investment costs. Furthermore, novel oral anticancer drugs are frequently associated with toxic effects including unacceptable gastrointestinal adverse effects. Therefore, compliance is often suboptimal, which may negatively influence treatment outcome.
Collapse
Affiliation(s)
- Frederik E Stuurman
- Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
15
|
Agrawal S, Giri TK, Tripathi DK, . A, Alexander A. A Review on Novel Therapeutic Strategies for the Enhancement of Solubility for Hydrophobic Drugs through Lipid and Surfactant Based Self Micro Emulsifying Drug Delivery System: A Novel Approach. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajdd.2012.143.183] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|