1
|
Greco G, Agafonova A, Cosentino A, Cardullo N, Muccilli V, Puglia C, Anfuso CD, Sarpietro MG, Lupo G. Solid Lipid Nanoparticles Encapsulating a Benzoxanthene Derivative in a Model of the Human Blood-Brain Barrier: Modulation of Angiogenic Parameters and Inflammation in Vascular Endothelial Growth Factor-Stimulated Angiogenesis. Molecules 2024; 29:3103. [PMID: 38999055 PMCID: PMC11243179 DOI: 10.3390/molecules29133103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Lignans, a class of secondary metabolites found in plants, along with their derivatives, exhibit diverse pharmacological activities, including antioxidant, antimicrobial, anti-inflammatory, and antiangiogenic ones. Angiogenesis, the formation of new blood vessels from pre-existing ones, is a crucial process for cancer growth and development. Several studies have elucidated the synergistic relationship between angiogenesis and inflammation in various inflammatory diseases, highlighting a correlation between inflammation and vascular endothelial growth factor (VEGF)-induced angiogenesis. Thus, the identification of novel molecules capable of modulating VEGF effects presents promising prospects for developing therapies aimed at stabilizing, reversing, or even arresting disease progression. Lignans often suffer from low aqueous solubility and, for their use, encapsulation in a delivery system is needed. In this research, a bioinspired benzoxantene has been encapsulated in solid lipid nanoparticles that have been characterized for their pharmacotechnical properties and their thermotropic behavior. The effects of these encapsulated nanoparticles on angiogenic parameters and inflammation in VEGF-induced angiogenesis were evaluated using human brain microvascular endothelial cells (HBMECs) as a human blood-brain barrier model.
Collapse
Affiliation(s)
- Giuliana Greco
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Aleksandra Agafonova
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | - Carmelo Puglia
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Grazia Sarpietro
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
2
|
Redox Status, Estrogen and Progesterone Production by Swine Granulosa Cells Are Impaired by Triclosan. Animals (Basel) 2022; 12:ani12243559. [PMID: 36552479 PMCID: PMC9774123 DOI: 10.3390/ani12243559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Triclosan is a chlorinated biphenolic with a broad spectrum of antiseptic activities used in cosmetics and hygiene products. Continuous exposure can lead to absorption and bioaccumulation of this substance with harmful health effects. In fact, previous studies have shown that Triclosan acts as an endocrine-disrupting chemical on reproductive organs, with consequent negative effects on reproductive physiology. Therefore, to assess potential adverse impacts on fertility, we tested Triclosan on swine granulosa cells, a model of endocrine reproductive cells. We examined its effects on the main features of granulosa cell functions such as cell growth (BrdU incorporation and ATP production) and steroidogenesis (17-β estradiol and progesterone secretion). Moreover, since oxidant−antioxidant balance plays a pivotal role in follicular function, redox status markers (superoxide, hydrogen peroxide and nitric oxide production, enzymatic and non-enzymatic scavenging activity) were studied. Our results show that Triclosan significantly inhibits cell growth (p < 0.001), steroidogenesis (p < 0.001), superoxide and nitric oxide production (p < 0.001), while it increases (p < 0.05) enzymatic defense systems. Collectively, these data suggest a disruption of the main granulosa cell functions, i.e., proliferation and hormone production, as well as an imbalance in redox status. On these bases, we can speculate that Triclosan would impair granulosa cell functions, thus exerting negative effects on reproductive function. Further studies are needed to explore lower Triclosan concentrations and to unravel its mechanisms of action at gene level.
Collapse
|
3
|
Torrisi C, Cardullo N, Muccilli V, Tringali C, Castelli F, Sarpietro MG. Characterization and Interaction with Biomembrane Model of Benzo[k,l]xanthene Lignan Loaded Solid Lipid Nanoparticles. MEMBRANES 2022; 12:membranes12060615. [PMID: 35736322 PMCID: PMC9227282 DOI: 10.3390/membranes12060615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023]
Abstract
Benzo[k,l]xanthene lignans are a group of rare natural products belonging to the class of polyphenols with promising biological activities and are studied as potential chemotherapeutic agents. The lipophilic character of a xanthene core makes these molecules difficult to be used in an aqueous medium, limiting their employment in studies for pharmaceutical applications. To overcome this problem, a drug-delivery system which is able to improve the stability and bioavailability of the compound can be used. In this study, a bioactive benzoxanthene lignan (BXL) has been included in SLN. Unloaded and BXL-loaded SLN have been prepared using the Phase Inversion Temperature method and characterized in terms of size, zeta potential, entrapment efficiency and stability. Differential scanning calorimetry was used to evaluate the thermotropic behavior and ability of SLN to act as carriers for BXL. A biomembrane model, represented by multilamellar vesicles, was used to simulate the interaction of the SLN with the cellular membrane. Unloaded and loaded SLN were incubated with the MLV, and their interactions were evaluated through variations in their calorimetric curves. The results obtained suggest that SLN could be used as a delivery system for BXL.
Collapse
Affiliation(s)
- Cristina Torrisi
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.T.); (F.C.)
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (N.C.); (V.M.); (C.T.)
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (N.C.); (V.M.); (C.T.)
| | - Corrado Tringali
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (N.C.); (V.M.); (C.T.)
| | - Francesco Castelli
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.T.); (F.C.)
| | - Maria Grazia Sarpietro
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.T.); (F.C.)
- Correspondence:
| |
Collapse
|
4
|
Nuzzo G, Senese G, Gallo C, Albiani F, Romano L, d’Ippolito G, Manzo E, Fontana A. Antitumor Potential of Immunomodulatory Natural Products. Mar Drugs 2022; 20:md20060386. [PMID: 35736189 PMCID: PMC9229642 DOI: 10.3390/md20060386] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the leading causes of death globally. Anticancer drugs aim to block tumor growth by killing cancerous cells in order to prevent tumor progression and metastasis. Efficient anticancer drugs should also minimize general toxicity towards organs and healthy cells. Tumor growth can also be successfully restrained by targeting and modulating immune response. Cancer immunotherapy is assuming a growing relevance in the fight against cancer and has recently aroused much interest for its wider safety and the capability to complement conventional chemotherapeutic approaches. Natural products are a traditional source of molecules with relevant potential in the pharmacological field. The huge structural diversity of metabolites with low molecular weight (small molecules) from terrestrial and marine organisms has provided lead compounds for the discovery of many modern anticancer drugs. Many natural products combine chemo-protective and immunomodulant activity, thus offering the potential to be used alone or in association with conventional cancer therapy. In this review, we report the natural products known to possess antitumor properties by interaction with immune system, as well as discuss the possible immunomodulatory mechanisms of these molecules.
Collapse
Affiliation(s)
- Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
- Correspondence: (G.N.); (E.M.); Tel.: +39-081-8675104 (G.N.); +39-081-8675177 (E.M.)
| | - Giuseppina Senese
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Carmela Gallo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Federica Albiani
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Lucia Romano
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Giuliana d’Ippolito
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Emiliano Manzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
- Correspondence: (G.N.); (E.M.); Tel.: +39-081-8675104 (G.N.); +39-081-8675177 (E.M.)
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
- Department of Biology, University of Naples Federico II, Via Cinthia–Bld. 7, 80126 Napoli, Italy
| |
Collapse
|
5
|
Basini G, Bussolati S, Torcianti V, Grasselli F. Perfluorooctanoic Acid (PFOA) Induces Redox Status Disruption in Swine Granulosa Cells. Vet Sci 2022; 9:vetsci9060254. [PMID: 35737306 PMCID: PMC9230600 DOI: 10.3390/vetsci9060254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Perfluorooctanoic acid (PFOA) is employed in the production and processing of several plastic materials, mainly during the production of waterproof fabrics or nonstick cookware. PFOA is identified as a substance of very high concern, as it is classified as a persistent, bioaccumulative, and toxic (PBT) substance because of its persistence in the environment and its potential accumulation in organisms. Thus, safe levels of exposure cannot be established, and PFOA emissions should be minimized. PFOA has recently been linked to several health concerns in humans. In particular, a disruptive effect on redox status homeostasis has been documented, with a potential impairment of normal reproductive function that requires adequate oxidative balance. Therefore, the aim of the present study was to evaluate the effects of PFOA (2, 20, and 200 ng/mL) on ovarian granulosa cells, a model of reproductive cells. The obtained results reveal that PFOA stimulated cell viability (p < 0.05). Regarding the effects on free radical production, O2−, NO, and H2O2 were significantly inhibited (p < 0.05), while the nonenzymatic antioxidant power was not significantly modified. Collectively, the present results deserve attention since free radical molecules play a crucial role in ovarian follicle development leading to a successful ovulation.
Collapse
|
6
|
Basini G, Bussolati S, Andriani L, Grolli S, Ramoni R, Bertini S, Iemmi T, Menozzi A, Berni P, Grasselli F. Nanoplastics impair in vitro swine granulosa cell functions. Domest Anim Endocrinol 2021; 76:106611. [PMID: 33662764 DOI: 10.1016/j.domaniend.2021.106611] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 01/09/2023]
Abstract
Soil, water, and air pollution by plastic represents an issue of great concern since the particles produced by degradation of plastic materials can be ingested by animals and humans, with still uncertain health consequences. As a contribution on this crucial subject, the present work reports an investigation on the in vitro effects of different concentrations of polystyrene nanoplastics (5, 25, and 75 µg/mL) on swine granulosa cells, a model of endocrine reproductive cells. In particular, cell growth (BrDU incorporation and ATP production), steroidogenesis (17-β estradiol and progesterone secretion) and redox status (superoxide and nitric oxide production, enzymatic and non-enzymatic scavenging activity) were studied. Nanoplastics, at the highest concentration, stimulated cell proliferation (P < 0.05), while cell viability resulted unaffected. Steroidogenesis was disrupted (P < 0.05). Both enzymatic and non-enzymatic scavenging activity were increased after exposure at the highest nanoplastic dose (P < 0.05, P < 0.001). Nitric oxide secretion was increased by 25 and 75 µg/mL (P < 0.05) while superoxide generation was stimulated (P < 0.001) only by the highest concentration tested. Taken together, main features of cultured swine granulosa cells resulted affected by exposure to nanoplastics. These results raise concerns since environment nanoplastic contamination can represents a serious threat to animal and human health.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - L Andriani
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - R Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - S Bertini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - T Iemmi
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - A Menozzi
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - P Berni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| |
Collapse
|
7
|
Olgierd B, Kamila Ż, Anna B, Emilia M. The Pluripotent Activities of Caffeic Acid Phenethyl Ester. Molecules 2021; 26:molecules26051335. [PMID: 33801469 PMCID: PMC7958844 DOI: 10.3390/molecules26051335] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE) is a strong antioxidant extracted from honey bee-hive propolis. The mentioned compound, a well-known NF-κB inhibitor, has been used in traditional medicine as a potent anti-inflammatory agent. CAPE has a broad spectrum of biological properties including anti-viral, anti-bacterial, anti-cancer, immunomodulatory, and wound-healing activities. This review characterizes published data about CAPE biological properties and potential therapeutic applications, that can be used in various diseases.
Collapse
Affiliation(s)
- Batoryna Olgierd
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
- Correspondence: or ; Tel.: +48-602-689-347
| | - Żyła Kamila
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Banyś Anna
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Morawiec Emilia
- Department of Microbiology, Faculty of Medicine in Zabrze, University of Technology in Katowice, 40-555 Katowice, Poland;
- GynCentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
- Department of Histology, Cytophysiology and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, 40-555 Katowice, Poland
| |
Collapse
|
8
|
Tumir LM, Zonjić I, Žuna K, Brkanac SR, Jukić M, Huđek A, Durgo K, Crnolatac I, Glavaš-Obrovac L, Cardullo N, Pulvirenti L, Muccilli V, Tringali C, Stojković MR. Synthesis, DNA/RNA-interaction and biological activity of benzo[k,l]xanthene lignans. Bioorg Chem 2020; 104:104190. [PMID: 32919130 DOI: 10.1016/j.bioorg.2020.104190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Interactions of two newly synthesized and six previously reported benzoxanthene lignans (BXLs), analogues of rare natural products, with DNA/RNA, G-quadruplex and HSA were evaluated by a set of spectrophotometric methods. Presence/absence of methoxy and hydroxy groups on the benzoxanthene core and minor modifications at C-1/C-2 side pendants - presence/absence of phenyl ring and presence/absence of methoxy and hydroxy groups on phenyl ring - influenced the fluorescence changes and the binding strength to double-stranded (ds-) and G-quadruplex structures. In general, compounds without phenyl ring showed stronger fluorescence changes upon binding than phenyl-substituted BXLs. On the other hand, BXLs with an unsubstituted phenyl ring showed the best stabilization effects of G-quadruplex. Circular dichroism spectroscopy results suggest mixed binding mode, groove binding and partial intercalation, to ds-DNA/RNA and end-stacking to top or bottom G-tetrads as the main binding modes of BXLs to those targets. All compounds exhibited micromolar binding affinities toward HSA and an increased protein thermal stability. Moderate to strong antiradical scavenging activity was observed for all BXLs with hydroxy groups at C-6, C-9 and C-10 positions of the benzoxanthene core, except for derivative bearing methoxy groups at these positions. BXLs with unsubstituted or low-substituted phenyl ring and one derivative without phenyl ring showed strong growth inhibition of Gram-positive Staphylococcus aureus. All compounds showed moderate to strong tumor cell growth-inhibitory activity and cytotoxicity.
Collapse
Affiliation(s)
- Lidija-Marija Tumir
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Iva Zonjić
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Kristina Žuna
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierrotijeva 6, 10000 Zagreb, Croatia
| | - Sandra Radić Brkanac
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6/III, HR-10 000 Zagreb, Croatia
| | - Marijana Jukić
- Department of Medicinal Chemistry, Biochemistry and Laboratory Medicine, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, HR-31000 Osijek, Croatia
| | - Ana Huđek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierrotijeva 6, 10000 Zagreb, Croatia
| | - Ksenija Durgo
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierrotijeva 6, 10000 Zagreb, Croatia
| | - Ivo Crnolatac
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Biochemistry and Laboratory Medicine, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, HR-31000 Osijek, Croatia
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Luana Pulvirenti
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Marijana Radić Stojković
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
9
|
Basini G, Ragionieri L, Bussolati S, Di Lecce R, Cacchioli A, Dettin M, Cantoni AM, Grolli S, La Bella O, Zamuner A, Grasselli F. Expression and function of the stromal cell-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) in the swine ovarian follicle. Domest Anim Endocrinol 2020; 71:106404. [PMID: 31955063 DOI: 10.1016/j.domaniend.2019.106404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/18/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022]
Abstract
The most characterized stromal cell-derived factor-1 (SDF-1) variants are the isoform α, which is the predominant one but undergoes rapid proteolysis, and the β isoform, which is more resistant. Through the interaction with a specific chemokine receptor called CXCR4, SDF-1 is able to regulate different physiological processes. The aim of this study was to verify the expression and potential functional role of SDF-1 and CXCR4 in the porcine ovary. Firstly, the expression of SDF-1 and its receptor in different ovarian districts was verified for the first time. Thereafter, the effect of SDF-1 β isoform (51-72) fragment on functional parameters, such as proliferation, metabolic activity, redox status, nitric oxide production, and steroidogenic activity, was assessed on granulosa cells collected from follicles. In addition, the potential effect of this protein in vascular events was verified through investigations on porcine aortic (AOC) endothelial cells, such as the production of nitric oxide and viability tests. The proliferation and metabolic activity were not affected by treatment with the cytokine. As regard to steroidogenesis, the peptide stimulated both estrogen (P = 0.049) and progesterone production (P = 0.039). Redox status was affected by the examined substance since superoxide anion was inhibited (P = 0.001), while antioxidant power (P = 0.034), as well as nitric oxide generation, were stimulated (P = 0.034). Tests performed on AOCs showed significant stimulation of nitric oxide production (P = 0.004) by the examined peptide, while cell viability was unaffected. Therefore, the potential role of cytokine in the mechanisms involved in the regulation of follicular function can be hypothesized.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy.
| | - L Ragionieri
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - R Di Lecce
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - A Cacchioli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - M Dettin
- Dipartimento di Ingegneria Industriale, Università di Padova, Via Marzolo, 9, 35131 Padova, Italy
| | - A M Cantoni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - O La Bella
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - A Zamuner
- Dipartimento di Ingegneria Industriale, Università di Padova, Via Marzolo, 9, 35131 Padova, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| |
Collapse
|
10
|
Pacentra A, Grasselli F, Bussolati S, Grolli S, Di Lecce R, Cantoni AM, Basini G. The effect of pathogen-associated molecular patterns on the swine granulosa cells. Theriogenology 2020; 145:207-216. [DOI: 10.1016/j.theriogenology.2019.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 02/02/2023]
|
11
|
Ciccimarra R, Bussolati S, Grasselli F, Grolli S, Paolucci M, Basini G. Potential physiological involvement of nesfatin-1 in regulating swine granulosa cell functions. Reprod Fertil Dev 2020; 32:274-283. [DOI: 10.1071/rd19134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Nesfatin-1 has recently been indicated as a pleiotropic molecule that is primarily involved in the metabolic regulation of reproductive functions acting at hypothalamic level. The aim of this study was to explore the local action of nesfatin-1 in swine ovarian follicles. Nucleobindin 2 (NUCB2) was verified using real-time quantitative polymerase chain reaction in swine granulosa cells from different sized follicles and nesfatin-1 was localised by immunohistochemistry in sections of the whole porcine ovary. The effects of different concentrations of nesfatin-1 on cell growth, steroidogenesis and the redox status of granulosa cells were determined invitro. In addition, the effects of nesfatin-1 were evaluated in an angiogenesis bioassay because vessel growth is essential for ovarian follicle function. Immunohistochemistry revealed intense positivity for nesfatin-1 in swine granulosa cells in follicles at all developmental stages. Expression of the gene encoding the precursor protein NUCB2 was higher in granulosa cells from large rather than from medium and small follicles. Further, nesfatin-1 stimulated cell proliferation and progesterone production and interfered with redox status by modifying nitric oxide production and non-enzyme scavenging activity in granulosa cells from large follicles. Moreover, nesfatin-1 exhibited a stimulatory effect on angiogenesis. This study demonstrates, for the first time, that nesfatin-1 is physiologically present in the swine ovarian follicle, where it may impair granulosa cell functions.
Collapse
|
12
|
Markulin L, Corbin C, Renouard S, Drouet S, Gutierrez L, Mateljak I, Auguin D, Hano C, Fuss E, Lainé E. Pinoresinol-lariciresinol reductases, key to the lignan synthesis in plants. PLANTA 2019; 249:1695-1714. [PMID: 30895445 DOI: 10.1007/s00425-019-03137-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/12/2019] [Indexed: 05/20/2023]
Abstract
This paper provides an overview on activity, stereospecificity, expression and regulation of pinoresinol-lariciresinol reductases in plants. These enzymes are shared by the pathways to all 8-8' lignans derived from pinoresinol. Pinoresinol-lariciresinol reductases (PLR) are enzymes involved in the lignan biosynthesis after the initial dimerization of two monolignols. They catalyze two successive reduction steps leading to the production of lariciresinol or secoisolariciresinol from pinoresinol. Two secoisolariciresinol enantiomers can be synthetized with different fates. Depending on the plant species, these enantiomers are either final products (e.g., in the flaxseed where it is stored after glycosylation) or are the starting point for the synthesis of a wide range of lignans, among which the aryltetralin type lignans are used to semisynthesize anticancer drugs such as Etoposide®. Thus, the regulation of the gene expression of PLRs as well as the possible specificities of these reductases for one reduction step or one enantiomer are key factors to fine-tune the lignan synthesis. Results published in the last decade have shed light on the presence of more than one PLR in each plant and revealed various modes of action. Nevertheless, there are not many results published on the PLRs and most of them were obtained in a limited range of species. Indeed, a number of them deal with wild and cultivated flax belonging to the genus Linum. Despite the occurrence of lignans in bryophytes, pteridophytes and monocots, data on PLRs in these taxa are still missing and indeed the whole diversity of PLRs is still unknown. This review summarizes the data, published mainly in the last decade, on the PLR gene expression, enzymatic activity and biological function.
Collapse
Affiliation(s)
| | | | | | - Samantha Drouet
- Centre Régional de Ressources en Biologie Moléculaire (CRRBM), Université Picardie Jules Verne, 33 rue Saint-Leu, 80039, Amiens, France
| | - Laurent Gutierrez
- Centre Régional de Ressources en Biologie Moléculaire (CRRBM), Université Picardie Jules Verne, 33 rue Saint-Leu, 80039, Amiens, France
| | - Ivan Mateljak
- LBLGC, INRA USC 1328 Université d'Orléans, Orléans, France
| | - Daniel Auguin
- LBLGC, INRA USC 1328 Université d'Orléans, Orléans, France
| | | | - Elisabeth Fuss
- Interfaculty Institute of Biochemistry, Hoppe-Seyler-St. 4, 72076, Tübingen, Germany
| | - Eric Lainé
- LBLGC, INRA USC 1328 Université d'Orléans, Orléans, France.
- LBLGC, INRA USC 1328 Antenne Scientifique Universitaire de Chartres, 21 rue de Loigny, 28000, Chartres, France.
| |
Collapse
|
13
|
Genovese C, Pulvirenti L, Cardullo N, Muccilli V, Tempera G, Nicolosi D, Tringali C. Bioinspired benzoxanthene lignans as a new class of antimycotic agents: synthesis and Candida spp. growth inhibition. Nat Prod Res 2018; 34:1653-1662. [PMID: 30422685 DOI: 10.1080/14786419.2018.1525375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this work we synthetized the bioinspired benzoxanthene lignans (BXLs) 3, 14-22, and the phenazine derivative 23 as potential antimycotic agents. MICs and MFCs against Candida strains were determined. In a preliminary screening, compounds 3, 15, 20, 21, 22 were substantially inactive. Compounds 14 and 17 showed antifungal activity, being able to inhibit the growth of the majority of Candida strains with MIC values in the range 4.6-19.2 µM (14) and 26.0-104.3 µM (17); for three strains, the MICs were lower than those obtained using the antimycotic drug fluconazole. The three BXLs 18, 19 and 23 showed some MIC values lower than that of fluconazole; 18 was also active against two non-albicans Candida strains resistant to fluconazole. Phenazine 23, although active only against one strain (MIC = 1.3 µM), was one order of magnitude more potent than fluconazole. All the BXLs were fungicidal.
Collapse
Affiliation(s)
- Carlo Genovese
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, Catania, Italy
| | - Luana Pulvirenti
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Gianna Tempera
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, Catania, Italy
| | - Daria Nicolosi
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, Catania, Italy
| | - Corrado Tringali
- Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
14
|
Gigante P, Berni M, Bussolati S, Grasselli F, Grolli S, Ramoni R, Basini G. Glyphosate affects swine ovarian and adipose stromal cell functions. Anim Reprod Sci 2018; 195:185-196. [PMID: 29843941 DOI: 10.1016/j.anireprosci.2018.05.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022]
Abstract
Although Glyphosate (GLY) is a widely used pesticide, its effects on ovarian function and stem cell differentiation are still largely unknown. Therefore, as a contribution on this subject, the present work reports an investigation of the in vitro effects of GLY on swine granulosa cells and adipose stromal cells (ASCs). The effect of GLY at different doses (0.2, 4 and 16 μg/mL) was evaluated on granulosa cells growth (BrDU incorporation and ATP production), steroidogenesis (17-β estradiol and progesterone secretion) and redox status (superoxide and nitric oxide production and non-enzymatic scavenging activity). GLY has been shown to inhibit cell growth, 17-β estradiol and non-enzymatic scavenging activity and to increase progesterone and nitric oxide secretion (P < 0.05). In addition, GLY significantly decreased the viability of ASCs (P < 0.001), and inhibited their adipogenic differentiation. These data indicate that GLY alters the main features of granulosa cells and ASCS thus suggesting that GLY could affect both reproductive function and adipose tissues homeostasis.
Collapse
Affiliation(s)
- Paolo Gigante
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Melissa Berni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Simona Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Francesca Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Stefano Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Roberto Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy.
| |
Collapse
|
15
|
Cardullo N, Pulvirenti L, Spatafora C, Musso N, Barresi V, Condorelli DF, Tringali C. Dihydrobenzofuran Neolignanamides: Laccase-Mediated Biomimetic Synthesis and Antiproliferative Activity. JOURNAL OF NATURAL PRODUCTS 2016; 79:2122-2134. [PMID: 27504537 DOI: 10.1021/acs.jnatprod.6b00577] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The biomimetic synthesis of a small library of dihydrobenzofuran neolignanamides (the natural trans-grossamide (4) and the related compounds 21-28) has been carried out through an eco-friendly oxidative coupling reaction mediated by Trametes versicolor laccase. These products, after complete spectroscopic characterization, were evaluated for their antiproliferative activity against Caco-2 (colon carcinoma), MCF-7 (mammary adenocarcinoma), and PC-3 (prostate cancer) human cells, using an MTT bioassay. The racemic neolignamides (±)-21 and (±)-27, in being the most lipophilic in the series, were potently active, with GI50 values comparable to or even lower than that of the positive control 5-FU. The racemates were resolved through chiral HPLC, and the pure enantiomers were subjected to ECD measurements to establish their absolute configurations at C-2 and C-3. All enantiomers showed potent antiproliferative activity, with, in particular, a GI50 value of 1.1 μM obtained for (2R,3R)-21. The effect of (±)-21 on the Caco-2 cell cycle was evaluated by flow cytometry, and it was demonstrated that (±)-21 exerts its antiproliferative activity by inducing cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Nunzio Cardullo
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biochimica Medica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Luana Pulvirenti
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biochimica Medica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Carmela Spatafora
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biochimica Medica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Nicolò Musso
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biochimica Medica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Vincenza Barresi
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biochimica Medica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Daniele Filippo Condorelli
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biochimica Medica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biochimica Medica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| |
Collapse
|
16
|
Ethanol-Extracted Brazilian Propolis Exerts Protective Effects on Tumorigenesis in Wistar Hannover Rats. PLoS One 2016; 11:e0158654. [PMID: 27391589 PMCID: PMC4938237 DOI: 10.1371/journal.pone.0158654] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/16/2016] [Indexed: 11/19/2022] Open
Abstract
The present study was conducted over a course of 104 weeks to estimate the carcinogenicity of ethanol-extracted Brazilian green propolis (EEP). Groups of 50 male and 50 female Wistar Hannover rats, 6-week-old at commencement were exposed to EEP at doses of 0, 0.5 or 2.5% in the diet. Survival rates of 0.5% and 2.5% EEP-treated male and female rats, respectively, were significantly higher than those of respective control groups. Overall histopathological evaluation of neoplasms in rat tissues after 2 years showed no significant increase of tumors or preneoplastic lesions in any organ of animals administered EEP. Significantly lower incidences of pituitary tumors in 0.5% EEP male and 2.5% EEP female groups, malignant lymphoma/leukemia in both 2.5% EEP-treated males and females and total thyroid tumors in 0.5% EEP male group were found. Administration of EEP caused significant decreases of lymphoid hyperplasia of the thymus and lymph nodes in 2.5% EEP-treated rats, tubular cell hyperplasia of kidneys in all EEP groups, and cortical hyperplasia of adrenals in EEP-treated females. In the blood, significant reduction of neutrophils in all EEP-treated males and band neutrophils in 2.5% EEP-treated females was found indicating lower levels of inflammation. Total cholesterol and triglicerides levels were significantly lower in the blood of 2.5% EEP-treated female rats. In conclusion, under the conditions of the 2-year feeding experiment, EEP was not carcinogenic, did not induce significant histopathological changes in any organ, and further exerted anti-inflammatory and antitumorigenic effects resulting in increase of survival of Wistar Hannover rats.
Collapse
|
17
|
Akyol S, Akbas A, Butun I, Toktas M, Ozyurt H, Sahin S, Akyol O. Caffeic acid phenethyl ester as a remedial agent for reproductive functions and oxidative stress-based pathologies of gonads. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2015; 4:187-91. [PMID: 26401405 PMCID: PMC4566781 DOI: 10.5455/jice.20150402062823] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/03/2015] [Indexed: 02/03/2023]
Abstract
In recent years, the studies on the roles of caffeic acid phenethyl ester (CAPE) in several disease models and cell cultures are tremendously growing. It is such a great molecule that was used by ancient times to ameliorate some diseases and nowadays, it is used by modern medicine to test the effectiveness. In this mini-review article, the protection capability of CAPE, as a liposoluble antioxidant and a potent nuclear factor kappa B inhibitor, on oxidative and non-oxidative ovary, and testis damages has been summarized. In view of our laboratory findings/experience and those reported in the hitherto literature, we suggest that CAPE possesses protective effects for pathologies of the reproductive organs induced by untoward effects of harmful molecules such as free oxygen radicals, pesticides, methotrexate, and MK-801 (dizocilpine).
Collapse
Affiliation(s)
- Sumeyya Akyol
- Departments of Medical Biology, Faculty of Turgut Ozal University Medical, Ankara, Turkey ; Department of Biochemistry, Faculty of Gaziosmanpasa University Medical, Tokat, Turkey
| | - Ali Akbas
- Department of Biochemistry, Faculty of Gaziosmanpasa University Medical, Tokat, Turkey
| | - Ilknur Butun
- Department of Biochemistry, Faculty of Gaziosmanpasa University Medical, Tokat, Turkey
| | - Muhsin Toktas
- Department of Anatomy, Faculty of Turgut Ozal University Medical, Ankara, Turkey
| | - Huseyin Ozyurt
- Department of Biochemistry, Faculty of Gaziosmanpasa University Medical, Tokat, Turkey
| | - Semsettin Sahin
- Department of Biochemistry, Faculty of Gaziosmanpasa University Medical, Tokat, Turkey
| | - Omer Akyol
- Department of Biochemistry, Faculty of Hacettepe University Medical, Ankara, Turkey
| |
Collapse
|
18
|
Murtaza G, Sajjad A, Mehmood Z, Shah SH, Siddiqi AR. Possible molecular targets for therapeutic applications of caffeic acid phenethyl ester in inflammation and cancer. J Food Drug Anal 2015; 23:11-18. [PMID: 28911433 PMCID: PMC9351751 DOI: 10.1016/j.jfda.2014.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 01/13/2023] Open
Abstract
Of the various derivatives of caffeic acid, caffeic acid phenethyl ester (CAPE) is a hydrophobic, bioactive polyphenolic ester obtained from propolis extract. The objective in writing this review article was to summarize all published studies on therapeutics of CAPE in inflammation and cancer to extract direction for future research. The possible molecular targets for the action of CAPE, include various transcription factors such as nuclear factor-κB, tissue necrosis factor-α, interleukin-6, cyclooxygenase-2, Nrf2, inducible nitric oxide synthase, nuclear factor of activated T cells, hypoxia-inducible factor-1α, and signal transducers and activators of transcription. Based on the valuable data on its therapeutics in inflammation and cancer, clinical studies of CAPE should also be conducted to explore its toxicities, if any.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan.
| | - Ashif Sajjad
- Institute of Biochemistry, University of Balochistan, Quetta, Pakistan
| | - Zahid Mehmood
- Institute of Biochemistry, University of Balochistan, Quetta, Pakistan
| | - Syed H Shah
- Department of Statistics, University of Balochistan, Quetta, Pakistan
| | - Abdul R Siddiqi
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| |
Collapse
|
19
|
|
20
|
Spatafora C, Barresi V, Bhusainahalli VM, Di Micco S, Musso N, Riccio R, Bifulco G, Condorelli D, Tringali C. Bio-inspired benzo[k,l]xanthene lignans: synthesis, DNA-interaction and antiproliferative properties. Org Biomol Chem 2014; 12:2686-701. [PMID: 24647864 DOI: 10.1039/c3ob42521e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work twelve benzo[k,l]xanthene lignans were synthesized by biomimetic, Mn-mediated oxidative coupling of caffeic esters and amides. These compounds, bearing different flexible pendants at position C1/C2 of the aromatic core, interact with DNA in a dual mode, as confirmed by DF-STD NMR analysis and molecular docking: the planar core acts as a base pair intercalant, whereas the flexible pendants act as minor groove binders. Their antiproliferative activity was evaluated on a panel of six tumor cell lines: HT-29, Caco-2, HCT-116 (human colon carcinoma), H226, A549 (human lung carcinoma), and SH-SY5Y (human neuroblastoma). All compounds under study, except 29, resulted in activity against one or more cell lines, and the markedly lipophilic esters 13 and 28 showed the highest activity. Compound 13 was more active than the anticancer drug 5-fluorouracil (5-FU) towards HCT-116 (colon, GI50 = 3.16 μM) and H226 (lung, GI50 = 4.33 μM) cell lines.
Collapse
Affiliation(s)
- Carmela Spatafora
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, I-95125 Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Basini G, Falasconi I, Bussolati S, Grolli S, Ramoni R, Grasselli F. Isolation of endothelial cells and pericytes from swine corpus luteum. Domest Anim Endocrinol 2014; 48:100-9. [PMID: 24906935 DOI: 10.1016/j.domaniend.2014.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/15/2022]
Abstract
From an angiogenesis perspective, the ovary offers a unique opportunity to study the physiological development of blood vessels. The first purpose of this work was to set up a protocol for the isolation of pig corpus luteum endothelial cells, which were characterized by both morphologic parameters and the expression of typical molecular markers; we also verified their ability to form capillary-like structures in a 3-dimensional matrix, their response to hypoxia and their migration in the presence of vascular endothelial growth factor (VEGF). The effectiveness of our isolation protocol was confirmed by the characteristic "cobblestone shape" of isolated cells at confluence as well as their expression of all the examined endothelial markers. Our data also showed a significant cell production of VEGF and nitric oxide. Isolated endothelial cells were also responsive to hypoxia by increasing the expression and production of VEGF and decreasing that of nitric oxide. In the angiogenesis bioassay, cells displayed the ability of forming capillary-like structures and also exhibited a significant migration in the scratch test. Our data suggest that the isolation of luteal endothelial cells represents a promising tool in experiments designed to clarify the biology of the angiogenic process. Furthermore, we have demonstrated that the isolated population comprises a subset of cells with a multidifferentiative capacity toward the chondrocytic and adipocytic phenotypes. These data suggest the presence of a perivascular or adventitial cell niche in the vascular wall of the corpus luteum populated with cells showing mesenchymal stem cell-like features, as already demonstrated for the adipose tissue and endometrium.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Parma, Italy.
| | - I Falasconi
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Parma, Italy
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Parma, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Parma, Italy
| | - R Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Parma, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|
22
|
Basini G, Spatafora C, Tringali C, Bussolati S, Grasselli F. Effects of a Ferulate-Derived Dihydrobenzofuran Neolignan on Angiogenesis, Steroidogenesis, and Redox Status in a Swine Cell Model. ACTA ACUST UNITED AC 2014; 19:1282-9. [DOI: 10.1177/1087057114536226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the ongoing search for new therapeutic compounds, lignans and neolignans, which are widely distributed in plants, deserve special attention because of their interactions with several biological targets. Searching for potential antiangiogenic agents related to natural lignans/neolignans, we were attracted by a previously studied synthetic dihydrobenzofuran neolignan. We synthesized the compound by means of an eco-friendly, enzyme-mediated biomimetic coupling of the methyl ester of ferulic acid, and the present study was aimed to deeply investigate its effect in angiogenesis bioassays validated in our laboratory. In addition, a previously well-defined granulosa cell model was employed to evaluate the effect of dihydrobenzofuran neolignan on cell viability, steroidogenesis, and redox status. Present data support the antiangiogenic effect of this neolignan. Moreover, we demonstrate that, at least at the highest concentrations tested, dihydrobenzofuran neolignan affects granulosa cell viability and steroidogenesis. In addition, the compound inhibits generation of free radicals and stimulates scavenger enzyme activities. The present data, which are a further deepening of the evaluation of the biological activities of the dihydrobenzofuran lignan in well-defined cell models, are of interest and worthy of special attention.
Collapse
Affiliation(s)
- Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Parma, Italy
| | - Carmela Spatafora
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Simona Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Parma, Italy
| | - Francesca Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|
23
|
Caffeic acid phenethyl ester and therapeutic potentials. BIOMED RESEARCH INTERNATIONAL 2014; 2014:145342. [PMID: 24971312 PMCID: PMC4058104 DOI: 10.1155/2014/145342] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/02/2014] [Accepted: 04/14/2014] [Indexed: 12/13/2022]
Abstract
Caffeic acid phenethyl ester (CAPE) is a bioactive compound of propolis extract. The literature search elaborates that CAPE possesses antimicrobial, antioxidant, anti-inflammatory, and cytotoxic properties. The principal objective of this review article is to sum up and critically assess the existing data about therapeutic effects of CAPE in different disorders. The findings elaborate that CAPE is a versatile therapeutically active polyphenol and an effective adjuvant of chemotherapy for enhancing therapeutic efficacy and diminishing chemotherapy-induced toxicities.
Collapse
|
24
|
Abstract
Propolis, a waxy substance produced by the honeybee, has been adopted as a form of folk medicine since ancient times. It has a wide spectrum of alleged applications including potential anti-infection and anticancer effects. Many of the therapeutic effects can be attributed to its immunomodulatory functions. The composition of propolis can vary according to the geographic locations from where the bees obtained the ingredients. Two main immunopotent chemicals have been identified as caffeic acid phenethyl ester (CAPE) and artepillin C. Propolis, CAPE, and artepillin C have been shown to exert summative immunosuppressive function on T lymphocyte subsets but paradoxically activate macrophage function. On the other hand, they also have potential antitumor properties by different postulated mechanisms such as suppressing cancer cells proliferation via its anti-inflammatory effects; decreasing the cancer stem cell populations; blocking specific oncogene signaling pathways; exerting antiangiogenic effects; and modulating the tumor microenvironment. The good bioavailability by the oral route and good historical safety profile makes propolis an ideal adjuvant agent for future immunomodulatory or anticancer regimens. However, standardized quality controls and good design clinical trials are essential before either propolis or its active ingredients can be adopted routinely in our future therapeutic armamentarium.
Collapse
|
25
|
Phenethyl caffeate benzoxanthene lignan is a derivative of caffeic acid phenethyl ester that induces bystander autophagy in WiDr cells. Mol Biol Rep 2013; 41:85-94. [PMID: 24190489 DOI: 10.1007/s11033-013-2840-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 10/26/2013] [Indexed: 01/11/2023]
Abstract
We recently reported that Phenethyl caffeate benzoxanthene lignan (PCBL), a semisynthetic compound derived from Caffeic Acid Phenethyl Ester (CAPE), induces DNA damage and apoptosis in tumor cells. In this study, we further investigated whether PCBL induces autophagy in WiDr cells. We also analyzed the pathways regulating autophagy and the role of autophagy in PCBL-induced cell death. Our acridine orange staining and LC3 II expression results suggest that PCBL induces autophagosomes in WiDr cells. The levels of LC3 II expression we observed after co-treatment of PCBL with bafilomycin A1 and the reductions in p62 expression we observed after PCBL treatment in WiDr cells demonstrate increased autophagic flux, a reliable indicator of autophagic induction. The increased Beclin 1 expression in PCBL-treated cells and the incapacity of PCBL to induce LC3 II in 3-methyladenine (3-MA)-treated cells we observed suggests that PCBL-induced autophagy is class III PI3-kinase dependent. PCBL did not alter phosphorylation of the mTOR substrate p70 S6 kinase, indicating that PCBL-induced autophagy was not mTOR regulated. Two autophagy related proteins, Atg5 and Atg12, also remained uninduced during PCBL treatment. The increased caspase activity and expression levels of LC3 II and p62 we observed in response to PCBL treatment in primary glioma cells demonstrates that PCBL-induced apoptosis and autophagy were not cell line specific. Pharmacological inhibition of autophagy did not alter the antitumor efficacy of PCBL in WiDr cells. This attests to the bystander nature of PCBL-induced autophagy (in terms of cell death). In toto, these data suggest that PCBL induces a class III kinase dependent, but mTOR independent, bystander mode of autophagy in WiDr cells.
Collapse
|
26
|
Valença I, Morais-Santos F, Miranda-Gonçalves V, Ferreira AM, Almeida-Aguiar C, Baltazar F. Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro. Altern Ther Health Med 2013; 13:184. [PMID: 23870175 PMCID: PMC3725165 DOI: 10.1186/1472-6882-13-184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 07/05/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Propolis is a resin collected by bees from plant buds and exudates, which is further processed through the activity of bee enzymes. Propolis has been shown to possess many biological and pharmacological properties, such as antimicrobial, antioxidant, immunostimulant and antitumor activities. Due to this bioactivity profile, this resin can become an alternative, economic and safe source of natural bioactive compounds.Antitumor action has been reported in vitro and in vivo for propolis extracts or its isolated compounds; however, Portuguese propolis has been little explored. The aim of this work was to evaluate the in vitro antitumor activity of Portuguese propolis on the human colon carcinoma cell line HCT-15, assessing the effect of different fractions (hexane, chloroform and ethanol residual) of a propolis ethanol extract on cell viability, proliferation, metabolism and death. METHODS Propolis from Angra do Heroísmo (Azores) was extracted with ethanol and sequentially fractionated in solvents with increasing polarity, n-hexane and chloroform. To assess cell viability, cell proliferation and cell death, Sulforhodamine B, BrDU incorporation assay and Anexin V/Propidium iodide were used, respectively. Glycolytic metabolism was estimated using specific kits. RESULTS All propolis samples exhibited a cytotoxic effect against tumor cells, in a dose- and time-dependent way. Chloroform fraction, the most enriched in phenolic compounds, appears to be the most active, both in terms of inhibition of viability and cell death. Data also show that this cytotoxicity involves disturbance in tumor cell glycolytic metabolism, seen by a decrease in glucose consumption and lactate production. CONCLUSION Our results show that Portuguese propolis from Angra do Heroísmo (Azores) can be a potential therapeutic agent against human colorectal cancer.
Collapse
|
27
|
Southern Brazilian autumnal propolis shows anti-angiogenic activity: An in vitro and in vivo study. Microvasc Res 2013; 88:1-11. [DOI: 10.1016/j.mvr.2013.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 02/24/2013] [Accepted: 03/17/2013] [Indexed: 02/06/2023]
|
28
|
Vijayakurup V, Carmela S, Carmelo D, Corrado T, Srinivas P, Gopala S. Phenethyl caffeate benzo[kl]xanthene lignan with DNA interacting properties induces DNA damage and apoptosis in colon cancer cells. Life Sci 2012; 91:1336-44. [DOI: 10.1016/j.lfs.2012.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/26/2012] [Accepted: 10/12/2012] [Indexed: 12/31/2022]
|
29
|
Basini G, Bianchi F, Bussolati S, Baioni L, Ramoni R, Grolli S, Conti V, Bianchi F, Grasselli F. Atrazine disrupts steroidogenesis, VEGF and NO production in swine granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 85:59-63. [PMID: 22999709 DOI: 10.1016/j.ecoenv.2012.08.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/08/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
Atrazine is one of the most widely employed herbicides. Due to its environmental persistence, it can be detected in ground and water thus becoming the subject of a serious concern because of its potential endocrine disrupting activity. In particular, several in vitro and in vivo studies point out adverse effects on reproduction. However, these data were mainly collected in the male, while studies on females are lacking. Present work was therefore set up on swine ovarian granulosa cells to investigate the effect of atrazine on steroidogenesis and proliferation. Moreover, since vessel growth is fundamental for reproductive function, we evaluated the herbicide's effect on two of the main angiogenesis signaling molecules, VEGF and NO. Our data show that atrazine markedly interferes with steroidogenesis while it does not modify cell proliferation; in addition, the herbicide has also been found to affect the production of the examined angiogenesis molecules. Collectively, these results indicate for the first time a potential negative effect of atrazine on ovarian functions in the swine species.
Collapse
Affiliation(s)
- Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Akyol S, Ginis Z, Armutcu F, Ozturk G, Yigitoglu MR, Akyol O. The potential usage of caffeic acid phenethyl ester (CAPE) against chemotherapy-induced and radiotherapy-induced toxicity. Cell Biochem Funct 2012; 30:438-43. [PMID: 22431158 DOI: 10.1002/cbf.2817] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 01/26/2012] [Accepted: 02/06/2012] [Indexed: 11/09/2022]
Abstract
Protection of the patients against the side effects of chemotherapy and radiotherapy regimens has attracted increasing interest of clinicians and practitioners. Caffeic acid phenethyl ester (CAPE), which is extracted from the propolis of honeybee hives as an active component, specifically inhibits nuclear factor κB at micromolar concentrations and show ability to stop 5-lipoxygenase-catalysed oxygenation of linoleic acid and arachidonic acid. CAPE has antiinflammatory, antiproliferative, antioxidant, cytostatic, antiviral, antibacterial, antifungal and antineoplastic properties. The purpose of this review is to summarize in vivo and in vitro usage of CAPE to prevent the chemotherapy-induced and radiotherapy-induced damages and side effects in experimental animals and to develop a new approach for the potential usage of CAPE in clinical trial as a protective agent during chemotherapy and radiotherapy regimens.
Collapse
Affiliation(s)
- Sumeyya Akyol
- Department of Biochemistry, Fatih University Medical School, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|