1
|
Park M, Kim J, Kim T, Kim S, Park W, Ha KS, Cho SH, Won MH, Lee JH, Kwon YG, Kim YM. REDD1 is a determinant of low-dose metronomic doxorubicin-elicited endothelial cell dysfunction through downregulation of VEGFR-2/3 expression. Exp Mol Med 2021; 53:1612-1622. [PMID: 34697389 PMCID: PMC8568908 DOI: 10.1038/s12276-021-00690-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
Low-dose metronomic chemotherapy (LDMC) inhibits tumor angiogenesis and growth by targeting tumor-associated endothelial cells, but the molecular mechanism has not been fully elucidated. Here, we examined the functional role of regulated in development and DNA damage responses 1 (REDD1), an inhibitor of mammalian target of rapamycin complex 1 (mTORC1), in LDMC-mediated endothelial cell dysfunction. Low-dose doxorubicin (DOX) treatment induced REDD1 expression in cultured vascular and lymphatic endothelial cells and subsequently repressed the mRNA expression of mTORC1-dependent translation of vascular endothelial growth factor receptor (Vegfr)-2/3, resulting in the inhibition of VEGF-mediated angiogenesis and lymphangiogenesis. These regulatory effects of DOX-induced REDD1 expression were additionally confirmed by loss- and gain-of-function studies. Furthermore, LDMC with DOX significantly suppressed tumor angiogenesis, lymphangiogenesis, vascular permeability, growth, and metastasis in B16 melanoma-bearing wild-type but not Redd1-deficient mice. Altogether, our findings indicate that REDD1 is a crucial determinant of LDMC-mediated functional dysregulation of tumor vascular and lymphatic endothelial cells by translational repression of Vegfr-2/3 transcripts, supporting the potential therapeutic properties of REDD1 in highly progressive or metastatic tumors.
Collapse
Affiliation(s)
- Minsik Park
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Joohwan Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Taesam Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Suji Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Wonjin Park
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Kwon-Soo Ha
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Sung Hwan Cho
- grid.412010.60000 0001 0707 9039Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Moo-Ho Won
- grid.412010.60000 0001 0707 9039Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Jeong-Hyung Lee
- grid.412010.60000 0001 0707 9039Department of Biochemistry, Kangwon National University, Chuncheon, Gangwon-Do 24341 Republic of Korea
| | - Young-Guen Kwon
- grid.15444.300000 0004 0470 5454Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Young-Myeong Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea ,grid.412010.60000 0001 0707 9039Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do 24341 Republic of Korea
| |
Collapse
|
2
|
Cazzaniga ME, Cordani N, Capici S, Cogliati V, Riva F, Cerrito MG. Metronomic Chemotherapy. Cancers (Basel) 2021; 13:cancers13092236. [PMID: 34066606 PMCID: PMC8125766 DOI: 10.3390/cancers13092236] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The present article reviews the state of the art of metronomic chemotherapy use to treat the principal types of cancers, namely breast, non-small cell lung cancer and colorectal ones, and of the most recent progresses in understanding the underlying mechanisms of action. Areas of novelty, in terms of new regimens, new types of cancer suitable for Metronomic chemotherapy (mCHT) and the overview of current ongoing trials, along with a critical review of them, are also provided. Abstract Metronomic chemotherapy treatment (mCHT) refers to the chronic administration of low doses chemotherapy that can sustain prolonged, and active plasma levels of drugs, producing favorable tolerability and it is a new promising therapeutic approach in solid and in hematologic tumors. mCHT has not only a direct effect on tumor cells, but also an action on cell microenvironment, by inhibiting tumor angiogenesis, or promoting immune response and for these reasons can be considered a multi-target therapy itself. Here we review the state of the art of mCHT use in some classical tumour types, such as breast and no small cell lung cancer (NSCLC), see what is new regarding most recent data in different cancer types, such as glioblastoma (GBL) and acute myeloid leukemia (AML), and new drugs with potential metronomic administration. Finally, a look at the strategic use of mCHT in the context of health emergencies, or in low –and middle-income countries (LMICs), where access to adequate healthcare is often not easy, is mandatory, as we always need to bear in in mind that equity in care must be a compulsory part of our medical work and research.
Collapse
Affiliation(s)
- Marina Elena Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza (MB), Italy;
- Phase 1 Research Centre, ASST-Monza (MB), 20900 Monza, Italy; (S.C.); (V.C.)
- Correspondence: (M.E.C.); (M.G.C.); Tel.: +39-0392-339-037 (M.E.C.)
| | - Nicoletta Cordani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza (MB), Italy;
| | - Serena Capici
- Phase 1 Research Centre, ASST-Monza (MB), 20900 Monza, Italy; (S.C.); (V.C.)
| | - Viola Cogliati
- Phase 1 Research Centre, ASST-Monza (MB), 20900 Monza, Italy; (S.C.); (V.C.)
| | - Francesca Riva
- Unit of Clinic Oncology, ASST-Monza (MB), 20900 Monza, Italy;
| | - Maria Grazia Cerrito
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza (MB), Italy;
- Correspondence: (M.E.C.); (M.G.C.); Tel.: +39-0392-339-037 (M.E.C.)
| |
Collapse
|
3
|
Vo KT, Karski EE, Nasholm NM, Allen S, Hollinger F, Gustafson WC, Long-Boyle JR, Shiboski S, Matthay KK, DuBois SG. Phase 1 study of sirolimus in combination with oral cyclophosphamide and topotecan in children and young adults with relapsed and refractory solid tumors. Oncotarget 2017; 8:23851-23861. [PMID: 27793021 PMCID: PMC5410349 DOI: 10.18632/oncotarget.12904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022] Open
Abstract
Purpose To determine the maximum tolerated dose (MTD), toxicities, and pharmacodynamics effects of sirolimus combined with oral metronomic topotecan and cyclophosphamide in a pediatric population. Materials and Methods Patients who were 1 to 30 years of age with relapsed/refractory solid tumors (including CNS) were eligible. Patients received daily oral sirolimus and cyclophosphamide (25-50 mg/m2/dose) on days 1-21 and oral topotecan (0.8 mg/m2/dose) on days 1-14 in 28-day cycles. Sirolimus steady-state plasma trough concentrations of 3-7.9 ng/mL and 8-12.0 ng/mL were evaluated, with dose escalation based on a 3+3 phase 1 design. Biomarkers of angiogenesis were also evaluated. Results Twenty-one patients were treated (median age 18 years; range 9-30). Dose-limiting toxicities included myelosuppression, ALT elevation, stomatitis, and hypertriglyceridemia. The MTD was sirolimus with trough goal of 8-12.0 ng/mL; cyclophosphamide 25 mg/m2/dose; and topotecan 0.8 mg/m2/dose. No objective responses were observed. Four patients had prolonged stable disease > 4 cycles (range 4-12). Correlative biomarker analyses demonstrated reductions in thrombospondin-1 (p=0.043) and soluble vascular endothelial growth factor receptor-2 plasma concentrations at 21 days compared to baseline. Conclusions The combination of oral sirolimus, topotecan, and cyclophosphamide was well tolerated and biomarker studies demonstrated modulation of angiogenic pathways with this regimen.
Collapse
Affiliation(s)
- Kieuhoa T Vo
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Erin E Karski
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Nicole M Nasholm
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Shelly Allen
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Fabienne Hollinger
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - W Clay Gustafson
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Janel R Long-Boyle
- Department of Clinical Pharmacy, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Stephen Shiboski
- Department of Epidemiology and Biostatistics, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Katherine K Matthay
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Steven G DuBois
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| |
Collapse
|
4
|
Benson Z, Manjili SH, Habibi M, Guruli G, Toor AA, Payne KK, Manjili MH. Conditioning neoadjuvant therapies for improved immunotherapy of cancer. Biochem Pharmacol 2017; 145:12-17. [PMID: 28803721 DOI: 10.1016/j.bcp.2017.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022]
Abstract
Recent advances in the treatment of melanoma and non-small cell lung cancer (NSCLC) by combining conventional therapies with anti-PD1/PD-L1 immunotherapies, have renewed interests in immunotherapy of cancer. The emerging concept of conventional cancer therapies combined with immunotherapy differs from the classical concept in that it is not simply taking advantage of their additive anti-tumor effects, but it is to use certain therapeutic regimens to condition the tumor microenvironment for optimal response to immunotherapy. To this end, low dose immunogenic chemotherapies, epigenetic modulators and inhibitors of cell cycle progression are potential candidates for rendering tumors highly responsive to immunotherapy. Next generation immunotherapeutics are therefore predicted to be highly effective against cancer, when they are used following appropriate immune modulatory compounds or targeted delivery of tumor cell cycle inhibitors using nanotechnology.
Collapse
Affiliation(s)
- Zachary Benson
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, USA
| | - Saeed H Manjili
- Department of Biomedical Engineering, Virginia Commonwealth University School of Engineering, USA
| | - Mehran Habibi
- Department of Surgery, The Johns Hopkins School of Medicine, USA
| | - Georgi Guruli
- Division of Urology, Department of Surgery, Virginia Commonwealth University School of Medicine, USA; Massey Cancer Center, USA
| | - Amir A Toor
- Massey Cancer Center, USA; Bone Marrow Transplant Program, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, USA
| | - Kyle K Payne
- Translational Tumor Immunology Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Masoud H Manjili
- Massey Cancer Center, USA; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, USA.
| |
Collapse
|
5
|
Denies S, Cicchelero L, de Rooster H, Daminet S, Polis I, Van de Maele I, Sanders NN. Immunological and angiogenic markers during metronomic temozolomide and cyclophosphamide in canine cancer patients. Vet Comp Oncol 2016; 15:594-605. [PMID: 26961119 DOI: 10.1111/vco.12203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/24/2015] [Accepted: 11/05/2015] [Indexed: 12/01/2022]
Abstract
Metronomic chemotherapy stimulates the immune response via depletion of regulatory T cells (Tregs) and suppresses angiogenesis by modulating the secretion of thrombospondin-1 (TSP-1) and vascular endothelial growth factor (VEGF). In this study, blood was collected from 10 healthy dogs and from 30 canine cancer patients before and 2 and 4 weeks after treatment with metronomic temozolomide (6.6 mg m-2 ), cyclophosphamide (12.5 mg m-2 ) or cyclophosphamide and temozolomide. The percentage of circulating CD25+ Foxp3+ CD4+ Tregs and the plasma levels of TSP-1 and VEGF were measured. There was a significant difference in the percentage of Tregs between cancer patients and healthy dogs. A significant decrease in Tregs was noted in patients treated with metronomic cyclophosphamide and the combination. Treatment with temozolomide had no effect on the percentage of Tregs. TSP-1 and VEGF levels were, respectively, significantly lower and higher in cancer patients than in healthy dogs, but they were not influenced by any of the studied metronomic treatment regimens.
Collapse
Affiliation(s)
- S Denies
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - L Cicchelero
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - H de Rooster
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - S Daminet
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - I Polis
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - I Van de Maele
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - N N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
6
|
Metastatic breast cancer patients treated with low-dose metronomic chemotherapy with cyclophosphamide and celecoxib: clinical outcomes and biomarkers of response. Cancer Chemother Pharmacol 2015; 77:365-74. [PMID: 26721701 DOI: 10.1007/s00280-015-2947-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/11/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Preclinical results showing therapeutic effect and low toxicity of metronomic chemotherapy with cyclophosphamide (Cy) + celecoxib (Cel) for mammary tumors encouraged its translation to the clinic for treating advanced breast cancer patients (ABCP). PATIENTS AND METHODS A single-arm, mono-institutional, non-randomized, phase II, two-step clinical trial (approved by Bioethics Committee and Argentine Regulatory Authority) was designed. Patients received Cy (50 mg po.d) + Cel (200 mg p.o.bid). Patient eligibility criteria included: ABCP who progressed to anthracyclines, taxanes and capecitabine, ≤4 chemotherapy schemes, with good performance status. Several pro- and anti-angiogenic molecules and cells were determined as biomarkers. Informed consent was signed by all patients. Primary endpoint was clinical benefit (CB). RESULTS Twenty patients were enrolled. Main clinical outcomes were prolonged disease stabilization and partial remission in 10/20 and 1/20 patients, respectively. CB was 55 %, and time to progression (TTP) was 21.1 weeks. Median TTP in patients who achieved CB was 35.6 weeks, and mean overall survival was 44.20 weeks. There were no grade 3/4 toxicities associated with treatment. Circulating endothelial cells (CECs) increased at the time of progression in patients who showed CB (P = 0.014). Baseline CECs and circulating endothelial progenitor cells showed marginal associations with TTP. Serum VEGF decreased (P = 0.050), sVEGFR-2 increased (P = 0.005) and VEGF/sVEGFR-2 ratio decreased during treatment (P = 0.041); baseline VEGF and VEGF/sVEGFR-2 were associated with TTP (P = 0.035 and P = 0.030, respectively), while sVEGFR-2 did not. CONCLUSIONS Treatment was effective, showing low toxicity profile and excellent tolerability. The combination had anti-angiogenic effect. Increased levels of CEC could be useful for detecting progression. Baseline VEGF and VEGF/sVEGFR-2 values could be useful as early predictors of response. TRIAL REGISTRATION ANMAT#4596/09.
Collapse
|
7
|
Cramarossa G, Lee EK, Sivanathan L, Georgsdottir S, Lien K, Santos KD, Chan K, Emmenegger U. A systematic literature analysis of correlative studies in low-dose metronomic chemotherapy trials. Biomark Med 2015; 8:893-911. [PMID: 25224945 DOI: 10.2217/bmm.14.14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Low-dose metronomic (LDM) chemotherapy is a beneficial and very well-tolerated form of chemotherapy utilization characterized by the frequent and uninterrupted administration of low doses of conventional chemotherapeutic agents over prolonged periods of time. While patients resistant to standard maximum tolerated dose (MTD) chemotherapy may still benefit from LDM chemotherapy, there is a lack of predictive markers of response to LDM chemotherapy. We searched the MEDLINE, EMBASE, CENTRAL and PubMed databases for correlative studies conducted as part of LDM chemotherapy trials in order to identify the most promising biomarker candidates. Given the antiangiogenic properties of LDM chemotherapy, angiogenesis-related biomarkers were most commonly studied. However, significant correlations between angiogenesis-related biomarkers and study end points were rare and variable, even so far as biomarkers correlating positively with an end point in some studies and negatively with the same end point in other studies. Pursuing biomarkers outside the angiogenesis field may be more promising.
Collapse
Affiliation(s)
- Gemma Cramarossa
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gnoni A, Silvestris N, Licchetta A, Santini D, Scartozzi M, Ria R, Pisconti S, Petrelli F, Vacca A, Lorusso V. Metronomic chemotherapy from rationale to clinical studies: a dream or reality? Crit Rev Oncol Hematol 2015; 95:46-61. [PMID: 25656744 DOI: 10.1016/j.critrevonc.2015.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/12/2014] [Accepted: 01/13/2015] [Indexed: 12/12/2022] Open
Abstract
Metronomic chemotherapy (MC) refers to the close administration of a chemotherapeutic drug for a long time with no extended drug-free breaks. It was developed to overcome drug resistance, partly by shifting the therapeutic target from tumor cells to the tumor vasculature, with less toxicity. Because of this peculiar way of administration, MC can be viewed as a form of long-term 'maintenance' treatment, and can be integrated with standard and conventional chemotherapy in a "chemo-switching" strategy. Additional mechanisms are involved in its antitumor activity, such as activation of immunity, induction of tumor dormancy, chemotherapy-driven dependency of cancer cells, and the '4D effect'. In this paper we report the most important studies that have analyzed these processes. In fact, a number of preclinical and clinical studies in solid tumors as well as in multiple myeloma, have been reported regarding several chemotherapy drugs which have been proposed with a metronomic schedule: vinorelbine, cyclophosphamide, capecitabine, methotrexate, bevacizumab, etoposide, gemcitabine, sorafenib, everolimus and temozolomide. The results of these studies have been sometimes conflicting, highlighting the need to develop reliable tools for patient selection and stratification. However, a more precise evaluation of MC strategies with the ongoing randomized phase II/III clinical is fundamental, because of the strict correlation of this approach with translational research and target therapy. Moreover, because of the low toxicity of MC, these studies will also help to better evaluate the clinical benefit of this treatment, with a special focus on elderly and low performance status patients.
Collapse
Affiliation(s)
- Antonio Gnoni
- Medical Oncology Unit, Hospital Moscati, Taranto, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, National Cancer Research Centre "Giovanni Paolo II", Bari, Italy
| | | | - Daniele Santini
- Medical Oncology Unit, University Campus Biomedico, Roma, Italy
| | - Mario Scartozzi
- Department of Medical Oncoloy, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - Roberto Ria
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | - Fausto Petrelli
- Medical Oncology Unit, Hospital of Treviglio, Treviglio, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Vito Lorusso
- Medical Oncology Unit, National Cancer Research Centre "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
9
|
André N, Carré M, Pasquier E. Metronomics: towards personalized chemotherapy? Nat Rev Clin Oncol 2014; 11:413-31. [PMID: 24913374 DOI: 10.1038/nrclinonc.2014.89] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Since its inception in 2000, metronomic chemotherapy has undergone major advances as an antiangiogenic therapy. The discovery of the pro-immune properties of chemotherapy and its direct effects on cancer cells has established the intrinsic multitargeted nature of this therapeutic approach. The past 10 years have seen a marked rise in clinical trials of metronomic chemotherapy, and it is increasingly combined in the clinic with conventional treatments, such as maximum-tolerated dose chemotherapy and radiotherapy, as well as with novel therapeutic strategies, such as drug repositioning, targeted agents and immunotherapy. We review the latest advances in understanding the complex mechanisms of action of metronomic chemotherapy, and the recently identified factors associated with disease resistance. We comprehensively discuss the latest clinical data obtained from studies performed in both adult and paediatric populations, and highlight ongoing clinical trials. In this Review, we foresee the future developments of metronomic chemotherapy and specifically its potential role in the era of personalized medicine.
Collapse
Affiliation(s)
- Nicolas André
- Service d'Hématologie & Oncologie Pédiatrique, AP-HM, 264 rue Saint Pierre, 13385 Marseille, France
| | - Manon Carré
- INSERM UMR 911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Eddy Pasquier
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, PO Box 81, Randwick NSW 2031, Australia
| |
Collapse
|
10
|
Perroud HA, Rico MJ, Alasino CM, Queralt F, Mainetti LE, Pezzotto SM, Rozados VR, Scharovsky OG. Safety and therapeutic effect of metronomic chemotherapy with cyclophosphamide and celecoxib in advanced breast cancer patients. Future Oncol 2013; 9:451-62. [PMID: 23469980 DOI: 10.2217/fon.12.196] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Metronomic chemotherapy (MCT), the chronic administration, at regular intervals, of low doses of chemotherapeutic drugs without extended rest periods, allows chronic treatment with therapeutic efficacy and low toxicity. Our preclinical results suggested that combined MCT with cyclophosphamide and celecoxib could inhibit breast cancer growth. The aim of this study was to determine the toxicity, safety and efficacy of oral MCT with cyclophosphamide 50 mg per orem daily and celecoxib 400 mg (200 mg per orem two-times a day) in advanced breast cancer patients. During the first stage of the study, the therapeutic response consisted of prolonged stable disease for ≥24 weeks in six out of 15 (40%) patients with a median duration of 37.5 weeks and a partial response in one out of 15 (response rate: 6.7%) patients lasting 6 weeks. The overall clinical benefit rate was 46.7%. The median time to progression was 14 weeks. Progression-free survival at 24 weeks was 40% and the 1-year overall survival rate was 46.7%. The adverse events were mild (gastric, grade 1; and hematologic, grade 1 or 2). No grade 3 or 4 toxicities were associated with the treatment. Evaluation of patients' quality of life showed no changes during the response period. MCT with cyclophosphamide plus celecoxib is safe and shows a therapeutic effect in advanced breast cancer patients.
Collapse
Affiliation(s)
- Herman A Perroud
- Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Romiti A, Cox MC, Sarcina I, Di Rocco R, D'Antonio C, Barucca V, Marchetti P. Metronomic chemotherapy for cancer treatment: a decade of clinical studies. Cancer Chemother Pharmacol 2013; 72:13-33. [PMID: 23475105 DOI: 10.1007/s00280-013-2125-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
PURPOSE Over the past few years, more and more new selective molecules directed against specific cellular targets have become available for cancer therapy, leading to impressive improvements. In this evolving scenario, a new way of delivering older cytotoxic drugs has also been developing. Many studies demonstrated that several cytotoxic drugs have antiangiogenic properties if administered frequently and at lower doses compared with standard schedules containing maximal tolerated doses (MTD). Such a new strategy, named metronomic chemotherapy, focuses on a different target: the slowly proliferating tumour endothelial cells. About 10 years ago, metronomic chemotherapy was firstly enunciated and hereafter many clinical experiences were published related to almost any cancer disease. This review analyses available studies dealing with metronomic chemotherapy and its combination with several targeted agents in solid tumours. METHODS A computerized literature search of MEDLINE was performed using the following search terms: metronomic OR "continuous low dose" AND chemotherapy AND cancer OR solid tumours. RESULTS Satisfactory results have been achieved in diverse tumour types, such as breast and prostate cancer or paediatric sarcomas. Moreover, many studies have reported that metronomic chemotherapy determined minimal toxicity compared to MTD chemotherapy. Overall, published series on metronomic schedules are very heterogeneous often reporting on retrospective data, while only very few studies were randomized trials. These limitations still prevent to draw definitive conclusions in diverse tumour types. CONCLUSIONS Large well-designed studies are eagerly awaited for confirming the promises of metronomic schedules and their combinations with targeted molecules.
Collapse
Affiliation(s)
- Adriana Romiti
- Department of Oncology, Faculty of Medicine and Psychology, Sapienza University, Sant' Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
12
|
Penel N, Adenis A, Bocci G. Cyclophosphamide-based metronomic chemotherapy: After 10 years of experience, where do we stand and where are we going? Crit Rev Oncol Hematol 2012; 82:40-50. [DOI: 10.1016/j.critrevonc.2011.04.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 04/07/2011] [Accepted: 04/21/2011] [Indexed: 02/08/2023] Open
|