1
|
Dinić J, Podolski-Renić A, Novaković M, Li L, Opsenica I, Pešić M. Plant-Based Products Originating from Serbia That Affect P-glycoprotein Activity. Molecules 2024; 29:4308. [PMID: 39339303 PMCID: PMC11433820 DOI: 10.3390/molecules29184308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Our review paper evaluates the impact of plant-based products, primarily derived from plants from Serbia, on P-glycoprotein (P-gp) activity and their potential in modulating drug resistance in cancer therapy. We focus on the role and regulation of P-gp in cellular physiology and its significance in addressing multidrug resistance in cancer therapy. Additionally, we discuss the modulation of P-gp activity by 55 natural product drugs, including derivatives for some of them, based on our team's research findings since 2011. Specifically, we prospect into sesquiterpenoids from the genera Artemisia, Curcuma, Ferula, Inula, Petasites, and Celastrus; diterpenoids from the genera Salvia and Euphorbia; chalcones from the genera Piper, Glycyrrhiza, Cullen, Artemisia, and Humulus; riccardins from the genera Lunularia, Monoclea, Dumortiera, Plagiochila, and Primula; and diarylheptanoids from the genera Alnus and Curcuma. Through comprehensive analysis, we aim to highlight the potential of natural products mainly identified in plants from Serbia in influencing P-gp activity and overcoming drug resistance in cancer therapy, while also providing insights into future perspectives in this field.
Collapse
Affiliation(s)
- Jelena Dinić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| | - Ana Podolski-Renić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| | - Miroslav Novaković
- Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Liang Li
- Key Laboratory of Bioactive Substance and Function of Natural Medicines, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China;
| | - Igor Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11158 Belgrade, Serbia;
| | - Milica Pešić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| |
Collapse
|
2
|
Sen K, Khan MI, Paul R, Ghoshal U, Asakawa Y. Recent Advances in the Phytochemistry of Bryophytes: Distribution, Structures and Biological Activity of Bibenzyl and Bisbibenzyl Compounds. PLANTS (BASEL, SWITZERLAND) 2023; 12:4173. [PMID: 38140499 PMCID: PMC10747515 DOI: 10.3390/plants12244173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Research on bryophyte phytochemistry has revealed the presence of different phytochemicals like fatty acids, terpenoids, small phenolic molecules, etc. Small phenolic molecules, i.e., bibenzyls (of two aromatic rings) and bisbibenzyls (four aromatic rings), are unique signature molecules of liverworts. The first bisbibenzyls marchantin A and riccardin A were discovered in two consecutive years, i.e., 1982 and 1983, respectively, by Asakawa and coworkers. Since then, about 70 bisbibenzyls have been reported. These molecules are characterized and identified using different spectroscopic techniques and surveyed for different bioactivity and structure-activity relations. Biochemistry is determined by the season, geography, and environment. In this review, quantitative and qualitative information on bibenzyls and bisbibenzyl compounds and their distribution in different liverworts across, geographies along withtraditional to advanced extraction methods, and characterization techniques are summarized. Also, a comprehensive account of characteristic spectra of different bisbibenzyl compounds, their subtypes, and their basic skeleton patterns are compared. A comprehensive table is provided here for the first time presenting the quantity of bibenzyls, bisbenzyls, and their derivatives found in bryophytes, mentioning the spectroscopic data and mass profiles of the compounds. The significance of these compounds in different bioactivities like antibiotic, antioxidative, antitumor, antivenomous, anti-influenza, insect antifeedant, cytotoxic, and anticancerous activities are surveyed and critically enumerated.
Collapse
Affiliation(s)
- Kakali Sen
- Department of Botany, University of Kalyani, Kalyani 741245, India (U.G.)
| | | | - Raja Paul
- Department of Botany, University of Kalyani, Kalyani 741245, India (U.G.)
| | - Utsha Ghoshal
- Department of Botany, University of Kalyani, Kalyani 741245, India (U.G.)
| | - Yoshinori Asakawa
- Institute of Pharmacognosy, Tokushima Bunri University, Tokushima 770-8514, Japan;
| |
Collapse
|
3
|
Mu H, Sun Y, Yuan B, Wang Y. Betulinic acid in the treatment of breast cancer: Application and mechanism progress. Fitoterapia 2023; 169:105617. [PMID: 37479118 DOI: 10.1016/j.fitote.2023.105617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Betulinic acid (BA) is a pentacyclic triterpene compound, which can be obtained by separation, chemical synthesis and biotransformation. BA has excellent biological activities, especially its role in the treatment of breast cancer deserves attention. Its mechanisms mainly include inducing mitochondrial oxidative stress, regulating specific protein (Sp) transcription factors, inhibiting breast cancer metastasis, inhibiting glucose metabolism and NF-κB pathway. In addition, BA can also increase the sensitivity of breast cancer cells to other chemotherapy drugs such as paclitaxel and reduce its toxic side effects. This article reviews the application and possible mechanism of BA in the treatment of breast cancer.
Collapse
Affiliation(s)
- Huijuan Mu
- Department of Drug Clinical Trials, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Yuli Sun
- Department of Hepatobiliary Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Bo Yuan
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Ying Wang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
4
|
Liu G, Jiao H, Wang K, Chang P, Jiao Y. Synthesis and evaluation of folate-mediated targeting and poly (β-amino ester)-mediated pH-responsive delivery system of riccardin D based on the O-carboxymethylated chitosan micelles. Int J Biol Macromol 2023; 247:125742. [PMID: 37437681 DOI: 10.1016/j.ijbiomac.2023.125742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
This study aimed to combine the active targeting function of folate (FA) receptor-mediated endocytosis with the pH-responsive drug delivery of poly (ethylene glycol)-grafted-poly (-amino ester) copolymers (PEG-PAE) in cancer targeting therapy. Herein, O-carboxymethylated chitosan (OCMC) was grafted with hydrophobic deoxycholic acid (DOCA). Further, PEG-PAE and FA-conjugated DOCA modified OCMC were synthesized to develop the potential cancer-targeted carrier (PEG-PAE-DOMC-FA), for which the structure was investigated by 1H NMR and FTIR. Then riccardin D (RD) was successfully loaded for tumor-targeted drug delivery. The particle size, zeta potential, encapsulating efficiencies, and loading content profiles of PEG-PAE-DOMC-FA/RD showed a strong dependence on the environmental pH values. The cumulative release of PEG-PAE-DOMC-FA/RD at pH 5.0 (90.63 %) was higher than pH 7.4 (51.12 %), which also indicated the pH sensitivity. Moreover, a lower IC50 and higher coumarin-6 uptake were found because of the folate-receptor-mediated endocytosis. In pharmacokinetic study, PEG-PAE-DOMC-FA/RD significantly improved the mean retention time (MRT) and AUC(0-∞) from 7.89 h and 36.1 mg/L·h of control group to 10.03 h and 123.8 mg/L·h. In the xenograft mice model, stronger antitumor efficacy and lower toxicity were confirmed. In conclusion, the multi-functional micelles could be considered as a promising vehicle for delivering hydrophobic drugs to tumors.
Collapse
Affiliation(s)
- Guangpu Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Hui Jiao
- National Institute of Metrology, Beijing 100029, China
| | - Kaiming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ping Chang
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Yang Jiao
- Shandong Institute for Food and Drug Control, Jinan 250012, China.
| |
Collapse
|
5
|
Novakovic M, Ilic-Tomic T, Djordjevic I, Andjelkovic B, Tesevic V, Milosavljevic S, Asakawa Y. Bisbibenzyls from Serbian Primula veris subsp. Columnae (Ten.) Lȕdi and P. acaulis (L.) L. PHYTOCHEMISTRY 2023; 212:113719. [PMID: 37169137 DOI: 10.1016/j.phytochem.2023.113719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Bisbibenzyls are specialized metabolites found exclusively in liverworts, until recently; they represent chemical markers of liverworts. Their occurrence in vascular plants was noticed in 2007, when they were found in Primula veris subsp. Macrocalyx from Russia. This report prompted us to chemically analyze the two most common Serbian Primula species, P. veris subsp. Columnae and P. acaulis, in order to determine the presence of bisbibenzyls in them. Our study revealed nine structurally distinct bisbibenzyls (1-9), identified based on 1D and 2D NMR, IR, UV and HRESIMS data. Among them were five previously undescribed compounds (2-6). The remaining compounds found and previously described in the literature were: the bisbibenzyls riccardin C (1), isoperrottetin A (7), isoplagiochin E (8) and 11-O-demethylmarchantin I (9), as well as 4-hydroxyphenylmethylketone (10) and 4-hydroxy-3-methoxyphenylmethylketone (11). Riccardin C was the most dominant bisbibenzyl in both species studied. Previously, it was the first bisbibenzyl found in vascular plants (P. veris subsp. macrocalyx). An assessment of the cytotoxic activity of the isolated compounds against A549 lung cancer and healthy MRC5 cell lines was also the subject of our study. Compounds 6 and 9 exhibited significant cytotoxic activity expressed by IC50 values of 12 μM, but the selectivity was not satisfactory.
Collapse
Affiliation(s)
- Miroslav Novakovic
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Department of Chemistry, Njegoseva 12, 11000, Belgrade, Serbia.
| | - Tatjana Ilic-Tomic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000, Belgrade, Serbia
| | - Iris Djordjevic
- University of Belgrade, Faculty of Veterinary Medicine, Bulevar Oslobodjenja 18, 11000, Belgrade, Serbia
| | - Boban Andjelkovic
- University of Belgrade, Faculty of Chemistry, Studentski Trg 12-16, 11000, Belgrade, Serbia
| | - Vele Tesevic
- University of Belgrade, Faculty of Chemistry, Studentski Trg 12-16, 11000, Belgrade, Serbia
| | | | - Yoshinori Asakawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| |
Collapse
|
6
|
Tissue Culture of Plagiochasma appendiculatum and the Effect of Callus Differentiation on Types and Content of Bisbibenzyls. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221106243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Plagiochasma appendiculatum, a thalloid liverwort, contains high levels of bisbibenzyls, aromatic compounds with potent antitumor as well as antifungal activities. In the present study, rapid growth callus was induced from the thallus of P. appendiculatum, and optimal culture conditions, including medium, temperature, pH, and plant growth regulators for callus production were evaluated. Under optimal culture conditions, the biomass of the callus doubled with a sigmoidal growth curve after 15 days. Differentiation and plant regeneration were studied on a medium supplemented with different plant hormones (α-naphthaleneacetic acid [NAA], 6-benzyladenine [6-BA], and 2,4-dichlorophenoxyacetic acid [2,4-D]). NAA and 6-BA stimulated rhizoid and thallus differentiation, respectively, whereas 2,4-D inhibited the differentiation of thallus and rhizoid. Different metabolic profiles of callus, differentiated thallus, and thallus in the soil were studied by high-performance liquid chromatography. The results showed that both the callus and thallus could synthesize bisbibenzyls. In addition, the kinds and content of bisbibenzyl differed significantly between the callus and thallus. In conclusion, P. appendiculatum thallus cultured in vitro possesses the ability to biosynthesize bisbibenzyl, and it may be utilized for the mass production of specific bisbibenzyls in an appropriate growth environment.
Collapse
|
7
|
Yılmaz ZK, Özdemir Ö, Aslim B, Suludere Z, Şahin E. A new bio-active asymmetric-Schiff base: synthesis and evaluation of calf thymus DNA interaction, topoisomerase IIα inhibition, in vitro antiproliferative activity, SEM analysis and molecular docking studies. J Biomol Struct Dyn 2022; 41:2804-2822. [PMID: 35179080 DOI: 10.1080/07391102.2022.2039297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this paper, the asymmetric-Schiff base 2-(4-(2-hydroxybenzylideneamino)benzylideneamino)benzoic acid (SB-2) was newly synthesized and characterized by various spectroscopic methods. The interaction of SB-2 with calf thymus DNA was investigated by UV-vis, fluorescence spectroscopy and molecular docking methods. It was determined that SB-2 effectively binds to DNA via the intercalation mode. DNA electrophoretic mobility experiments displayed that topoisomerase IIα could not cleave pBR322 plasmid DNA in the presence of SB-2, confirming that the Schiff base acts as a topo II suppressor. In the molecular docking studies, SB-2 was found to show an affinity for both the DNA-topoisomerase IIα complex and the DNA. In vitro antiproliferative activity of SB-2 was screened against HT-29 (colorectal) and HeLa (cervical) human tumor cell lines by MTT assay. SB-2 diminished the cell viability in a concentration- and incubation time-dependent manner. The ability of SB-2 to measure DNA damage in tumor cells was evaluated with cytokinesis-block micronucleus assay after incubation 24 h and 48 h. Light and scanning electron microscopy experiments of tumor cells demonstrated an incubation time-dependent increase in the proportion of apoptotic cells (nuclear condensation and apoptotic bodies) suggesting that autophagy and apoptosis play a role in the death of cells. Based on the obtained results, it may be considered that SB-2 is a candidate for DNA-targeting antitumor drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zehra Kübra Yılmaz
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Özlem Özdemir
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| | - Belma Aslim
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Zekiye Suludere
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Egemen Şahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
9
|
Ivković I, Novaković M, Veljić M, Mojsin M, Stevanović M, Marin PD, Bukvički D. Bis-Bibenzyls from the Liverwort Pellia endiviifolia and Their Biological Activity. PLANTS 2021; 10:plants10061063. [PMID: 34073157 PMCID: PMC8227020 DOI: 10.3390/plants10061063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/03/2022]
Abstract
Based on previous investigations where bis-bibenzyls isolated from liverworts showed various biological activities (cytotoxic, antimicrobial, and antiviral), we investigated their cytotoxic activity in several human cancer cell lines. From the methylene-chloride/methanol extract of the liverwort Pellia endiviifolia, three bis-bibenzyls of the perrottetin type were isolated, namely perrottetin E, 10′-hydroxyperrottetin E, and 10,10′-dihydroxyperrottetin E. The last two were found for the first time in this species. Their structures were resolved using 1D and 2D NMR, as well as by comparison with data in the literature. Cytotoxic activity of the isolated compounds was tested on three human leukemia cell lines, HL-60 (acute promyelocytic leukemia cells), U-937 (acute monocytic leukemia cells), and K-562 (human chronic myelogenous leukemia cells), as well as on human embryonal teratocarcinoma cell line (NT2/D1) and human glioblastoma cell lines A-172 and U-251, and compared to the previously isolated bis-bibenzyls (perrottetins) of similar structure. The isolated compounds exhibited modest activity against leukemia cells and significant activity against NT2/D1 and A-172. Overall, the most active cytotoxic compounds in this investigation were perrottetin E (1), isolated in this work from Pellia endiviifolia, and perrottetin F phenanthrene derivative (7), previously isolated from Lunularia cruciata and added for a comparison of their cytotoxic activity.
Collapse
Affiliation(s)
- Ivana Ivković
- Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, 11000 Begrade, Serbia; (I.I.); (M.V.); (P.D.M.)
| | - Miroslav Novaković
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milan Veljić
- Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, 11000 Begrade, Serbia; (I.I.); (M.V.); (P.D.M.)
| | - Marija Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (M.M.); (M.S.)
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (M.M.); (M.S.)
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, 11001 Belgrade, Serbia
| | - Petar D. Marin
- Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, 11000 Begrade, Serbia; (I.I.); (M.V.); (P.D.M.)
| | - Danka Bukvički
- Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, 11000 Begrade, Serbia; (I.I.); (M.V.); (P.D.M.)
- Correspondence: or ; Tel.: +381-63-161-1980
| |
Collapse
|
10
|
Nandy S, Dey A. Bibenzyls and bisbybenzyls of bryophytic origin as promising source of novel therapeutics: pharmacology, synthesis and structure-activity. Daru 2020; 28:701-734. [PMID: 32803687 PMCID: PMC7429097 DOI: 10.1007/s40199-020-00341-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The amphibian, non-vascular, gametophyte-dominant, bio-indicator class, bryophytes; with their wide ranges of habitat have attained importance due to their promising medicinal attributions and therapeutic role; mostly aided by presence of aromatic bibenzyl and bisbybenzyl class of compounds. Bibenzyls are steroidal ethane derivatives, resembling the structural moiety of bioactive dihydro-stilbenoids or iso-quinoline alkaloids. These stress triggered secondary metabolites are the by-products of the flavonoid biosynthetic pathway. Different classes of bryophytes (Bryophyta, Marchantiophyta and Anthocerotophyta) possess different subtypes of bibenzyls and dimeric bisbibenzyls. Among the liverwort, hornwort and mosses, former one is mostly enriched with bibenzyl type constituents as per the extensive study conducted for phytochemical deposit. Considering macrocyclic and acyclic group of bibenzyls and bisbybenzyls, generally marchantin type compounds are reported vividly for significant biological activity that includes neuro-nephro-cardio-protection besides anti-allergic, anti-microbial, anti-apoptotic and cytotoxic activities studied on in-vitro and in-vivo models or on cell lines. RESULT The critical analysis of reported chemical and pharmaceutical attributions of bibenzyls and bis-bibenzyls yielded detailed report on this compound class along with their application, mode of action, natural source, techniques of synthesis, extraction procedure, isolation and characterization. Further, the structure activity relationship studies and bioactivity of bibenzyls derived from non-bryophytic origin were also summarized. CONCLUSION This review encompasses prospective biological application of botanical reservoir of this primarily ignored, primeval land plant group where recent technical advances has paved the way for qualitative and quantitative isolation and estimation of novel compounds as well as marker components to study their impact on environment, as bio-control agents and as key leads in future drug designing. Graphical abstract.
Collapse
Affiliation(s)
- Samapika Nandy
- Research Scholar, Department of Life Sciences, Presidency University, Kolkata, 700073 India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, 700073 India
| |
Collapse
|
11
|
Li LN, Wang L, Guo XL. Chemical constituents from the culture of the fungus Hericium alpestre. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:735-741. [PMID: 30014709 DOI: 10.1080/10286020.2018.1483346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Two new compounds herialpins A-B (1-2), along with eleven known compounds, were isolated from the culture of fungus Hericium alpestre. The structures were elucidated by 1D and 2D NMR data, ESI-MS and X-ray crystallographic analysis. Compounds 1-2 were assayed for their cytotoxicity against three tumor cell lines compared with the known compound 3. Compounds 1 and 2 were found with modest activity, while compound 3 exhibits stronger selective inhibitory activity against A549 and HT-29 cells with IC50 values of 15.1 and 20.1 μmol/L, respectively. The pyrano[3,4-g]chromene-4,6-dione moiety in compound 3 should be responsible for the stronger selective inhibitory activity.
Collapse
Affiliation(s)
- Lu-Ning Li
- a Department of Natural Medicinal Chemistry, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , China
| | - Lei Wang
- b Department of Pharmacology, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , China
| | - Xiu-Li Guo
- b Department of Pharmacology, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , China
| |
Collapse
|
12
|
Gao Y, Liu R, Gautam N, Ma B, Xie Z, Sun B, Zheng H, Liu D, Lou H. Determination of the in vitro metabolic stability and metabolites of the anticancer derivative riccardin D-N in human and mouse hepatic S9 fractions using HPLC-Q-LIT-MS. J Pharm Biomed Anal 2019; 174:734-743. [PMID: 31299454 DOI: 10.1016/j.jpba.2019.06.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 11/29/2022]
Abstract
Riccardin D-N (RD-N) is an aminomethylated derivative of the macrocyclic bisbibenzyl compound riccardin D (RD), which has shown stronger activity against cancer cells than RD. However, there has been no research on the metabolism of RD-N. The present study aimed to characterize the in vitro metabolism and metabolic stability of RD-N after incubation with mouse and human hepatic S9 fractions using high performance liquid chromatography-hybrid triple quadrupole/linear ion trap mass spectrometry (HPLC-Q-LIT-MS). Multiple ion monitoring (MIM) and multiple reaction monitoring (MRM)-information dependent acquisition-enhanced product ion (MIM/MRM-IDA-EPI) scans were used to identify the metabolites formed. MRM scans were also used to quantify the changes in the amount of RD-N and to semi-quantify the main metabolites. Twenty-eight metabolic products were detected and 25 structures were predicted. Hydroxylation, dehydrogenation, glucuronidation, and methylation were proposed to be the principle metabolic pathways in the in vitro incubation with human and mouse hepatic S9 fractions. There were differences in the number and abundance of RD-N metabolites between the human and mouse hepatic S9 fractions. RD-N was shown to have good metabolic stability. After 2 h of incubation, 44% of the original RD-N remained in the human hepatic S9 fraction compared with 22% in the mouse. The major metabolites of RD-N, M4, M8, M20 and M21, were monitored semi-quantitatively using the typical transitions. Finally, HPLC-Q-LIT-MS was used for the identification and quantitation of the metabolites of R D-N, which is a simple and efficient method to rapidly screen potential drug candidates.
Collapse
Affiliation(s)
- Yanhui Gao
- School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhuaxi Road, Jinan 250012, China
| | - Ruichen Liu
- School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhuaxi Road, Jinan 250012, China
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, 68198, NE, USA
| | - Bowen Ma
- Department of Molecular and Cell Biology, School of Medicine, University of Connecticut, Storrs, 06269, CT, USA
| | - Zhiyu Xie
- School of Chemistry and Chemical Engineering, Xuchang University, Xuchang, 461000, China
| | - Bin Sun
- National Glycoengeering Research Center, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, China
| | - Hongbo Zheng
- School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhuaxi Road, Jinan 250012, China
| | - Dongke Liu
- School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhuaxi Road, Jinan 250012, China
| | - Hongxiang Lou
- School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhuaxi Road, Jinan 250012, China.
| |
Collapse
|
13
|
Novakovic M, Bukvicki D, Andjelkovic B, Ilic-Tomic T, Veljic M, Tesevic V, Asakawa Y. Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia cruciata. JOURNAL OF NATURAL PRODUCTS 2019; 82:694-701. [PMID: 30848895 DOI: 10.1021/acs.jnatprod.8b00390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Seven new bisbibenzyls (1-7) were isolated from the methanol extract of the liverwort Lunularia cruciata along with one previously known bibenzyl and five known bisbibenzyls. The structures of compounds 1-7 were elucidated on the basis of the spectroscopic data. These newly isolated bisbibenzyls may be divided into two groups, the acyclic bisbibenzyls, perrottetins (1-3), and the cyclic analogues, riccardins (4-7). Besides standard perrottetin and riccardin structures (1 and 4, respectively), they contain phenanthrene (3 and 5), dihydrophenanthrene (2), and quinone moieties (6 and 7), rarely found in natural products. The new compounds 3 and 5, as well as the known riccardin G, exhibited cytotoxic activity against the A549 lung cancer cell line with IC50 values of 5.0, 5.0, and 2.5 μM, respectively.
Collapse
Affiliation(s)
- Miroslav Novakovic
- Faculty of Pharmaceutical Sciences , Tokushima Bunri University , Yamashiro-cho, Tokushima 770-8514 , Japan
| | - Danka Bukvicki
- Faculty of Pharmaceutical Sciences , Tokushima Bunri University , Yamashiro-cho, Tokushima 770-8514 , Japan
- Department of Agricultural and Food Sciences , University of Bologna , Via Fanin 46 , 40127 Bologna , Italy
| | | | | | | | | | - Yoshinori Asakawa
- Faculty of Pharmaceutical Sciences , Tokushima Bunri University , Yamashiro-cho, Tokushima 770-8514 , Japan
| |
Collapse
|
14
|
Liu Y, Li X, Jiang S, Ge Q. Tetramethylpyrazine protects against high glucose-induced vascular smooth muscle cell injury through inhibiting the phosphorylation of JNK, p38MAPK, and ERK. J Int Med Res 2018; 46:3318-3326. [PMID: 29996693 PMCID: PMC6134667 DOI: 10.1177/0300060518781705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objectives High glucose-induced alterations in vascular smooth muscle cell behavior have not been fully characterized. We explored the protective mechanism of tetramethylpyrazine (TMP) on rat smooth muscle cell injury induced by high glucose via the mitogen-activated protein kinase (MAPK) signaling pathway. Methods Vascular smooth muscle cells (VSMCs) isolated from rat thoracic aortas were divided into control, high glucose (HG), and pre-hatching TMP groups. The effect of different glucose concentrations on cell viability and on the migration activity of VSMC cells was examined using MTT analysis and the wound scratch assay, respectively. Superoxide dismutase (SOD) and malondialdehyde (MDA) levels were measured using enzyme-linked immunoassays. The levels of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38MAPK, and MAPK phosphorylation were assessed by western blotting. Results Cell proliferation was remarkably increased by increased glucose concentrations. Compared with the HG group, the migratory ability of VSMC cells was reduced in the presence of TMP. TMP also decreased the MDA content in the supernatant, but significantly increased the SOD activity. Western blotting showed that TMP inhibited the phosphorylation of JNK, p38MAPK, and ERK. Conclusions TMP appears to protect against HG-induced VSMC injury through inhibiting reactive oxygen species overproduction, and p38MAPK/JNK/ERK phosphorylation.
Collapse
Affiliation(s)
- Yutao Liu
- 1 Department of Pharmacy, Yantaishan Hospital, Yantai, Shandong, China
| | - Xu Li
- 2 Department of Pharmacy, Yantai Hospital of Infectious Diseases, Yantai, Shandong, China
| | - Shanling Jiang
- 3 Department of Pharmacy, The Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Quanli Ge
- 1 Department of Pharmacy, Yantaishan Hospital, Yantai, Shandong, China
| |
Collapse
|
15
|
Zhao P, Song C. Macrocyclic Bisbibenzyls: Properties and Synthesis. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64068-0.00003-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
16
|
Jain CK, Majumder HK, Roychoudhury S. Natural Compounds as Anticancer Agents Targeting DNA Topoisomerases. Curr Genomics 2017; 18:75-92. [PMID: 28503091 PMCID: PMC5321768 DOI: 10.2174/1389202917666160808125213] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022] Open
Abstract
DNA topoisomerases are important cellular enzymes found in almost all types of living cells (eukaryotic and prokaryotic). These enzymes are essential for various DNA metabolic processes e.g. replication, transcription, recombination, chromosomal decatenation etc. These enzymes are important molecular drug targets and inhibitors of these enzymes are widely used as effective anticancer and antibacterial drugs. However, topoisomerase inhibitors have some therapeutic limitations and they exert serious side effects during cancer chemotherapy. Thus, development of novel anticancer topoisomerase inhibitors is necessary for improving cancer chemotherapy. Nature serves as a repertoire of structurally and chemically diverse molecules and in the recent years many DNA topoisomerase inhibitors have been identified from natural sources. The present review discusses anticancer properties and therapeutic importance of eighteen recently identified natural topoisomerase inhibitors (from the year 2009 to 2015). Structural characteristics of these novel inhibitors provide backbones for designing and developing new anticancer drugs.
Collapse
Affiliation(s)
- Chetan Kumar Jain
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Hemanta Kumar Majumder
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre & Research Institute, M G Road, Thakurpukur, Kolkata-700 063, India
| |
Collapse
|
17
|
Advances in the Chemistry of Natural and Semisynthetic Topoisomerase I/II Inhibitors. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63929-5.00002-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Xue X, Chen F, Liu A, Sun D, Wu J, Kong F, Luan Y, Qu X, Wang R. Reversal of the multidrug resistance of human ileocecal adenocarcinoma cells by acetyl-11-keto-β-boswellic acid via downregulation of P-glycoprotein signals. Biosci Trends 2016; 10:392-399. [PMID: 27545217 DOI: 10.5582/bst.2016.01115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Multidrug resistance (MDR) represents a clinical obstacle to cancer chemotherapy since it causes cancer recurrence and metastasis. Acetyl-11-keto-β-boswellic acid (AKBA), an active ingredient derived from the plant Boswellia serrata, has been found to inhibit the growth of a wide variety of tumor cells, including glioma, colorectal cancer, leukemia, human melanoma, hepatocellular carcinoma, and prostate cancer cells. However, the actions of AKBA in multidrug-resistant cancer cells have not been fully elucidated. The current study examined the reversal of MDR by AKBA in a human ileocecal adenocarcinoma cell line with vincristine-induced resistance, HCT-8/VCR. A 3-[4, 5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay indicated that cytotoxicity increased drastically and the IC50 of VCR in HCT-8/VCR cells decreased in the presence of AKBA. AKBA had a maximum "fold reversal" of MDR (FR) of 9.19-fold. In addition, HCT-8/VCR cells treated with AKBA and VCR exhibited a higher percentage of apoptotic tumor cells according to flow cytometry. The reversal of MDR by AKBA was evident in an intracellular increase in Rhodamine (Rh123), indicating that the activity of P-glycoprotein (P-gp) was blocked. Furthermore, AKBA inhibited the expression of P-gp and decreased levels of expression of multidrug resistance gene 1 in HCT-8/VCR cells. The current results indicated that AKBA might be a potential agent to reverse MDR in human ileocecal adenocarcinoma.
Collapse
Affiliation(s)
- Xia Xue
- Department of Pharmacy, the Second Hospital of Shandong University
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sun B, Zhang M, Li Y, Hu QW, Zheng HB, Chang WQ, Lou HX. Synthesis of riccardin D derivatives as potent antimicrobial agents. Bioorg Med Chem Lett 2016; 26:3617-20. [DOI: 10.1016/j.bmcl.2016.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/23/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
|
20
|
Rady HM, Hassan AZ, Salem SM, Mohamed TK, Esmaiel NN, Ez-El-Arab MA, Ibrahim MA, Fouda FK. Induction of apoptosis and cell cycle arrest by Negombata magnifica sponge in hepatocellular carcinoma. Med Chem Res 2016. [DOI: 10.1007/s00044-015-1491-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
|
22
|
Hu Z, Zhang D, Wang D, Sun B, Safoor A, Young CYF, Lou H, Yuan H. Bisbibenzyls, novel proteasome inhibitors, suppress androgen receptor transcriptional activity and expression accompanied by activation of autophagy in prostate cancer LNCaP cells. PHARMACEUTICAL BIOLOGY 2015; 54:364-374. [PMID: 26017567 DOI: 10.3109/13880209.2015.1049278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Bisbibenzyl compounds have gained our interests for their potential antitumor activity in malignant cell-types. OBJECTIVE The objective of this study is to investigate the effect of bisbibenzyl compounds riccardin C (RC), marchantin M (MM), and riccardin D (RD) on androgen receptor (AR) in prostate cancer (PCa) cells. MATERIALS AND METHODS After exposure to 10 μM of the compounds for 24 h, cell cycle and cell survival analyses were performed using FACS and MTT assay to confirm the effect of these bisbibenzyls on PCa LNCaP cells. Changes in the AR expression and function, as the result of exposure to the compounds, were investigated using real-time PCR, ELISA, transient transfection, western blotting (WB), immunoprecipitation, and immunofluorescence staining (IF). Chemical-induced autophagy was examined by WB, IF, and RNAi. RESULTS RC, MM, and RD reduced the viability of LNCaP cells accompanied with arrested cell cycle in the G0/G1 phase and induction of apoptosis. Further investigation revealed that these compounds significantly inhibited AR expression at mRNA and protein levels, leading to the suppression of AR transcriptional activity. Moreover, inhibition of proteasome activity by bisbibenzyls, which in turn caused the induction of autophagy, as noted by induction of LC3B expression, conversion, and accumulation of punctate dots in treated cells. Co-localization of AR/LC3B and AR/Ub suggested that autophagy contributed to the degradation of polyubiquitinated-AR when proteasome activity was suppressed by the bisbibenzyls. DISCUSSION AND CONCLUSION Suppression of proteasome activity and induction of autophagy were involved in bisbibenzyl-mediated modulation of AR activities and apoptosis, suggesting their potential in treating PCa.
Collapse
Affiliation(s)
- Zhongyi Hu
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , China
| | - Denglu Zhang
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , China
| | - Dawei Wang
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , China
| | - Bin Sun
- b Department of Natural Product Chemistry , Shandong University School of Pharmaceutical Sciences , Jinan , China , and
| | - Ayesha Safoor
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , China
| | - Charles Y F Young
- c Department of Urology , Mayo Clinic College of Medicine, Mayo Clinic , Rochester , MN , USA
| | - Hongxiang Lou
- b Department of Natural Product Chemistry , Shandong University School of Pharmaceutical Sciences , Jinan , China , and
| | - Huiqing Yuan
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , China
| |
Collapse
|
23
|
Sun CC, Xu HM, Yuan Y, Gao ZH, Lou HX, Qu XJ. Riccardin D, a Macrocyclic Bisbibenzy, Inhibits Human Breast Cancer Growth through the Suppression of Telomerase Activity. Basic Clin Pharmacol Toxicol 2014; 115:488-98. [DOI: 10.1111/bcpt.12267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/02/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Cui-Cui Sun
- Department of Pharmacology; Key Laboratory of Chemical Biology; School of Pharmaceutical Sciences; Shandong University; Jinan China
| | - Hui-Min Xu
- Faculty of Radiologic Sciences; School of Medicine; Qingdao University; Qingdao China
| | - Yi Yuan
- Department of Pharmacology; Key Laboratory of Chemical Biology; School of Pharmaceutical Sciences; Shandong University; Jinan China
| | - Zu-Hua Gao
- Department of Pharmacology; School of Chemical Biology & Pharmaceutical Sciences; Capital Medical University; Beijing China
- Department of Pathology; McGill University; Montreal QC Canada
| | - Hong-Xiang Lou
- Department of Pharmacology; Key Laboratory of Chemical Biology; School of Pharmaceutical Sciences; Shandong University; Jinan China
| | - Xian-Jun Qu
- Department of Pharmacology; Key Laboratory of Chemical Biology; School of Pharmaceutical Sciences; Shandong University; Jinan China
- Department of Pharmacology; School of Chemical Biology & Pharmaceutical Sciences; Capital Medical University; Beijing China
| |
Collapse
|
24
|
Chu JH, Zhao CR, Song ZY, Wang RQ, Qin YZ, Li WB, Qu XJ. 1082-39, an analogue of sorafenib, inhibited human cancer cell growth more potently than sorafenib. Biomed Pharmacother 2014; 68:335-41. [DOI: 10.1016/j.biopha.2014.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/20/2014] [Indexed: 01/07/2023] Open
|
25
|
Induction of DNA damage and p21-dependent senescence by Riccardin D is a novel mechanism contributing to its growth suppression in prostate cancer cells in vitro and in vivo. Cancer Chemother Pharmacol 2013; 73:397-407. [DOI: 10.1007/s00280-013-2365-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/29/2013] [Indexed: 12/28/2022]
|
26
|
Xu XF, Zhang TL, Jin S, Wang R, Xiao X, Zhang WD, Wang PY, Wang XJ. Ardipusilloside I induces apoptosis by regulating Bcl-2 family proteins in human mucoepidermoid carcinoma Mc3 cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:322. [PMID: 24256941 PMCID: PMC3874618 DOI: 10.1186/1472-6882-13-322] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 11/15/2013] [Indexed: 01/18/2023]
Abstract
Background Ardisia pusilla A. DC., family Myrsinaceae, is a traditional Chinese medicine named Jiu Jie Long with a variety of pharmacological functions including anti-cancer activities. In this study, we purified a natural triterpenoid saponin, ardipusilloside I, from Ardisia pusilla, and show that it exhibits inhibitory activities in human mucoepidermoid carcinoma Mc3 cells. We also investigated the underlying mechanisms of proliferation inhibition that ardipusilloside I exerts on Mc3 cells. Methods MTT test was used to detect cell proliferation. Cell apoptosis was detected by transmission electron microscopy, Hoechst-33342 staining, DNA fragmentation detection, and flow cytometry. We also used western blot analysis to detect the potential mechanisms of apoptosis. Results Ardipusilloside I affected the viability of Mc3 cells in a dose- and time-dependent manner. The IC50 of ardipusilloside I was approximately 9.98 μg/ml at 48 h of treatment. Characteristic morphological changes of apoptosis, including nuclear condensation, boundary aggregation and splitting, and DNA fragmentation, were seen after treatment with 10 μg/ml ardipusilloside I for 48 h. Western blots demonstrated that ardipusilloside I caused Mc3 cell death through the induction of apoptosis by downregulation of Bcl-2 protein levels and upregulation of Bax and caspase-3 protein levels. Conclusions Our results revealed that ardipusilloside I could be a new active substance for mucoepidermoid carcinoma treatment. We demonstrated that the potential mechanism of inhibition might be through the induction of apoptosis by regulation of Bcl-2 family protein levels. This suggests a further rationale for the development of ardipusilloside I as an anti-cancer agent.
Collapse
|
27
|
Hu Z, Kong F, Si M, Tian K, Yu LX, Young CYF, Yuan H, Lou H. Riccardin D Exerts Its Antitumor Activity by Inducing DNA Damage in PC-3 Prostate Cancer Cells In Vitro and In Vivo. PLoS One 2013; 8:e74387. [PMID: 24069304 PMCID: PMC3775815 DOI: 10.1371/journal.pone.0074387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/31/2013] [Indexed: 11/19/2022] Open
Abstract
We recently reported that Riccardin D (RD) was able to induce apoptosis by targeting Topo II. Here, we found that RD induced cell cycle arrest in G2/M phase in PC-3 cells, and caused remarkable DNA damage as evidenced by induction of γH2AX foci, micronuclei, and DNA fragmentation in Comet assay. Time kinetic and dose-dependent studies showed that ATM/Chk2 and ATR/Chk1 signaling pathways were sequentially activated in response to RD. Blockage of ATM/ATR signaling led to the attenuation of RD-induced γH2AX, and to the partial recovery of cell proliferation. Furthermore, RD exposure resulted in the inactivation of BRCA1, suppression of HR and NHEJ repair activity, and downregulation of the expressions and DNA-end binding activities of Ku70/86. Consistent with the observations, microarray data displayed that RD triggered the changes in genes responsible for cell proliferation, cell cycle, DNA damage and repair, and apoptosis. Administration of RD to xenograft mice reduced tumor growth, and coordinately caused alterations in the expression of genes involved in DNA damage and repair, along with cell apoptosis. Thus, this finding identified a novel mechanism by which RD affects DNA repair and acts as a DNA damage agent in prostate cancer.
Collapse
Affiliation(s)
- Zhongyi Hu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
- Department of Natural Product Chemistry, Shandong University School of Pharmaceutical Sciences, Jinan, China
| | - Feng Kong
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Manfei Si
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Keli Tian
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Lin Xi Yu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
- Department of Human Biology, University of Toronto, Toronto, Ontario, Canada
| | - Charles Y. F. Young
- Department of Urology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Huiqing Yuan
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
- * E-mail: (HY); (HL)
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Shandong University School of Pharmaceutical Sciences, Jinan, China
- * E-mail: (HY); (HL)
| |
Collapse
|
28
|
Riccardin D induces cell death by activation of apoptosis and autophagy in osteosarcoma cells. Toxicol In Vitro 2013; 27:1928-36. [PMID: 23810952 DOI: 10.1016/j.tiv.2013.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 05/08/2013] [Accepted: 06/07/2013] [Indexed: 01/04/2023]
Abstract
Macrocyclic bisbibenzyls, characteristic components derived from liverworts, have various biological activities. Riccardin D (RD), a liverwort-derived naturally occurring macrocyclic bisbibenzyl, has been found to exert anticancer effects in multiple cancer cell types through apoptosis induction. However, the underlying mechanisms of such effects remain undefined. In addition, whether RD induces other forms of cell death such as autophagy is unknown. In this study, we found that the arrest of RD-caused U2OS (p53 wild) and Saos-2 (p53 null) cells in G1 phase was associated with the induction of p53 and p21(WAF1) in U2OS cells. RD-mediated cell cycle arrest was accompanied with apoptosis promotion as indicated by changes in nuclear morphology and expression of apoptosis-related proteins. Further studies revealed that the antiproliferation of RD was unaffected in the presence of p53 inhibitor but was partially reversed by a pan-inhibitor of caspases, suggesting that p53 was not required in RD-mediated apoptosis and that caspase-independent mechanisms were involved in RD-mediated cell death. Except for apoptosis, RD-induced autophagy occurred as evidenced by the accumulation of microtubule-associated protein-1 light chain-3B-II, formation of AVOs, punctate dots, and increased autophagic flux. Pharmacological blockade of autophagy activation markedly attenuated RD-mediated cell death. RD-induced cell death was significantly restored by the combination of autophagy and caspase inhibitors in osteosarcoma cells. Overall, our study revealed RD-induced caspase-dependent apoptosis and autophagy in cancer cells, as well as highlighted the importance of continued investigation on the use of RD as a potential anticancer candidate.
Collapse
|
29
|
A novel derivative of riccardin D induces cell death through lysosomal rupture in vitro and inhibits tumor growth in vivo. Cancer Lett 2013. [DOI: 10.1016/j.canlet.2012.10.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
30
|
Yue B, Zhao CR, Xu HM, Li YY, Cheng YN, Ke HN, Yuan Y, Wang RQ, Shi YQ, Lou HX, Qu XJ. Riccardin D-26, a synthesized macrocyclic bisbibenzyl compound, inhibits human oral squamous carcinoma cells KB and KB/VCR: In vitro and in vivo studies. Biochim Biophys Acta Gen Subj 2013; 1830:2194-203. [DOI: 10.1016/j.bbagen.2012.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 10/04/2012] [Accepted: 10/11/2012] [Indexed: 01/08/2023]
|
31
|
Riccardin D-26, a synthesized macrocyclic bisbibenzyl compound, inhibits human hepatocellular carcinoma growth through induction of apoptosis in p53-dependent way. Cancer Lett 2013; 328:104-13. [DOI: 10.1016/j.canlet.2012.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/24/2012] [Accepted: 09/03/2012] [Indexed: 01/09/2023]
|
32
|
Liu G, Zhang D, Jiao Y, Guo H, Zheng D, Jia L, Duan C, Liu Y, Tian X, Shen J, Li C, Zhang Q, Lou H. In vitro and in vivo evaluation of riccardin D nanosuspensions with different particle size. Colloids Surf B Biointerfaces 2012; 102:620-6. [PMID: 23107940 DOI: 10.1016/j.colsurfb.2012.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/09/2012] [Accepted: 09/04/2012] [Indexed: 11/16/2022]
Abstract
Riccardin D (RD) is a novel compound extracted from Chinese liverwort Marchantia polymorpha L. It exhibits various anticancer activities and can be used during lung cancer treatment. However, the compound's low solubility hinders its development. Recently nanosuspension has been developed as one of the most promising formulations for poorly water-soluble drugs. In order to understand the dissolution behavior of riccardin D in vitro and in vivo, two nanosuspensions of riccardin D with markedly different sizes were prepared. The particle size of nanosuspension A prepared by bottom-up method was 184.1±3.15 nm, while that of nanosuspension B prepared by top-down method was 815.4±9.65 nm. The main purpose of this study was to investigate the effects of particle size on pharmacokinetics and tissue distribution after intravenous administration. Riccardin D dissolving in organic solution was studied as control group. In pharmacokinetics study in Wistar rats, nanosuspension A showed properties similar to the control group, while nanosuspension B exhibited rather different properties. In tissue distribution research on Kunming strain mice, nanosuspension A had a multi-peak phenomenon because of reticulate endothelial system (RES) while nanosuspension B showed a high uptake in RES organs that passively target to the lungs. In conclusion, particle size of riccardin D nanosuspensions had obvious effects on pharmacokinetics and tissue distribution.
Collapse
Affiliation(s)
- Guangpu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xilu, Jinan 250012, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nateewattana J, Saeeng R, Kasemsook S, Suksen K, Dutta S, Jariyawat S, Chairoungdua A, Suksamrarn A, Piyachaturawat P. Inhibition of topoisomerase II α activity and induction of apoptosis in mammalian cells by semi-synthetic andrographolide analogues. Invest New Drugs 2012; 31:320-32. [PMID: 22899371 DOI: 10.1007/s10637-012-9868-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Topoisomerase II α enzyme plays a critical role in DNA replication process. It controls the topologic states of DNA during transcription and is essential for cell proliferation. Human DNA topoisomerase II α (hTopo II α) is a promising chemotherapeutic target for anticancer agents against a variety of cancer types. In the present study, andrographolide and its structurally modified analogues were investigated for their inhibitory activities on hTopo II α enzyme. Five out of nine andrographolide analogues potently reduced hTopo II α activity and inhibited cell proliferation in four mammalian cell lines (Hela, CHO, BCA-1 and HepG2 cells). IC50 values for cytotoxicity of analogues 3A.1, 3A.2, 3A.3, 1B and 2C were 4 to 7 μM. Structure-activity relationship studies revealed that both core structure of andrographolide and silicon based molecule of functional group were important for the inhibition of hTopo II α activity whereas position C-19 of analogues was required for anti-proliferation. In addition, the analogue 2C at 10 μM concentration inhibited hTopo II α, and induced apoptosis with nuclear fragmentation and formation of apoptotic bodies in HepG2 cells. The analogue 2C may, therefore, have a therapeutic potential as effective anticancer agent targeting the hTopo II α functions.
Collapse
Affiliation(s)
- Jintapat Nateewattana
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
SL-01, an oral gemcitabine derivative, inhibited human cancer growth more potently than gemcitabine. Toxicol Appl Pharmacol 2012; 262:293-300. [DOI: 10.1016/j.taap.2012.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/27/2012] [Accepted: 05/11/2012] [Indexed: 11/20/2022]
|
35
|
Zhao C, Xue X, Li G, Sun C, Sun C, Qu X, Li W. Synthesis and biological evaluation of oral prodrugs based on the structure of gemcitabine. Chem Biol Drug Des 2012; 80:479-88. [PMID: 22642666 DOI: 10.1111/j.1747-0285.2012.01422.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of oral prodrugs based on the structure of gemcitabine (2',2'-difluorodeoxycytidine) were synthesised by introducing an amide group at the N4-position of the cytidine ring. A total of 16 compounds were obtained, and their chemical and biological characteristics were evaluated. The half-maximal inhibitory concentrations (IC(50)s) for most of these compounds were higher than that of gemcitabine in vitro. Compounds 5d and 5m, the representative compounds, were examined in terms of their physiological stabilities and pharmacokinetics. Compound 5d showed good stability in PBS and simulated intestinal fluid, and an analysis of its pharmacokinetics in mice suggested that the introduction of an amide group to gemcitabine could greatly improve its bioavailability. Further evaluation of compound 5d in vivo showed that this compound possesses higher activity than gemcitabine against the growth of HepG2 human hepatocellular carcinoma cells and HCT-116 colon adenocarcinoma cells with less toxicity to animals. These results suggest that compound 5d could be further developed as a potential oral anticancer agent for clinical applications in which gemcitabine is currently used.
Collapse
Affiliation(s)
- Cuirong Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Liu HP, Gao ZH, Cui SX, Sun DF, Wang Y, Zhao CR, Lou HX, Qu XJ. Inhibition of intestinal adenoma formation in APC(Min/+) mice by Riccardin D, a natural product derived from liverwort plant Dumortiera hirsuta. PLoS One 2012; 7:e33243. [PMID: 22432006 PMCID: PMC3303813 DOI: 10.1371/journal.pone.0033243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 02/06/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mutation of tumor suppressor gene, adenomatous polyposis coli (APC), is the primary molecular event in the development of most intestinal carcinomas. Animal model with APC gene mutation is an effective tool for study of preventive approaches against intestinal carcinomas. We aimed to evaluate the effect of Riccardin D, a macrocyclic bisbibenzyl compound, as a chemopreventive agent against intestinal adenoma formation in APC(Min/+) mice. METHODS APC(Min/+) mice were given Riccardin D by p.o. gavage for 7 weeks. Mice were sacrificed, and the number, size and histopathology of intestinal polyps were examined under a microscope. We performed immunohistochemical staining, western blotting, reverse transcriptase-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) in intestinal polyps to investigate the mechanism of chemopreventive effect of Riccardin D. RESULTS Riccardin D treatment resulted in a significant inhibition of intestinal adenoma formation, showing a reduction of polyp number by 41.7%, 31.1% and 44.4%, respectively, in proximal, middle and distal portions of small intestine. The activity of Riccardin D against polyp formation was more profound in colon, wherein Riccardin D decreased polyp number by 79.3%. Size distribution analysis revealed a significant reduction in large-size polyps (2-3 mm) by 40.0%, 42.5% and 33.3%, respectively, in proximal, middle and distal portions of small intestine, and 77.8% in colon. Histopathological analysis of the intestinal polyps revealed mostly hyperplastic morphology without obvious dysplasia in Riccardin D-treated mice. Molecular analyses of the polyps suggested that the inhibitory effect of Riccardin D on intestinal adenoma formation was associated with its abilities of reduction in cell proliferation, induction of apoptosis, antiangiogenesis, inhibition of the Wnt signaling pathway and suppression of inflammatory mediators in polyps. CONCLUSIONS Our results suggested that Riccardin D exerts its chemopreventive effect against intestinal adenoma formation through multiple mechanisms including anti-proliferative, apoptotic, anti-angiogenic and anti-inflammatory activity.
Collapse
Affiliation(s)
- Hui-Ping Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zu-Hua Gao
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, Alberta, Canada
| | - Shu-Xiang Cui
- Department of Pharmacology, Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - De-Fu Sun
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yan Wang
- Department of Pharmacology, Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Cui-Rong Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hong-Xiang Lou
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xian-Jun Qu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
37
|
Bailly C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem Rev 2012; 112:3611-40. [PMID: 22397403 DOI: 10.1021/cr200325f] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christian Bailly
- Centre de Recherche et Développement, Institut de Recherche Pierre Fabre, Toulouse, France.
| |
Collapse
|
38
|
Harrowven DC, Kostiuk SL. Macrocylic bisbibenzylnatural products and their chemical synthesis. Nat Prod Rep 2012; 29:223-42. [DOI: 10.1039/c1np00080b] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Sun CC, Zhang YS, Xue X, Cheng YN, Liu HP, Zhao CR, Lou HX, Qu XJ. Inhibition of angiogenesis involves in anticancer activity of riccardin D, a macrocyclic bisbibenzyl, in human lung carcinoma. Eur J Pharmacol 2011; 667:136-43. [DOI: 10.1016/j.ejphar.2011.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/11/2011] [Accepted: 06/06/2011] [Indexed: 01/07/2023]
|