1
|
Chaudhary U, Kumar P, Sharma P, Chikara A, Barua A, Mahiya K, Adhikari Subin J, Nath Yadav P, Raj Pokharel Y. Synthesis of 5-hydroxyisatin thiosemicarbazones, spectroscopic investigation, protein-ligand docking, and in vitro anticancer activity. Bioorg Chem 2024; 153:107872. [PMID: 39442462 DOI: 10.1016/j.bioorg.2024.107872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
A series of novel modifications were performed at the N(4) position of 5-hydroxyisatin thiosemicarbazone (TSC). The structure-activity approach is applied to design and synthesize derivatives by condensing thiosemicarbazides with 5-hydroxy isatin. The TSCs were characterized by various spectroscopic techniques viz. FTIR, 1H NMR, 13C NMR, UV-Vis, HRMS data, CHN elemental analysis, and single crystal X-ray diffraction. Biological evaluation of the synthesized compounds revealed the anticancer potency of the TSC analogues against breast cancer (MD-AMD-231, MCF-7), lung cancer (A549, NCI-H460), prostate cancer (PC3), and skin cancer (A431). The molecules, L2, L3, and L6 showed activity in the micromolar range (IC50; 0.19-2.19 μM). L6 exhibited the highest potency against skin cancer A431 cell line, with an IC50 of 0.19 μM compared to 1.8 μM with triapine and showed low toxicity against PNT-2 cells with an SI index of >100 μM. The mechanistic study revealed that L6 inhibited cancer cell proliferation, colony formation, and 3-dimensional spheroid formation by targeting the Ras/MAPK axis. It induced DNA damage and impaired DNA damage repair machinery, which led to the accumulation of DSB. Also, it lowered the ERK1/2 expression, which affected the caspase 3 activity and showed higher binding affinity compared to the FDA-approved drug Lenalidomide in molecular docking studies. Our findings demonstrated the possible future anticancer drug potency of L6 in the skin cancer A431 cells.
Collapse
Affiliation(s)
- Upendra Chaudhary
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Piyush Kumar
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Pratibha Sharma
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Anshul Chikara
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Ayanti Barua
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Kuldeep Mahiya
- Department of Chemistry, F G M Government College, Adampur, Mandi Adampur, Hisar 125052, Haryana, India
| | - Jhashanath Adhikari Subin
- Scientific Research and Training Nepal P. Ltd., Bioinformatics and Cheminformatics Division, Kaushaltar, Bhaktapur, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| | - Yuba Raj Pokharel
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India.
| |
Collapse
|
2
|
Antiproliferative Activity and DNA Interaction Studies of a Series of N4,N4-Dimethylated Thiosemicarbazone Derivatives. Molecules 2023; 28:molecules28062778. [PMID: 36985750 PMCID: PMC10058200 DOI: 10.3390/molecules28062778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The exploitation of bioactive natural sources to obtain new anticancer agents with novel modes of action may represent an innovative and successful strategy in the field of medicinal chemistry. Many natural products and their chemical analogues have been proposed as starting molecules to synthesise compounds with increased biological potential. In this work, the design, synthesis, and characterisation of a new series of N4,N4-dimethylated thiosemicarbazone Cu(II), Ni(II), and Pt(II) complexes are reported and investigated for their in vitro toxicological profile against a leukaemia cell line (U937). The antiproliferative activity was studied by MTS assay to determine the GI50 value for each compound after 24 h of treatment, while the genotoxic potential was investigated to determine if the complexes could cause DNA damage. In addition, the interaction between the synthesised molecules and DNA was explored by means of spectroscopic techniques, showing that for Pt and Ni derivatives a single mode of action can be postulated, while the Cu analogue behaves differently.
Collapse
|
3
|
Zhao Y, Zheng Y, Zhu Y, Ding K, Zhou M, Liu T. Co-delivery of gemcitabine and Triapine by calcium carbonate nanoparticles against chemoresistant pancreatic cancer. Int J Pharm 2023; 636:122844. [PMID: 36925025 DOI: 10.1016/j.ijpharm.2023.122844] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/14/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023]
Abstract
Pancreatic cancer is a malignant disease with high mortality, and its systemic treatment strategy mainly focuses on chemotherapy. Yet, the overall prognosis of pancreatic cancer patients is still extremely poor with a low survival rate. Gemcitabine (GEM) is a widely used chemotherapeutic agent for the treatment of pancreatic cancer. However, GEM chemoresistance remains the major challenge. In this study, we prepared calcium carbonate nanoparticles (CaCO3 NPs) loaded with a nucleotide reductase inhibitor (Triapine) and GEM to suppress the GEM resistance of pancreatic cancer cells (PANC-1/GEM) and solve the problem of poor solubility of Triapine. CaCO3-GEM-Triapine NPs nano-formulations enhanced the therapeutic effect of GEM-based chemotherapy by inhibiting cancer cell proliferation, migration, and resistance to GEM using both 2D PANC-1/GEM cells and 3D tumor spheroids. The study indicated that CaCO3 NPs loaded with GEM and Triapine could provide an effective treatment option to overcome drug resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Yongmei Zhao
- School of Pharmacy, Nantong University, Nantong, China
| | - Yuanlin Zheng
- School of Pharmacy, Nantong University, Nantong, China
| | - Yan Zhu
- School of Pharmacy, Nantong University, Nantong, China
| | - Kai Ding
- School of Pharmacy, Nantong University, Nantong, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, China.
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia.
| |
Collapse
|
4
|
New Iron Metabolic Pathways and Chelation Targeting Strategies Affecting the Treatment of All Types and Stages of Cancer. Int J Mol Sci 2022; 23:ijms232213990. [PMID: 36430469 PMCID: PMC9696688 DOI: 10.3390/ijms232213990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
There is new and increasing evidence from in vitro, in vivo and clinical studies implicating the pivotal role of iron and associated metabolic pathways in the initiation, progression and development of cancer and in cancer metastasis. New metabolic and toxicity mechanisms and pathways, as well as genomic, transcription and other factors, have been linked to cancer and many are related to iron. Accordingly, a number of new targets for iron chelators have been identified and characterized in new anticancer strategies, in addition to the classical restriction of/reduction in iron supply, the inhibition of transferrin iron delivery, the inhibition of ribonucleotide reductase in DNA synthesis and high antioxidant potential. The new targets include the removal of excess iron from iron-laden macrophages, which affects anticancer activity; the modulation of ferroptosis; ferritin iron removal and the control of hyperferritinemia; the inhibition of hypoxia related to the role of hypoxia-inducible factor (HIF); modulation of the function of new molecular species such as STEAP4 metalloreductase and the metastasis suppressor N-MYC downstream-regulated gene-1 (NDRG1); modulation of the metabolic pathways of oxidative stress damage affecting mitochondrial function, etc. Many of these new, but also previously known associated iron metabolic pathways appear to affect all stages of cancer, as well as metastasis and drug resistance. Iron-chelating drugs and especially deferiprone (L1), has been shown in many recent studies to fulfill the role of multi-target anticancer drug linked to the above and also other iron targets, and has been proposed for phase II trials in cancer patients. In contrast, lipophilic chelators and their iron complexes are proposed for the induction of ferroptosis in some refractory or recurring tumors in drug resistance and metastasis where effective treatments are absent. There is a need to readdress cancer therapy and include therapeutic strategies targeting multifactorial processes, including the application of multi-targeting drugs involving iron chelators and iron-chelator complexes. New therapeutic protocols including drug combinations with L1 and other chelating drugs could increase anticancer activity, decrease drug resistance and metastasis, improve treatments, reduce toxicity and increase overall survival in cancer patients.
Collapse
|
5
|
Qin YY, Feng S, Zhang XD, Peng B. Screening of traditional Chinese medicine monomers as ribonucleotide reductase M2 inhibitors for tumor treatment. World J Clin Cases 2022; 10:11299-11312. [PMID: 36387821 PMCID: PMC9649558 DOI: 10.12998/wjcc.v10.i31.11299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ribonucleotide reductase (RR) is a key enzyme in tumor proliferation, especially its subunit-RRM2. Although there are multiple therapeutics for tumors, they all have certain limitations. Given their advantages, traditional Chinese medicine (TCM) monomers have become an important source of anti-tumor drugs. Therefore, screening and analysis of TCM monomers with RRM2 inhibition can provide a reference for further anti-tumor drug development.
AIM To screen and analyze potential anti-tumor TCM monomers with a good binding capacity to RRM2.
METHODS The Gene Expression Profiling Interactive Analysis database was used to analyze the level of RRM2 gene expression in normal and tumor tissues as well as RRM2's effect on the overall survival rate of tumor patients. TCM monomers that potentially act on RRM2 were screened via literature mining. Using AutoDock software, the screened monomers were docked with the RRM2 protein.
RESULTS The expression of RRM2 mRNA in multiple tumor tissues was significantly higher than that in normal tissues, and it was negatively correlated with the overall survival rate of patients with the majority of tumor types. Through literature mining, we discovered that berberine, ursolic acid, gambogic acid, cinobufagin, quercetin, daphnetin, and osalmide have inhibitory effects on RRM2. The results of molecular docking identified that the above TCM monomers have a strong binding capacity with RRM2 protein, which mainly interacted through hydrogen bonds and hydrophobic force. The main binding sites were Arg330, Tyr323, Ser263, and Met350.
CONCLUSION RRM2 is an important tumor therapeutic target. The TCM monomers screened have a good binding capacity with the RRM2 protein.
Collapse
Affiliation(s)
- Ya-Ya Qin
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Song Feng
- School of Basic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Dong Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Bin Peng
- School of Basic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
6
|
Mechanistic Insights of Chelator Complexes with Essential Transition Metals: Antioxidant/Pro-Oxidant Activity and Applications in Medicine. Int J Mol Sci 2022; 23:ijms23031247. [PMID: 35163169 PMCID: PMC8835618 DOI: 10.3390/ijms23031247] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
The antioxidant/pro-oxidant activity of drugs and dietary molecules and their role in the maintenance of redox homeostasis, as well as the implications in health and different diseases, have not yet been fully evaluated. In particular, the redox activity and other interactions of drugs with essential redox metal ions, such as iron and copper, need further investigation. These metal ions are ubiquitous in human nutrition but also widely found in dietary supplements and appear to exert major effects on redox homeostasis in health, but also on many diseases of free radical pathology. In this context, the redox mechanistic insights of mainly three prototype groups of drugs, namely alpha-ketohydroxypyridines (alpha-hydroxypyridones), e.g., deferiprone, anthraquinones, e.g., doxorubicin and thiosemicarbazones, e.g., triapine and their metal complexes were examined; details of the mechanisms of their redox activity were reviewed, with emphasis on the biological implications and potential clinical applications, including anticancer activity. Furthermore, the redox properties of these three classes of chelators were compared to those of the iron chelating drugs and also to vitamin C, with an emphasis on their potential clinical interactions and future clinical application prospects in cancer, neurodegenerative and other diseases.
Collapse
|
7
|
Babak MV, Ahn D. Modulation of Intracellular Copper Levels as the Mechanism of Action of Anticancer Copper Complexes: Clinical Relevance. Biomedicines 2021; 9:biomedicines9080852. [PMID: 34440056 PMCID: PMC8389626 DOI: 10.3390/biomedicines9080852] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022] Open
Abstract
Copper (Cu) is a vital element required for cellular growth and development; however, even slight changes in its homeostasis might lead to severe toxicity and deleterious medical conditions. Cancer patients are typically associated with higher Cu content in serum and tumor tissues, indicating increased demand of cancer cells for this micronutrient. Cu is known to readily cycle between the +1 and +2 oxidation state in biological systems. The mechanism of action of Cu complexes is typically based on their redox activity and induction of reactive oxygen species (ROS), leading to deadly oxidative stress. However, there are a number of other biomolecular mechanisms beyond ROS generation that contribute to the activity of anticancer Cu drug candidates. In this review, we discuss how interfering with intracellular Cu balance via either diet modification or addition of inorganic Cu supplements or Cu-modulating compounds affects tumor development, progression, and sensitivity to treatment modalities. We aim to provide the rationale for the use of Cu-depleting and Cu-overloading conditions to generate the best possible patient outcome with minimal toxicity. We also discuss the advantages of the use of pre-formed Cu complexes, such as Cu-(bis)thiosemicarbazones or Cu-N-heterocyclic thiosemicarbazones, in comparison with the in situ formed Cu complexes with metal-binding ligands. In this review, we summarize available clinical and mechanistic data on clinically relevant anticancer drug candidates, including Cu supplements, Cu chelators, Cu ionophores, and Cu complexes.
Collapse
|
8
|
Stepanenko I, Babak MV, Spengler G, Hammerstad M, Popovic-Bijelic A, Shova S, Büchel GE, Darvasiova D, Rapta P, Arion VB. Coumarin-Based Triapine Derivatives and Their Copper(II) Complexes: Synthesis, Cytotoxicity and mR2 RNR Inhibition Activity. Biomolecules 2021; 11:biom11060862. [PMID: 34207929 PMCID: PMC8230303 DOI: 10.3390/biom11060862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/03/2023] Open
Abstract
A series of thiosemicarbazone-coumarin hybrids (HL1-HL3 and H2L4) has been synthesised in 12 steps and used for the preparation of mono- and dinuclear copper(II) complexes, namely Cu(HL1)Cl2 (1), Cu(HL2)Cl2 (2), Cu(HL3)Cl2 (3) and Cu2(H2L4)Cl4 (4), isolated in hydrated or solvated forms. Both the organic hybrids and their copper(II) and dicopper(II) complexes were comprehensively characterised by analytical and spectroscopic techniques, i.e., elemental analysis, ESI mass spectrometry, 1D and 2D NMR, IR and UV–vis spectroscopies, cyclic voltammetry (CV) and spectroelectrochemistry (SEC). Re-crystallisation of 1 from methanol afforded single crystals of copper(II) complex with monoanionic ligand Cu(L1)Cl, which could be studied by single crystal X-ray diffraction (SC-XRD). The prepared copper(II) complexes and their metal-free ligands revealed antiproliferative activity against highly resistant cancer cell lines, including triple negative breast cancer cells MDA-MB-231, sensitive COLO-205 and multidrug resistant COLO-320 colorectal adenocarcinoma cell lines, as well as in healthy human lung fibroblasts MRC-5 and compared to those for triapine and doxorubicin. In addition, their ability to reduce the tyrosyl radical in mouse R2 protein of ribonucleotide reductase has been ascertained by EPR spectroscopy and the results were compared with those for triapine.
Collapse
Affiliation(s)
- Iryna Stepanenko
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
- Correspondence: (I.S.); (V.B.A.)
| | - Maria V. Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 518057, China;
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Faculty of Medicine, University of Szeged, Semmelweis utca 6, H-6725 Szeged, Hungary;
| | - Marta Hammerstad
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway;
| | - Ana Popovic-Bijelic
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12–16, 11158 Belgrade, Serbia;
| | - Sergiu Shova
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania;
| | | | - Denisa Darvasiova
- Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia; (D.D.); (P.R.)
| | - Peter Rapta
- Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia; (D.D.); (P.R.)
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
- Correspondence: (I.S.); (V.B.A.)
| |
Collapse
|
9
|
Abstract
Cancer cells accumulate iron to supplement their aberrant growth and metabolism. Depleting cells of iron by iron chelators has been shown to be selectively cytotoxic to cancer cells in vitro and in vivo. Iron chelators are effective at combating a range of cancers including those which are difficult to treat such as androgen insensitive prostate cancer and cancer stem cells. This review will evaluate the impact of iron chelation on cancer cell survival and the underlying mechanisms of action. A plethora of studies have shown iron chelators can reverse some of the major hallmarks and enabling characteristics of cancer. Iron chelators inhibit signalling pathways that drive proliferation, migration and metastasis as well as return tumour suppressive signalling. In addition to this, iron chelators stimulate apoptotic and ER stress signalling pathways inducing cell death even in cells lacking a functional p53 gene. Iron chelators can sensitise cancer cells to PARP inhibitors through mimicking BRCAness; a feature of cancers trademark genomic instability. Iron chelators target cancer cell metabolism, attenuating oxidative phosphorylation and glycolysis. Moreover, iron chelators may reverse the major characteristics of oncogenic transformation. Iron chelation therefore represent a promising selective mode of cancer therapy.
Collapse
|
10
|
Inhibiting RRM2 to enhance the anticancer activity of chemotherapy. Biomed Pharmacother 2020; 133:110996. [PMID: 33227712 DOI: 10.1016/j.biopha.2020.110996] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
RRM2, the small subunit of ribonucleotide reductase, is identified as a tumor promotor and therapeutic target. It is common to see the overexpression of RRM2 in chemo-resistant cancer cells and patients. RRM2 mediates the resistance of many chemotherapeutic drugs and could become the predictor for chemosensitivity and prognosis. Therefore, inhibition of RRM2 may be an effective means to enhance the anticancer activity of chemotherapy. This review tries to discuss the mechanisms of RRM2 overexpression and the role of RRM2 in resistance to chemotherapy. Additionally, we compile the studies on small interfering RNA targets RRM2, RRM2 inhibitors, kinase inhibitors, and other ways that could overcome the resistance of chemotherapy or exert synergistic anticancer activity with chemotherapy through the expression inhibition or the enzyme inactivation of RRM2.
Collapse
|
11
|
Ohui K, Stepanenko I, Besleaga I, Babak MV, Stafi R, Darvasiova D, Giester G, Pósa V, Enyedy EA, Vegh D, Rapta P, Ang WH, Popović-Bijelić A, Arion VB. Triapine Derivatives Act as Copper Delivery Vehicles to Induce Deadly Metal Overload in Cancer Cells. Biomolecules 2020; 10:biom10091336. [PMID: 32961653 PMCID: PMC7564244 DOI: 10.3390/biom10091336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Thiosemicarbazones continue to attract the interest of researchers as potential anticancer drugs. For example, 3-aminopyridine-2-carboxaldehyde thiosemicarbazone, or triapine, is the most well-known representative of this class of compounds that has entered multiple phase I and II clinical trials. Two new triapine derivatives HL1 and HL2 were prepared by condensation reactions of 2-pyridinamidrazone and S-methylisothiosemicarbazidium chloride with 3-N-(tert-butyloxycarbonyl) amino-pyridine-2-carboxaldehyde, followed by a Boc-deprotection procedure. Subsequent reaction of HL1 and HL2 with CuCl2·2H2O in 1:1 molar ratio in methanol produced the complexes [CuII(HL1)Cl2]·H2O (1·H2O) and [CuII(HL2)Cl2] (2). The reaction of HL2 with Fe(NO3)3∙9H2O in 2:1 molar ratio in the presence of triethylamine afforded the complex [FeIII(L2)2]NO3∙0.75H2O (3∙0.75H2O), in which the isothiosemicarbazone acts as a tridentate monoanionic ligand. The crystal structures of HL1, HL2 and metal complexes 1 and 2 were determined by single crystal X-ray diffraction. The UV-Vis and EPR spectroelectrochemical measurements revealed that complexes 1 and 2 underwent irreversible reduction of Cu(II) with subsequent ligand release, while 3 showed an almost reversible electrochemical reduction in dimethyl sulfoxide (DMSO). Aqueous solution behaviour of HL1 and 1, as well as of HL2 and its complex 2, was monitored as well. Complexes 1−3 were tested against ovarian carcinoma cells, as well as noncancerous embryonic kidney cells, in comparison to respective free ligands, triapine and cisplatin. While the free ligands HL1 and HL2 were devoid of antiproliferative activity, their respective metal complexes showed remarkable antiproliferative activity in a micromolar concentration range. The activity was not related to the inhibition of ribonucleotide reductase (RNR) R2 protein, but rather to cancer cell homeostasis disturbance—leading to the disruption of cancer cell signalling.
Collapse
Affiliation(s)
- Kateryna Ohui
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria; (K.O.); (I.B.); (R.S.)
| | - Iryna Stepanenko
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria; (K.O.); (I.B.); (R.S.)
- Correspondence: (I.S.); (V.B.A.)
| | - Iuliana Besleaga
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria; (K.O.); (I.B.); (R.S.)
| | - Maria V. Babak
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore;
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Radu Stafi
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria; (K.O.); (I.B.); (R.S.)
| | - Denisa Darvasiova
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia; (D.D.); (P.R.)
| | - Gerald Giester
- Department of Mineralogy and Crystallography, University of Vienna, Althan Strasse 14, A-1090 Vienna, Austria;
| | - Vivien Pósa
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (V.P.); (E.A.E.)
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Eva A. Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (V.P.); (E.A.E.)
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Daniel Vegh
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Department of Organic Chemistry, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia;
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia; (D.D.); (P.R.)
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore;
| | - Ana Popović-Bijelić
- Faculty of Physical Chemistry, University of Belgrade, 11158 Belgrade, Serbia;
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria; (K.O.); (I.B.); (R.S.)
- Correspondence: (I.S.); (V.B.A.)
| |
Collapse
|
12
|
Selenotriapine – An isostere of the most studied thiosemicarbazone with pronounced pro-apoptotic activity, low toxicity and ability to challenge phenotype reprogramming of 3-D mammary adenocarcinoma tumors. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
13
|
EZH2 cooperates with E2F1 to stimulate expression of genes involved in adrenocortical carcinoma aggressiveness. Br J Cancer 2019; 121:384-394. [PMID: 31363169 PMCID: PMC6738105 DOI: 10.1038/s41416-019-0538-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 11/08/2022] Open
Abstract
Background EZH2 is overexpressed and associated with poor prognosis in adrenocortical carcinoma (ACC) and its inhibition reduces growth and aggressiveness of ACC cells in culture. Although EZH2 was identified as the methyltransferase that deposits the repressive H3K27me3 histone mark, it can cooperate with transcription factors to stimulate gene transcription. Methods We used bioinformatics approaches on gene expression data from three cohorts of patients and a mouse model of EZH2 ablation, to identify targets and mode of action of EZH2 in ACC. This was followed by ChIP and functional assays to evaluate contribution of identified targets to ACC pathogenesis. Results We show that EZH2 mostly works as a transcriptional inducer in ACC, through cooperation with the transcription factor E2F1 and identify three positive targets involved in cell cycle regulation and mitosis i.e., RRM2, PTTG1 and ASE1/PRC1. Overexpression of these genes is associated with poor prognosis, suggesting a potential role in acquisition of aggressive ACC features. Pharmacological and siRNA-mediated inhibition of RRM2 blocks cell proliferation, induces apoptosis and inhibits cell migration, suggesting that it may be an interesting target in ACC. Conclusions Altogether, these data show an unexpected role of EZH2 and E2F1 in stimulating expression of genes associated with ACC aggressiveness.
Collapse
|
14
|
Structural analysis and biological functionalities of iron(III)– and manganese(III)–thiosemicarbazone complexes: in vitro anti-proliferative activity on human cancer cells, DNA binding and cleavage studies. J Biol Inorg Chem 2019; 24:365-376. [DOI: 10.1007/s00775-019-01653-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/13/2019] [Indexed: 01/28/2023]
|
15
|
Chen G, Niu C, Yi J, Sun L, Cao H, Fang Y, Jin T, Li Y, Lou C, Kang J, Wei W, Zhu J. Novel Triapine Derivative Induces Copper-Dependent Cell Death in Hematopoietic Cancers. J Med Chem 2019; 62:3107-3121. [PMID: 30835473 DOI: 10.1021/acs.jmedchem.8b01996] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Triapine, an iron chelator that inhibits ribonucleotide reductase, has been evaluated in clinical trials for cancer treatment. Triapine in combination with other chemotherapeutic agents shows promising efficacy in certain hematologic malignancies; however, it is less effective against many advanced solid tumors, probably due to the unsatisfactory potency and pharmacokinetic properties. In this report, we developed a triapine derivative IC25 (10) with potent antitumor activity. 10 Preferentially inhibited the proliferation of hematopoietic cancers by inducing mitochondria reactive oxygen species production and mitochondrial dysfunction. Unlike triapine, 10 executed cytotoxic action in a copper-dependent manner. 10-Induced up-expression of thioredoxin-interacting protein resulted in decreased thioredoxin activity to permit c-Jun N-terminal kinase and p38 activation and ultimately led to the execution of the cell death program. Remarkedly, 10 showed good bioavailability and inhibited tumor growth in mouse xenograft models. Taken together, our study identifies compound 10 as a copper-dependent antitumor agent, which may be applied to the treatment of hematopoietic cancers.
Collapse
Affiliation(s)
- Ge Chen
- CAS Center for Excellence in Molecular Cell Science , Shanghai Institutes of Biochemistry and Cell Biology, Chinese Academy of Sciences , Shanghai 200031 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | | | | | - Hengyi Cao
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | - Taijie Jin
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | | | | | - Wanguo Wei
- Shanghai Advanced Research Institute , Chinese Academy of Sciences , Shanghai 201210 , China
| | | |
Collapse
|
16
|
Matsumoto J, Kiesel BF, Parise RA, Guo J, Taylor S, Huang M, Eiseman JL, Ivy SP, Kunos C, Chu E, Beumer JH. LC-MS/MS assay for the quantitation of the ribonucleotide reductase inhibitor triapine in human plasma. J Pharm Biomed Anal 2017; 146:154-160. [PMID: 28881312 DOI: 10.1016/j.jpba.2017.08.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
The ribonucleotide reductase inhibitor and radiosensitizer triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP), NSC 663249) is clinically being evaluated via the intravenous (IV) route for the treatment of cervical and vulvar cancer in combination with primary cisplatin chemoradiation. The need for a 2-h infusion and frequent administration of triapine is logistically challenging, prompting us to pursue oral (PO) administration. In support of the clinical trial investigating oral triapine in combination with chemoradiation, we developed and validated a novel LC-MS/MS assay for the quantification of triapine in 50μL human plasma. After protein precipitation, chromatographic separation of the supernatant was achieved with a Shodex ODP2 column and an isocratic acetonitrile-water mobile phase with 10% ammonium acetate. Detection with an ABI 4000 mass spectrometer utilized electrospray positive mode ionization. The assay was linear from 3 to 3,000ng/mL and proved to be accurate (97.1-103.1%) and precise (<7.4% CV), and met the U.S. FDA guidance for bioanalytical method validation. This LC-MS/MS assay will be an essential tool to further define the pharmacokinetics and oral bioavailability of triapine.
Collapse
Affiliation(s)
- Julia Matsumoto
- Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States; School of Pharmaceutical Sciences, Sao Paulo State University, Araraquara, SP, Brazil
| | - Brian F Kiesel
- Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert A Parise
- Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Jianxia Guo
- Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Sarah Taylor
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Medicine, University of Pittsburgh-Magee Women's Hospital, Pittsburgh, PA, United States
| | - Marilyn Huang
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Medicine, University of Pittsburgh-Magee Women's Hospital, Pittsburgh, PA, United States
| | - Julie L Eiseman
- Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States; Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - S Percy Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, United States
| | - Charles Kunos
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, United States
| | - Edward Chu
- Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States; Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jan H Beumer
- Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States; Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
17
|
Mannargudi MB, Deb S. Clinical pharmacology and clinical trials of ribonucleotide reductase inhibitors: is it a viable cancer therapy? J Cancer Res Clin Oncol 2017. [PMID: 28624910 DOI: 10.1007/s00432-017-2457-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Ribonucleotide reductase (RR) enzymes (RR1 and RR2) play an important role in the reduction of ribonucleotides to deoxyribonucleotides which is involved in DNA replication and repair. Augmented RR activity has been ascribed to uncontrolled cell growth and tumorigenic transformation. METHODS This review mainly focuses on several biological and chemical RR inhibitors (e.g., siRNA, GTI-2040, GTI-2501, triapine, gemcitabine, and clofarabine) that have been evaluated in clinical trials with promising anticancer activity from 1960's till 2016. A summary on whether their monotherapy or combination is still effective for further use is discussed. RESULTS Among the RR2 inhibitors evaluated, GTI-2040, siRNA, gallium nitrate and didox were more efficacious as a monotherapy, whereas triapine was found to be more efficacious as combination agent. Hydroxyurea is currently used more in combination therapy, even though it is efficacious as a monotherapy. Gallium nitrate showed mixed results in combination therapy, while the combination activity of didox is yet to be evaluated. RR1 inhibitors that have long been used in chemotherapy such as gemcitabine, cladribine, fludarabine and clofarabine are currently used mostly as a combination therapy, but are equally efficacious as a monotherapy, except tezacitabine which did not progress beyond phase I trials. CONCLUSIONS Based on the results of clinical trials, we conclude that RR inhibitors are viable treatment options, either as a monotherapy or as a combination in cancer chemotherapy. With the recent advances made in cancer biology, further development of RR inhibitors with improved efficacy and reduced toxicity is possible for treatment of variety of cancers.
Collapse
Affiliation(s)
- Mukundan Baskar Mannargudi
- Clinical Pharmacology Program, Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Subrata Deb
- Department of Biopharmaceutical Sciences, Roosevelt University College of Pharmacy, 1400 N. Roosevelt Blvd., Schaumburg, IL, 60173, USA.
| |
Collapse
|
18
|
Wadhwa P, Bagchi S, Sharma A. A Regioselective Multicomponent Cascade to Access Thiosemicarbazone-fused Thiazinones: Scope, Structure Elucidation and Gram Scale Synthesis. ChemistrySelect 2017. [DOI: 10.1002/slct.201601609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Preeti Wadhwa
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee- 247667 India
| | - Sourav Bagchi
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee- 247667 India
| | - Anuj Sharma
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee- 247667 India
| |
Collapse
|
19
|
Potůčková E, Roh J, Macháček M, Sahni S, Stariat J, Šesták V, Jansová H, Hašková P, Jirkovská A, Vávrová K, Kovaříková P, Kalinowski DS, Richardson DR, Šimůnek T. In Vitro Characterization of the Pharmacological Properties of the Anti-Cancer Chelator, Bp4eT, and Its Phase I Metabolites. PLoS One 2015; 10:e0139929. [PMID: 26460540 PMCID: PMC4604124 DOI: 10.1371/journal.pone.0139929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/19/2015] [Indexed: 12/01/2022] Open
Abstract
Cancer cells have a high iron requirement and many experimental studies, as well as clinical trials, have demonstrated that iron chelators are potential anti-cancer agents. The ligand, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), demonstrates both potent anti-neoplastic and anti-retroviral properties. In this study, Bp4eT and its recently identified amidrazone and semicarbazone metabolites were examined and compared with respect to their anti-proliferative activity towards cancer cells (HL-60 human promyelocytic leukemia, MCF-7 human breast adenocarcinoma, HCT116 human colon carcinoma and A549 human lung adenocarcinoma), non-cancerous cells (H9c2 neonatal rat-derived cardiomyoblasts and 3T3 mouse embryo fibroblasts) and their interaction with intracellular iron pools. Bp4eT was demonstrated to be a highly potent and selective anti-neoplastic agent that induces S phase cell cycle arrest, mitochondrial depolarization and apoptosis in MCF-7 cells. Both semicarbazone and amidrazone metabolites showed at least a 300-fold decrease in cytotoxic activity than Bp4eT towards both cancer and normal cell lines. The metabolites also lost the ability to: (1) promote the redox cycling of iron; (2) bind and mobilize iron from labile intracellular pools; and (3) prevent 59Fe uptake from 59Fe-labeled transferrin by MCF-7 cells. Hence, this study demonstrates that the highly active ligand, Bp4eT, is metabolized to non-toxic and pharmacologically inactive analogs, which most likely contribute to its favorable pharmacological profile. These findings are important for the further development of this drug candidate and contribute to the understanding of the structure-activity relationships of these agents.
Collapse
Affiliation(s)
- Eliška Potůčková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Jaroslav Roh
- Department of Inorganic and Organic Chemistry, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Miloslav Macháček
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Bosch Institute and Department of Pathology, University of Sydney, Sydney, Australia
| | - Ján Stariat
- Department of Pharmaceutical Chemistry and Drug Analysis, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Vít Šesták
- Department of Pharmaceutical Chemistry and Drug Analysis, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Hana Jansová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Pavlína Hašková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Anna Jirkovská
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Kateřina Vávrová
- Department of Inorganic and Organic Chemistry, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Petra Kovaříková
- Department of Pharmaceutical Chemistry and Drug Analysis, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Danuta S. Kalinowski
- Molecular Pharmacology and Pathology Program, Bosch Institute and Department of Pathology, University of Sydney, Sydney, Australia
| | - Des R. Richardson
- Molecular Pharmacology and Pathology Program, Bosch Institute and Department of Pathology, University of Sydney, Sydney, Australia
- * E-mail: (TS); (DRR)
| | - Tomáš Šimůnek
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
- * E-mail: (TS); (DRR)
| |
Collapse
|
20
|
Cabrera M, Gomez N, Remes Lenicov F, Echeverría E, Shayo C, Moglioni A, Fernández N, Davio C. G2/M Cell Cycle Arrest and Tumor Selective Apoptosis of Acute Leukemia Cells by a Promising Benzophenone Thiosemicarbazone Compound. PLoS One 2015; 10:e0136878. [PMID: 26360247 PMCID: PMC4567328 DOI: 10.1371/journal.pone.0136878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/09/2015] [Indexed: 01/10/2023] Open
Abstract
Anti-mitotic therapies have been considered a hallmark in strategies against abnormally proliferating cells. Focusing on the extensively studied family of thiosemicarbazone (TSC) compounds, we have previously identified 4,4'-dimethoxybenzophenone thiosemicarbazone (T44Bf) as a promising pharmacological compound in a panel of human leukemia cell lines (HL60, U937, KG1a and Jurkat). Present findings indicate that T44Bf-mediated antiproliferative effects are associated with a reversible chronic mitotic arrest caused by defects in chromosome alignment, followed by induced programmed cell death. Furthermore, T44Bf selectively induces apoptosis in leukemia cell lines when compared to normal peripheral blood mononuclear cells. The underlying mechanism of action involves the activation of the mitochondria signaling pathway, with loss of mitochondrial membrane potential and sustained phosphorylation of anti-apoptotic protein Bcl-xL as well as increased Bcl-2 (enhanced phosphorylated fraction) and pro-apoptotic protein Bad levels. In addition, ERK signaling pathway activation was found to be a requisite for T44Bf apoptotic activity. Our findings further describe a novel activity for a benzophenone thiosemicarbazone and propose T44Bf as a promising anti-mitotic prototype to develop chemotherapeutic agents to treat acute leukemia malignancies.
Collapse
Affiliation(s)
- Maia Cabrera
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica (ININFA-UBA-CONICET), Buenos Aires, Argentina
- * E-mail:
| | - Natalia Gomez
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica (ININFA-UBA-CONICET), Buenos Aires, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, (INBIRS-UBA-CONICET), Buenos Aires, Argentina
| | - Emiliana Echeverría
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica (ININFA-UBA-CONICET), Buenos Aires, Argentina
| | - Carina Shayo
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Albertina Moglioni
- Instituto de Química y Metabolismo del Fármaco, Facultad de Farmacia y Bioquímica, (IQUIMEFA-UBA-CONICET), Buenos Aires, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Fernández
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica (ININFA-UBA-CONICET), Buenos Aires, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica (ININFA-UBA-CONICET), Buenos Aires, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Abstract
The severity of the toxic side effects of chemotherapy shows a great deal of interindividual variability, and much of this variation is likely genetically based. Simple DNA tests predictive of toxic side effects could revolutionize the way chemotherapy is carried out. Due to the challenges in identifying polymorphisms that affect toxicity in humans, we use Drosophila fecundity following oral exposure to carboplatin, gemcitabine and mitomycin C as a model system to identify naturally occurring DNA variants predictive of toxicity. We use the Drosophila Synthetic Population Resource (DSPR), a panel of recombinant inbred lines derived from a multiparent advanced intercross, to map quantitative trait loci affecting chemotoxicity. We identify two QTL each for carboplatin and gemcitabine toxicity and none for mitomycin. One QTL is associated with fly orthologs of a priori human carboplatin candidate genes ABCC2 and MSH2, and a second QTL is associated with fly orthologs of human gemcitabine candidate genes RRM2 and RRM2B. The third, a carboplatin QTL, is associated with a posteriori human orthologs from solute carrier family 7A, INPP4A&B, and NALCN. The fourth, a gemcitabine QTL that also affects methotrexate toxicity, is associated with human ortholog GPx4. Mapped QTL each explain a significant fraction of variation in toxicity, yet individual SNPs and transposable elements in the candidate gene regions fail to singly explain QTL peaks. Furthermore, estimates of founder haplotype effects are consistent with genes harboring several segregating functional alleles. We find little evidence for nonsynonymous SNPs explaining mapped QTL; thus it seems likely that standing variation in toxicity is due to regulatory alleles.
Collapse
|
22
|
Feng Y, Kunos CA, Xu Y. Determination of triapine, a ribonucleotide reductase inhibitor, in human plasma by liquid chromatography tandem mass spectrometry. Biomed Chromatogr 2015; 29:1380-7. [DOI: 10.1002/bmc.3434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/17/2014] [Accepted: 12/29/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Ye Feng
- Department of Chemistry; Cleveland State University; 2121 Euclid Ave Cleveland OH 44115 USA
| | - Charles A. Kunos
- Case Comprehensive Cancer Center; Case Western Reserve University; 2103 Cornell Road Cleveland OH 44106 USA
| | - Yan Xu
- Department of Chemistry; Cleveland State University; 2121 Euclid Ave Cleveland OH 44115 USA
- Case Comprehensive Cancer Center; Case Western Reserve University; 2103 Cornell Road Cleveland OH 44106 USA
| |
Collapse
|
23
|
2-Butyl-4-chloroimidazole based substituted piperazine-thiosemicarbazone hybrids as potent inhibitors of Mycobacterium tuberculosis. Bioorg Med Chem Lett 2014; 24:5520-4. [DOI: 10.1016/j.bmcl.2014.09.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/25/2014] [Accepted: 09/27/2014] [Indexed: 11/22/2022]
|
24
|
Lane DJR, Mills TM, Shafie NH, Merlot AM, Saleh Moussa R, Kalinowski DS, Kovacevic Z, Richardson DR. Expanding horizons in iron chelation and the treatment of cancer: role of iron in the regulation of ER stress and the epithelial-mesenchymal transition. Biochim Biophys Acta Rev Cancer 2014; 1845:166-81. [PMID: 24472573 DOI: 10.1016/j.bbcan.2014.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/14/2014] [Indexed: 12/19/2022]
Abstract
Cancer is a major public health issue and, despite recent advances, effective clinical management remains elusive due to intra-tumoural heterogeneity and therapeutic resistance. Iron is a trace element integral to a multitude of metabolic processes, including DNA synthesis and energy transduction. Due to their generally heightened proliferative potential, cancer cells have a greater metabolic demand for iron than normal cells. As such, iron metabolism represents an important "Achilles' heel" for cancer that can be targeted by ligands that bind and sequester intracellular iron. Indeed, novel thiosemicarbazone chelators that act by a "double punch" mechanism to both bind intracellular iron and promote redox cycling reactions demonstrate marked potency and selectivity in vitro and in vivo against a range of tumours. The general mechanisms by which iron chelators selectively target tumour cells through the sequestration of intracellular iron fall into the following categories: (1) inhibition of cellular iron uptake/promotion of iron mobilisation; (2) inhibition of ribonucleotide reductase, the rate-limiting, iron-containing enzyme for DNA synthesis; (3) induction of cell cycle arrest; (4) promotion of localised and cytotoxic reactive oxygen species production by copper and iron complexes of thiosemicarbazones (e.g., Triapine(®) and Dp44mT); and (5) induction of metastasis and tumour suppressors (e.g., NDRG1 and p53, respectively). Emerging evidence indicates that chelators can further undermine the cancer phenotype via inhibiting the epithelial-mesenchymal transition that is critical for metastasis and by modulating ER stress. This review explores the "expanding horizons" for iron chelators in selectively targeting cancer cells.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas M Mills
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nurul H Shafie
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rayan Saleh Moussa
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
25
|
Shao J, Liu X, Zhu L, Yen Y. Targeting ribonucleotide reductase for cancer therapy. Expert Opin Ther Targets 2013; 17:1423-37. [PMID: 24083455 DOI: 10.1517/14728222.2013.840293] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Ribonucleotide reductase (RR) is a unique enzyme, because it is responsible for reducing ribonucleotides to their corresponding deoxyribonucleotides, which are the building blocks required for DNA replication and repair. Dysregulated RR activity is associated with genomic instability, malignant transformation and cancer development. The use of RR inhibitors, either as a single agent or combined with other therapies, has proven to be a promising approach for treating solid tumors and hematological malignancies. AREAS COVERED This review covers recent publications in the area of RR, which include: i) the structure, function and regulation of RR; ii) the roles of RR in cancer development; iii) the classification, mechanisms and clinical application of RR inhibitors for cancer therapy and iv) strategies for developing novel RR inhibitors in the future. EXPERT OPINION Exploring the possible nonenzymatic roles of RR subunit proteins in carcinogenesis may lead to new rationales for developing novel anticancer drugs. Updated information about the structure and holoenzyme models of RR will help in identifying potential sites in the protein that could be targets for novel RR inhibitors. Determining RR activity and subunit levels in clinical samples will provide a rational platform for developing personalized cancer therapies that use RR inhibitors.
Collapse
Affiliation(s)
- Jimin Shao
- Zhejiang University, School of Medicine, Department of Pathology and Pathophysiology , Hangzhou 310058 , China
| | | | | | | |
Collapse
|
26
|
Ocean AJ, Christos P, Sparano JA, Matulich D, Kaubish A, Siegel A, Sung M, Ward MM, Hamel N, Espinoza-Delgado I, Yen Y, Lane ME. Phase II trial of the ribonucleotide reductase inhibitor 3-aminopyridine-2-carboxaldehydethiosemicarbazone plus gemcitabine in patients with advanced biliary tract cancer. Cancer Chemother Pharmacol 2011; 68:379-88. [PMID: 20981545 PMCID: PMC3446256 DOI: 10.1007/s00280-010-1481-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 09/27/2010] [Indexed: 01/07/2023]
Abstract
BACKGROUND 3-Aminopyridine-2-carboxaldehydethiosemicarbazone (3-AP) is a novel small molecule ribonucleotide reductase (RR) inhibitor which is more potent than hydroxyurea, the prototype of RR inhibitors. 3-AP enhances the cellular uptake and DNA incorporation of gemcitabine in tumor cell lines. We evaluated the combination of 3-AP plus gemcitabine in advanced biliary tract adenocarcinoma. METHODS Thirty-three patients with advanced adenocarcinoma of the gall bladder or biliary tract received gemcitabine (1,000 mg/m(2) on days 1, 8, and 15 every 28 days) 1 h after completing a 4-h infusion of 3-AP given at a dose of 105 mg/m(2) in patients with normal liver function (stratum A) or 80 mg/m(2) if abnormal liver function (stratum B). The trial was designed to determine whether the response rate was at least 30% in stratum A and 20% in stratum B. RESULTS Objective response occurred in 3 of 23 patients (13%, 95% confidence intervals [CI] 3, 34%) with normal liver function, and in 0 of 10 patients with abnormal liver function. The most common grade 3-4 adverse events in all patients included neutropenia (42%), infection (33%), thrombocytopenia (27%), anemia (18%), and fatigue (15%). Fine needle aspiration of tumor samples obtained before and 24 h after 3-AP therapy showed increased R2 mRNA expression by in situ RT-PCR, suggesting RR inhibition. CONCLUSIONS Despite evidence for RR inhibition in vivo, the 3-AP plus gemcitabine combination is not likely to be associated with a response rate exceeding 30% in patients with adenocarcinoma of the biliary tract.
Collapse
Affiliation(s)
- Allyson J Ocean
- New York Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|