1
|
Sabatelle RC, Colson YL, Sachdeva U, Grinstaff MW. Drug Delivery Opportunities in Esophageal Cancer: Current Treatments and Future Prospects. Mol Pharm 2024; 21:3103-3120. [PMID: 38888089 PMCID: PMC11331583 DOI: 10.1021/acs.molpharmaceut.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
With one of the highest mortality rates of all malignancies, the 5-year survival rate for esophageal cancer is under 20%. Depending on the stage and extent of the disease, the current standard of care treatment paradigm includes chemotherapy or chemoradiotherapy followed by surgical esophagogastrectomy, with consideration for adjuvant immunotherapy for residual disease. This regimen has high morbidity, due to anatomic changes inherent in surgery, the acuity of surgical complications, and off-target effects of systemic chemotherapy and immunotherapy. We begin with a review of current treatments, then discuss new and emerging targets for therapies and advanced drug delivery systems. Recent and ongoing preclinical and early clinical studies are evaluating traditional tumor targets (e.g., human epidermal growth factor receptor 2), as well as promising new targets such as Yes-associated protein 1 or mammalian target of rapamycin to develop new treatments for this disease. Due the function and location of the esophagus, opportunities also exist to pair these treatments with a drug delivery strategy to increase tumor targeting, bioavailability, and intratumor concentrations, with the two most common delivery platforms being stents and nanoparticles. Finally, early results with antibody drug conjugates and chimeric antigenic receptor T cells show promise as upcoming therapies. This review discusses these innovations in therapeutics and drug delivery in the context of their successes and failures, with the goal of identifying those solutions that demonstrate the most promise to shift the paradigm in treating this deadly disease.
Collapse
Affiliation(s)
- Robert C. Sabatelle
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, 02215, USA
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Uma Sachdeva
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
2
|
Xu D, Luo Y, Wang P, Li J, Ma L, Huang J, Zhang H, Yang X, Li L, Zheng Y, Fang G, Yan P. Clinical progress of anti-angiogenic targeted therapy and combination therapy for gastric cancer. Front Oncol 2023; 13:1148131. [PMID: 37384288 PMCID: PMC10295723 DOI: 10.3389/fonc.2023.1148131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023] Open
Abstract
The incidence of gastric cancer is increasing year by year. Most gastric cancers are already in the advanced stage with poor prognosis when diagnosed, which means the current treatment is not satisfactory. Angiogenesis is an important link in the occurrence and development of tumors, and there are multiple anti-angiogenesis targeted therapies. To comprehensively evaluate the efficacy and safety of anti-angiogenic targeted drugs alone and in combination against gastric cancer, we systematically searched and sorted out relevant literature. In this review, we summarized the efficacy and safety of Ramucirumab, Bevacizumab, Apatinib, Fruquintinib, Sorafenib, Sunitinib, Pazopanib on gastric cancer when used alone or in combination based on prospective clinical trials reported in the literature, and sorted response biomarkers. We also summarized the challenges faced by anti-angiogenesis therapy for gastric cancer and available solutions. Finally, the characteristics of the current clinical research are summarized and suggestions and prospects are raised. This review will serve as a good reference for the clinical research of anti-angiogenic targeted drugs in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Donghan Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yehao Luo
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jiaxin Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Linrui Ma
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jie Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Hao Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Xiaoman Yang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Liqi Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yuhong Zheng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Gang Fang
- Guangxi Key Laboratory of Applied Fundamental Research of Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
3
|
Necroptosis modulation by cisplatin and sunitinib in hepatocellular carcinoma cell line. Life Sci 2022; 301:120594. [PMID: 35500680 DOI: 10.1016/j.lfs.2022.120594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022]
Abstract
Aim Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. Systemic chemotherapy such as cisplatin and multi-targeted receptor tyrosine kinase inhibitors, including sunitinib, has marginal activity and frequent toxicity. Recently, necroptosis has been investigated as a potential target in treating cancer. Our aim is to evaluate the influence of cisplatin-sunitinib combination on HepG2 cells regarding their cytotoxicity and implicated intracellular pathways. MATERIALS AND METHODS The half-maximal inhibitory concentration (IC50) values of cisplatin, sunitinib, and their combination were determined by Sulforhodamine-B assay. Bcl-2 and Bax protein levels were assayed using western blot. ELISA technique was used to measure pRIPK3/RIPK3, pERK/ERK, caspase-9, caspase-8, malondialdehyde (MDA), glutathione (GSH), and glutathione peroxidase (GPx). KEY FINDINGS Cisplatin-sunitinib combination exhibited a superior cytotoxic effect on HepG2 cells. Low concentrations of 4 μg/ml cisplatin and 2.8 μg/ml sunitinib showed significant Bcl-2 down-regulation and Bax up-regulation. The combined treatment also lowered pRIPK3/RIPK3 by 74% (p < 0.05) compared to the control. Significant increase in pERK/ERK by 3.9 folds over the normal control was also demonstrated. Moreover, combined treatment produced a significant 4 and 4.6 folds increase in caspase-9 and -8 levels. An increase in MDA level by 1.3 folds, a decrease in the intracellular GSH level by 63%, and an increase in GPx level by 1.17 folds were demonstrated. SIGNIFICANCE Sunitinib modulated cisplatin effect on cytotoxicity, oxidative stress, apoptosis, necroptosis and MAPK pathways. Sunitinib enhanced cisplatin-induced apoptosis and increased oxidative stress, but decreased necroptosis. Combined cisplatin and sunitinib might be promising for treating advanced HCC.
Collapse
|
4
|
Nonaka H, Nakanishi Y, Kuno S, Ota T, Mochidome K, Saito Y, Sugihara F, Takakusagi Y, Aoki I, Nagatoishi S, Tsumoto K, Sando S. Design strategy for serine hydroxymethyltransferase probes based on retro-aldol-type reaction. Nat Commun 2019; 10:876. [PMID: 30787298 PMCID: PMC6382819 DOI: 10.1038/s41467-019-08833-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/25/2019] [Indexed: 01/17/2023] Open
Abstract
Serine hydroxymethyltransferase (SHMT) is an enzyme that catalyzes the reaction that converts serine to glycine. It plays an important role in one-carbon metabolism. Recently, SHMT has been shown to be associated with various diseases. Therefore, SHMT has attracted attention as a biomarker and drug target. However, the development of molecular probes responsive to SHMT has not yet been realized. This is because SHMT catalyzes an essential yet simple reaction; thus, the substrates that can be accepted into the active site of SHMT are limited. Here, we focus on the SHMT-catalyzed retro-aldol reaction rather than the canonical serine-glycine conversion and succeed in developing fluorescent and 19F NMR molecular probes. Taking advantage of the facile and direct detection of SHMT, the developed fluorescent probe is used in the high-throughput screening for human SHMT inhibitors, and two hit compounds are obtained.
Collapse
Affiliation(s)
- Hiroshi Nonaka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Yuki Nakanishi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satoshi Kuno
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tomoki Ota
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kentaro Mochidome
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Yoichi Takakusagi
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Anagawa 4-9-1, Inage, Chiba-city, 263-8555, Japan
- Group of Quantum-state Controlled MRI, National Institutes for Quantum and Radiological Science and Technology (QST), Anagawa 4-9-1, Inage, Chiba-city, 263-8555, Japan
| | - Ichio Aoki
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Anagawa 4-9-1, Inage, Chiba-city, 263-8555, Japan
- Group of Quantum-state Controlled MRI, National Institutes for Quantum and Radiological Science and Technology (QST), Anagawa 4-9-1, Inage, Chiba-city, 263-8555, Japan
| | - Satoru Nagatoishi
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shiroganedai, Minato-ku, Tokyo, 108-8639, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kouhei Tsumoto
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shiroganedai, Minato-ku, Tokyo, 108-8639, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
5
|
Bai ZG, Zhang ZT. A systematic review and meta-analysis on the effect of angiogenesis blockade for the treatment of gastric cancer. Onco Targets Ther 2018; 11:7077-7087. [PMID: 30410364 PMCID: PMC6200090 DOI: 10.2147/ott.s169484] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduction To date, anti-vascular endothelial growth factor (VEGF) monoclonal antibody (mAb, bevacizumab), anti-VEGF receptor mAb (ramucirumab) and selective vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors (sunitinib, sorafenib and apatinib) have been tested in the clinical trials. Materials and methods In the current study, results of 32 clinical trials (24 Phase I or II, 8 Phase III) were systematically reviewed and meta-analysis was performed in 8 Phase III trial results. Results It was found that median overall survival (OS) time and progression-free survival (PFS) time were significantly longer in the patients treated with antiangiogenic reagents compared to that in the patients with placebo when all of 8 Phase III clinical trials were analyzed together (OS: odds ratio = 0.805, 95% CI: 0.719–0.901, P < 0.001; PFS: odds ratio = 0.719, 95% CI: 0.533–969, P = 0.030). Conclusion Meta-analysis on bevacizumab (4 out 8 Phase III trials) indicated that neither OS nor PFS was significantly different between the groups treated with bevacizumab or placebo with or without combination of other chemotherapeutic reagents (OS: odds ratio = 0.909, 95% CI: 0.780–1.059, P = 0.221; PFS: odds ratio = 0.985, 95% CI: 0.865–1.122, P = 0.826). By contrast, meta-analysis on ramucirumab (3 out of 8 Phase III trials) revealed that ramucirumab was significantly favored in the treatment of gastric cancer with significant different OS between the two groups (odds ratio = 0.720, 95% CI: 0.604–0.858, P < 0.001). In addition, patients treated with VEGF or VEGFR blockers had higher morbidity of hypertension and neutropenia, but lower risk of side effects of vomiting and anemia. These findings suggest that addition of antiangiogenesis reagents, especially anti-VEGFR-mAb, to the first- or second-line chemotherapy could prolong patient’s OS and PFS time in the advanced or metastatic gastric cancer.
Collapse
Affiliation(s)
- Zhi-Gang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing 100050, People's Republic of China,
| | - Zhong-Tao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing 100050, People's Republic of China,
| |
Collapse
|
6
|
Lazăr DC, Tăban S, Cornianu M, Faur A, Goldiş A. New advances in targeted gastric cancer treatment. World J Gastroenterol 2016; 22:6776-99. [PMID: 27570417 PMCID: PMC4974579 DOI: 10.3748/wjg.v22.i30.6776] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/13/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Despite a decrease in incidence over past decades, gastric cancer remains a major global health problem. In the more recent period, survival has shown only minor improvement, despite significant advances in diagnostic techniques, surgical and chemotherapeutic approaches, the development of novel therapeutic agents and treatment by multidisciplinary teams. Because multiple genetic mutations, epigenetic alterations, and aberrant molecular signalling pathways are involved in the development of gastric cancers, recent research has attempted to determine the molecular heterogeneity responsible for the processes of carcinogenesis, spread and metastasis. Currently, some novel agents targeting a part of these dysfunctional molecular signalling pathways have already been integrated into the standard treatment of gastric cancer, whereas others remain in phases of investigation within clinical trials. It is essential to identify the unique molecular patterns of tumours and specific biomarkers to develop treatments targeted to the individual tumour behaviour. This review analyses the global impact of gastric cancer, as well as the role of Helicobacter pylori infection and the efficacy of bacterial eradication in preventing gastric cancer development. Furthermore, the paper discusses the currently available targeted treatments and future directions of research using promising novel classes of molecular agents for advanced tumours.
Collapse
|
7
|
Xu W, Yang Z, Lu N. Molecular targeted therapy for the treatment of gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:1. [PMID: 26728266 PMCID: PMC4700735 DOI: 10.1186/s13046-015-0276-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/18/2015] [Indexed: 12/24/2022]
Abstract
Despite the global decline in the incidence and mortality of gastric cancer, it remains one of the most common malignant tumors of the digestive system. Although surgical resection is the preferred treatment for gastric cancer, chemotherapy is the preferred treatment for recurrent and advanced gastric cancer patients who are not candidates for reoperation. The short overall survival and lack of a standard chemotherapy regimen make it important to identify novel treatment modalities for gastric cancer. Within the field of tumor biology, molecular targeted therapy has attracted substantial attention to improve the specificity of anti-cancer efficacy and significantly reduce non-selective resistance and toxicity. Multiple clinical studies have confirmed that molecular targeted therapy acts on various mechanisms of gastric cancer, such as the regulation of epidermal growth factor, angiogenesis, immuno-checkpoint blockade, the cell cycle, cell apoptosis, key enzymes, c-Met, mTOR signaling and insulin-like growth factor receptors, to exert a stronger anti-tumor effect. An in-depth understanding of the mechanisms that underlie molecular targeted therapies will provide new insights into gastric cancer treatment.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
8
|
Abstract
Gastric cancer is one of the most common malignant tumors in China. Traditional treatments such as surgery, radiotherapy and chemotherapy not only have side effects, but the treatment efficiency is also poor. Molecular targeted therapy, due to its high efficiency, low toxicity, and high orientation, has been widely used in the treatment of gastric cancer. Targets applied in molecular targeted therapy of gastric cancer are mainly related to the cytokine and receptors that contribute to gastric cancer cell growth, including epidermal growth factor and its receptors, vascular endothelial growth factor and its receptors, epithelial cell adhesion molecules, insulin-like growth factor and its receptors, and molecules related to the cell cycle. This review focuses on molecular targeted treatment in gastric cancer.
Collapse
|
9
|
Huang L, Hu C, DI Benedetto M, Varin R, Liu J, Jin J, Wang L, Vannier JP, Janin A, Lu H, Li H. Cross-drug resistance to sunitinib induced by doxorubicin in endothelial cells. Oncol Lett 2014; 9:1287-1292. [PMID: 25663899 PMCID: PMC4315062 DOI: 10.3892/ol.2014.2819] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 10/15/2014] [Indexed: 01/08/2023] Open
Abstract
Multiple drug resistance remains an unsolved problem in cancer therapy. A previous study has demonstrated that the chemotherapeutic drug doxorubicin (Dox) induced upregulation of P-glycoprotein in endothelial cells, resulting in a 20-fold increase in drug resistance and reduced efficiency of doxorubicin treatment in a mouse tumor model. In the present study, the cross-resistance and sensitivity of HMECd1 and HMECd2 established cell lines to anti-angiogenic drugs, particularly sunitinib, was explored. The results revealed that Dox treatment induced a significant increase in the breast cancer resistance protein (ABCG2) gene transcription and protein expression. This increase gave rise to a 4- to 5-fold increase in the half maximal inhibitory concentration of the HMECd1 and HMECd2 cells in response to sunitinib treatment in vitro. Functionally, the role of ABCG2 in the resistance to sunitinib was confirmed by the use of the ABCG2 inhibitors fumitremorgin C and diethylstilbestrol, which blocked cell resistance. The present study indicates that endothelial cells exhibit cross-resistance between cytotoxic drugs and anti-angiogenic drugs. This suggests that multiple drug resistance induced by chemotherapy in endothelial cells may affect the efficiency of anti-angiogenic drugs.
Collapse
Affiliation(s)
- Limin Huang
- Department of Oncology, People's Hospital of Guizhou Province, Guiyang, Guizhou 550000, P.R. China
| | - Chaoquan Hu
- Department of Surgery, Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Mélanie DI Benedetto
- French Institute of Health and Medical Research, UMR-S 1165, University Institute of Hematology, Saint Louis Hospital, Paris 75010, France
| | - Rémi Varin
- Laboratory of MERCI (EA 3829), Faculty of Medicine and Pharmacy, University of Rouen, Rouen 76183, France
| | - Jielin Liu
- Department of Surgery, Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China ; French Institute of Health and Medical Research, UMR-S 1165, University Institute of Hematology, Saint Louis Hospital, Paris 75010, France
| | - Jian Jin
- French Institute of Health and Medical Research, UMR-S 1165, University Institute of Hematology, Saint Louis Hospital, Paris 75010, France ; School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Li Wang
- French Institute of Health and Medical Research, UMR-S 1165, University Institute of Hematology, Saint Louis Hospital, Paris 75010, France
| | - Jean-Pierre Vannier
- Laboratory of MERCI (EA 3829), Faculty of Medicine and Pharmacy, University of Rouen, Rouen 76183, France
| | - Anne Janin
- French Institute of Health and Medical Research, UMR-S 1165, University Institute of Hematology, Saint Louis Hospital, Paris 75010, France ; Laboratory of Pathology, Paris Diderot University, Sorbonne Paris Cité, UMR-S 1165, France ; Saint-Louis Hospital, Laboratory of Pathology, Paris 75010, France
| | - He Lu
- French Institute of Health and Medical Research, UMR-S 1165, University Institute of Hematology, Saint Louis Hospital, Paris 75010, France ; Laboratory of Pathology, Paris Diderot University, Sorbonne Paris Cité, UMR-S 1165, France
| | - Hong Li
- Laboratory of MERCI (EA 3829), Faculty of Medicine and Pharmacy, University of Rouen, Rouen 76183, France
| |
Collapse
|
10
|
Millis SZ, Bryant D, Basu G, Bender R, Vranic S, Gatalica Z, Vogelzang NJ. Molecular profiling of infiltrating urothelial carcinoma of bladder and nonbladder origin. Clin Genitourin Cancer 2014; 13:e37-49. [PMID: 25178641 DOI: 10.1016/j.clgc.2014.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 07/29/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Infiltrating UC represents the second most common genitourinary malignancy. Advanced UC has a poor prognosis and new treatments are needed. Molecular profiling of UC might identify biomarkers associated with targeted therapies or chemotherapeutics, providing physicians with new treatment options. MATERIALS AND METHODS Five hundred thirty-seven cases of locally advanced or metastatic UC of the bladder, 74 nonbladder, and 55 nonurothelial bladder cancers were profiled using mutation analysis, in situ hybridization, and immunohistochemistry assays for biomarkers predictive of therapy response. RESULTS Molecular profiling of UC showed high overexpression of topoisomerase 2α, common phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha and/or phosophatase and tensin homolog (PTEN) alterations in nonbladder (27%) and bladder UC (21%), and rare gene mutations across subtypes. Compared with nonbladder, bladder UC consistently exhibited more frequent abnormal protein expression, including HER2 (10% vs. 3%; P = .04), tyrosine protein c-Kit receptor kinases (11% vs. 5%), c-Met proto-oncogene, receptor tyrosine kinases (25% vs. 8%), androgen receptor (16% vs. 6%), O(6)-methylguanine-methyltransferase (63% vs. 43%), ribonucleotide reductase M1 (32% vs. 11%), Serum protein acidic and rich in cysteine (SPARC) (69% vs. 33%), and topoisomerase 1 (63% vs. 39%). Bladder UC also exhibited increased amplification of HER2 (12% vs. 2%; P = .06). CONCLUSION Comprehensive molecular profiling of UC identified a large number of biomarkers aberrations that might direct treatment in conventional chemotherapies and targeted therapies, not currently recommended in this population. As a group, bladder UC exhibited higher levels of actionable biomarkers, suggesting that UC from different primary sites and non-UC are driven by different molecular pathways. These differences could have clinical implications resulting in different treatment regimens depending on the site of origin of UC.
Collapse
Affiliation(s)
| | | | | | | | - Semir Vranic
- Department of Pathology, Clinical Center, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | | |
Collapse
|
11
|
Al-Batran SE, Werner D. Recent advances and future trends in the targeted therapy of metastatic gastric cancer. Expert Rev Gastroenterol Hepatol 2014; 8:555-69. [PMID: 24665840 DOI: 10.1586/17474124.2014.902304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The better understanding of the molecular mechanisms behind gastric cancer has led to the development of new therapeutic strategies that are likely to improve patient outcomes in the near future. Recently, targeting the HER2 and the VEGF pathways with trastuzumab and ramucirumab, respectively, have been found to improve survival, while directed therapies against a number of other pathways are under clinical evaluation. These include the hepatocyte growth factor and its receptor c-MET, the insulin-like growth factor 1, the fibroblast growth factor, the mammalian target of rapamycin (mTOR), the epidermal growth factor receptor, and other pathways, as well as relevant immunotherapeutic strategies. This article reviews recent advances and future trends of these concepts for gastric cancer and adenocarcinoma of the gastroesophageal junction.
Collapse
Affiliation(s)
- Salah-Eddin Al-Batran
- Krankenhaus Nordwest, UCT-University Cancer Center Frankfurt, Frankfurt am Main, Germany
| | | |
Collapse
|
12
|
Boku N, Muro K, Machida N, Hashigaki S, Kimura N, Suzuki M, Lechuga M, Miyata Y. Phase I study of sunitinib plus S-1 and cisplatin in Japanese patients with advanced or metastatic gastric cancer. Invest New Drugs 2014; 32:261-70. [PMID: 23665950 PMCID: PMC3945293 DOI: 10.1007/s10637-013-9948-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/01/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND This phase I, dose-finding study evaluated the maximum tolerated dose (MTD), safety, pharmacokinetics, and antitumor activity of sunitinib plus S-1/cisplatin in Japanese patients with advanced/metastatic gastric cancer. PATIENTS AND METHODS Patients received oral sunitinib on a continuous daily dosing (CDD) or 2-weeks-on/2-weeks-off schedule (Schedule 2/2; 25 mg/day or 37.5 mg/day), plus S-1 (80-120 mg/day)/cisplatin 60 mg/m(2). RESULTS Twenty-seven patients received treatment, including 26 patients treated per protocol (sunitinib 25 mg/day CDD schedule, n = 4; sunitinib 25 mg/day Schedule 2/2, n = 16 [dose-limiting toxicity (DLT) cohort, n = 6 plus expansion cohort, n = 10]; sunitinib 37.5 mg/day Schedule 2/2, n = 6). One patient erroneously self-administered sunitinib 12.5 mg/day and was excluded from the analyses. The MTD was sunitinib 25 mg/day on Schedule 2/2. DLTs were reported for: 2/4 patients given sunitinib 25 mg/day on the CDD schedule; 1/6 patients administered sunitinib 25 mg/day on Schedule 2/2 (grade [G] 3 neutropenic infection, G4 thrombocytopenia, and S-1 dose interruption ≥5 days), and 3/6 patients given sunitinib 37.5 mg/day on Schedule 2/2. Results below are for the overall MTD cohort (n = 16). The most frequently reported G3/4 adverse events were neutropenia (93.8 %) and leukopenia (75.0 %). The objective response rate was 37.5 %; six additional patients experienced no disease progression for ≥24 weeks. Median progression-free survival was 12.5 months. No pharmacokinetic drug-drug interactions were observed between sunitinib/S-1/cisplatin and S-1/cisplatin. CONCLUSIONS The MTD of sunitinib was 25 mg/day on Schedule 2/2 combined with cisplatin/S-1 in patients with advanced/metastatic gastric cancer. This regimen had a manageable safety profile and preliminary antitumor activity.
Collapse
Affiliation(s)
- Narikazu Boku
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang ZX, Sun J, Howell CE, Zhou QY, He ZX, Yang T, Chew H, Duan W, Zhou ZW, Kanwar JR, Zhou SF. Prediction of the likelihood of drug interactions with kinase inhibitors based on in vitro and computational studies. Fundam Clin Pharmacol 2014; 28:551-82. [DOI: 10.1111/fcp.12069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/17/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Zhi-Xin Wang
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa FL 33612 USA
| | - Jiazhi Sun
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa FL 33612 USA
| | - Caitlin E. Howell
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa FL 33612 USA
| | - Qing-Yu Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa FL 33612 USA
| | - Zhi-Xu He
- Guizhou Provincial Key Lab for Regenerative Medicine; Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences; Guiyang Medical University; Guiyang 550004 Guizhou China
| | - Tianxin Yang
- Department of Internal Medicine; University of Utah and Salt Lake Veterans Affairs Medical Center; Salt Lake City UT 84132 USA
| | - Helen Chew
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa FL 33612 USA
| | - Wei Duan
- School of Medicine; Deakin University; Waurn Ponds Victoria 3217 Australia
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa FL 33612 USA
| | - Jagat R. Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (LIMBR); School of Medicine; Deakin University; Waurn Ponds Victoria 3217 Australia
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa FL 33612 USA
- Guizhou Provincial Key Lab for Regenerative Medicine; Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences; Guiyang Medical University; Guiyang 550004 Guizhou China
| |
Collapse
|
14
|
Bilbao-Meseguer I, Jose BS, Lopez-Gimenez LR, Gil MA, Serrano L, Castaño M, Sautua S, Basagoiti AD, Belaustegui A, Baza B, Baskaran Z, Bustinza A. Drug interactions with sunitinib. J Oncol Pharm Pract 2014; 21:52-66. [PMID: 24403097 DOI: 10.1177/1078155213516158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Sunitinib is a tyrosine kinase inhibitor indicated for the treatment of gastrointestinal stromal tumor, advanced renal cell carcinoma, and pancreatic neuroendocrine tumors. The aim of this article is to describe the pharmacological interactions between sunitinib and commonly prescribed drugs. METHOD We reviewed available information on pharmacological interactions between sunitinib and concomitantly prescribed drugs. Drugs were grouped into different therapeutic groups according to the Anatomical Therapeutic Chemical (ATC) classification. RESULTS Sunitinib interacts with CYP3A4 inducers or inhibitors and with P-glycoprotein and ABCG2 substrates. Pharmacodynamic interactions with drugs have also been found. CONCLUSION Current information on drug interactions between sunitinib and other drugs is scarce and most of the times it is difficult to apply to clinical practice. Even so, this difficulty in managing drug interactions should not be a reason to ignore them as they can help to explain intolerances and treatment failures.
Collapse
Affiliation(s)
| | | | | | - Maria A Gil
- Hospital Universitario Cruces, Barakaldo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee KW, Park SR, Oh DY, Park YI, Khosravan R, Lin X, Lee SY, Roh EJ, Valota O, Lechuga MJ, Bang YJ. Phase I study of sunitinib plus capecitabine/cisplatin or capecitabine/oxaliplatin in advanced gastric cancer. Invest New Drugs 2013; 31:1547-58. [PMID: 24091982 DOI: 10.1007/s10637-013-0032-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/15/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND We evaluated the maximum tolerated dose (MTD) and safety of sunitinib plus capecitabine/cisplatin (XP) or capecitabine/oxaliplatin (XELOX) in Korean patients with advanced gastric cancer (GC). METHODS Sunitinib (37.5 or 25 mg/day) was administered on a 2-week-on/1-week-off schedule with chemotherapy. Assessments included dose-limiting toxicity (DLT), safety, pharmacokinetics, and antitumor activity. RESULTS Twenty-eight patients received sunitinib/XP; 48 received sunitinib/XELOX. The MTDs were: sunitinib 25 mg/day, cisplatin 80 mg/m(2), and capecitabine 1,000 mg/m(2); sunitinib 37.5 mg/day, oxaliplatin 110 mg/m(2), and capecitabine 800 mg/m(2); and sunitinib 25 mg/day, oxaliplatin 110 mg/m(2), and capecitabine 1,000 mg/m(2). DLTs at the MTDs comprised grade (G) 4 febrile neutropenia plus G3 diarrhea (n = 1; sunitinib/XP), dose delays due to hematologic toxicity (n = 2; both sunitinib/XP), G3 bleeding (menorrhagia; n = 1; sunitinib/XELOX), and G3 increased alanine aminotransferase levels (n = 1; sunitinib/XELOX). There was a high frequency of G3/4 hematologic adverse events observed with both treatment regimens, particularly with sunitinib/XP. Frequent non-hematologic, G3/4 adverse events were nausea, stomatitis, and hypophosphatemia with sunitinib/XP and hypophosphatemia and pulmonary embolism with sunitinib/XELOX. No drug-drug interactions were apparent. At the MTDs, median progression-free survival was 6.4 months and 5.5-8.0 months for sunitinib/XP and sunitinib/XELOX, respectively; and the objective response rate was 46.7% and 43.5-45.5% for sunitinib/XP and sunitinib/XELOX, respectively. CONCLUSIONS At the MTD, sunitinib/XELOX had an acceptable safety profile in patients with advanced GC.
Collapse
Affiliation(s)
- K-W Lee
- Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|