1
|
Chen M, Zhu H, Li J, Luo D, Zhang J, Liu W, Wang J. Research progress on the relationship between AURKA and tumorigenesis: the neglected nuclear function of AURKA. Ann Med 2024; 56:2282184. [PMID: 38738386 PMCID: PMC11095293 DOI: 10.1080/07853890.2023.2282184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/31/2023] [Indexed: 05/14/2024] Open
Abstract
AURKA is a threonine or serine kinase that needs to be activated by TPX2, Bora and other factors. AURKA is located on chromosome 20 and is amplified or overexpressed in many human cancers, such as breast cancer. AURKA regulates some basic cellular processes, and this regulation is realized via the phosphorylation of downstream substrates. AURKA can function in either the cytoplasm or the nucleus. It can promote the transcription and expression of oncogenes together with other transcription factors in the nucleus, including FoxM1, C-Myc, and NF-κB. In addition, it also sustains carcinogenic signaling, such as N-Myc and Wnt signaling. This article will focus on the role of AURKA in the nucleus and its carcinogenic characteristics that are independent of its kinase activity to provide a theoretical explanation for mechanisms of resistance to kinase inhibitors and a reference for future research on targeted inhibitors.
Collapse
Affiliation(s)
- Menghua Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huijun Zhu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danjing Luo
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiaming Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenqi Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jue Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Zhou Q, Tao C, Yuan J, Pan F, Wang R. Knowledge mapping of AURKA in Oncology:An advanced Bibliometric analysis (1998-2023). Heliyon 2024; 10:e31945. [PMID: 38912486 PMCID: PMC11190563 DOI: 10.1016/j.heliyon.2024.e31945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
AURKA, also known as Aurora kinase A, is a key molecule involved in the occurrence and progression of cancer. It plays crucial roles in various cellular processes, including cell cycle regulation, mitosis, and chromosome segregation. Dysregulation of AURKA has been implicated in tumorigenesis, promoting cell proliferation, genomic instability, and resistance to apoptosis. In this study, we conducted an extensive bibliometric analysis of research focusing on Aurora-A in the context of cancer by utilizing the Web of Science literature database. Various sophisticated computational tools, such as VOSviewer, Citespace, Biblioshiny R, and Cytoscape, were employed for comprehensive literature analysis and big data mining from January 1998 to September 2023.The primary objectives of our study were multi-fold. Firstly, we aimed to explore the chronological development of AURKA research, uncovering the evolution of scientific understanding over time. Secondly, we investigated shifting trends in research topics, elucidating areas of increasing interest and emerging frontiers. Thirdly, we delved into intricate signaling pathways and protein interaction networks associated with AURKA, providing insights into its complex molecular mechanisms. To further enhance the value of our bibliometric analysis, we conducted a meta-analysis on the prognostic value of AURKA in terms of patient survival. The results were visually presented, offering a comprehensive overview and future perspectives on Aurora-A research in the field of oncology. This study not only contributes to the existing body of knowledge but also provides valuable guidance for researchers, clinicians, and pharmaceutical professionals. By harnessing the power of bibliometrics, our findings offer a deeper understanding of the role of AURKA in cancer and pave the way for innovative research directions and clinical applications.
Collapse
Affiliation(s)
- Qiong Zhou
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| | - Chunyu Tao
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| | - Jiakai Yuan
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| | - Fan Pan
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| | - Rui Wang
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| |
Collapse
|
3
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
4
|
Zhang B, Wang Q, Lin Z, Zheng Z, Zhou S, Zhang T, Zheng D, Chen Z, Zheng S, Zhang Y, Lin X, Dong R, Chen J, Qian H, Hu X, Zhuang Y, Zhang Q, Jin Z, Jiang S, Ma Y. A novel glycolysis-related gene signature for predicting the prognosis of multiple myeloma. Front Cell Dev Biol 2023; 11:1198949. [PMID: 37333985 PMCID: PMC10272536 DOI: 10.3389/fcell.2023.1198949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Background: Metabolic reprogramming is an important hallmark of cancer. Glycolysis provides the conditions on which multiple myeloma (MM) thrives. Due to MM's great heterogeneity and incurability, risk assessment and treatment choices are still difficult. Method: We constructed a glycolysis-related prognostic model by Least absolute shrinkage and selection operator (LASSO) Cox regression analysis. It was validated in two independent external cohorts, cell lines, and our clinical specimens. The model was also explored for its biological properties, immune microenvironment, and therapeutic response including immunotherapy. Finally, multiple metrics were combined to construct a nomogram to assist in personalized prediction of survival outcomes. Results: A wide range of variants and heterogeneous expression profiles of glycolysis-related genes were observed in MM. The prognostic model behaved well in differentiating between populations with various prognoses and proved to be an independent prognostic factor. This prognostic signature closely coordinated with multiple malignant features such as high-risk clinical features, immune dysfunction, stem cell-like features, cancer-related pathways, which was associated with the survival outcomes of MM. In terms of treatment, the high-risk group showed resistance to conventional drugs such as bortezomib, doxorubicin and immunotherapy. The joint scores generated by the nomogram showed higher clinical benefit than other clinical indicators. The in vitro experiments with cell lines and clinical subjects further provided convincing evidence for our study. Conclusion: We developed and validated the utility of the MM glycolysis-related prognostic model, which provides a new direction for prognosis assessment, treatment options for MM patients.
Collapse
Affiliation(s)
- Bingxin Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Quanqiang Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhili Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziwei Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shujuan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianyu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dong Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zixing Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sisi Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuanru Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rujiao Dong
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Honglan Qian
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xudong Hu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianying Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouxiang Jin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Jiang H, Wang Y, Wang J, Wang Y, Wang S, He E, Guo J, Xie Y, Wang J, Li X, Peng Z, Wang M, Hou J, Liu Z. Posttranslational modification of Aurora A-NSD2 loop contributes to drug resistance in t(4;14) multiple myeloma. Clin Transl Med 2022; 12:e744. [PMID: 35389552 PMCID: PMC8989081 DOI: 10.1002/ctm2.744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background t(4;14)(p16;q32) cytogenetic abnormality renders high level of histone methyltransferase NSD2 in multiple myeloma (MM) patients, and predicts poor clinical prognosis, but mechanisms of NSD2 in promoting chemoresistance have not been well elucidated. Methods An epigenetics compound library containing 181 compounds was used to screen inhibitors possessing a prior synergistic effect with bortezomib (BTZ) in vitro. Molecular biology techniques were applied to uncover underlying mechanisms. Transcriptome profile assay was performed by RNA‐seq. NSG mouse‐based xenograft model and intra‐bone model were applied to qualify the synergistic effect in vivo. Results We identified an Aurora kinase A inhibitor (MLN8237) possessed a significant synergistic effect with BTZ on t(4;14) positive MM cells. Aurora A protein level positively correlated with NSD2 level, and gain‐ and loss‐of‐functions of Aurora A correspondingly altered NSD2 protein and H3K36me2 levels. Mechanistically, Aurora A phosphorylated NSD2 at S56 residue to protect the protein from cleavage and degradation, thus methylation of Aurora A and phosphorylation of NSD2 bilaterally formed a positive regulating loop. Transcriptome profile assay of MM cells with AURKA depletion identified IL6R, STC2 and TCEA2 as the downstream target genes responsible for BTZ‐resistance (BR). Clinically, higher expressions of these genes correlated with poorer outcomes of MM patients. Combined administration of MLN8237 and BTZ significantly suppressed tumour growth in LP‐1 cells derived xenografts, and remarkably alleviated bone lesion in femurs of NSG mice. Conclusions Aurora A phosphorylates NSD2 at S56 residue to enhance NSD2 methyltransferase activity and form a positive regulating loop in promoting MM chemoresistance, thus pharmacologically targeting Aurora A sensitizes t(4;14) positive MM to the proteasome inhibitors treatment. Our study uncovers a previously unknown reason of MM patients with t(4;14) engendering chemoresistance, and provides a theoretical basis for developing new treatment strategy for MM patients with different genomic backgrounds.
Collapse
Affiliation(s)
- Hongmei Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yixuan Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jingjing Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yafei Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Sheng Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Enyang He
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jing Guo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ying Xie
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jingya Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Xin Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Ziyi Peng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Mengqi Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jian Hou
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
6
|
Zhou X, Mould DR, Yuan Y, Fox E, Greengard E, Faller DV, Venkatakrishnan K. Population Pharmacokinetics and Exposure-Safety Relationships of Alisertib in Children and Adolescents With Advanced Malignancies. J Clin Pharmacol 2022; 62:206-219. [PMID: 34435684 PMCID: PMC9274904 DOI: 10.1002/jcph.1958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/22/2021] [Indexed: 11/10/2022]
Abstract
Population pharmacokinetic (PK) and exposure-safety analyses of alisertib were performed in children enrolled in 2 clinical trials: NCT02444884 and NCT01154816. NCT02444884 was a dose-finding study in children with relapsed/refractory solid malignancies (phase 1) or neuroblastomas (phase 2). Patients received oral alisertib 45 to 100 mg/m2 as powder-in-capsule once daily or twice daily for 7 days in 21-day cycles. Serial blood samples were collected up to 24 hours after dosing on cycle 1, day 1. NCT01154816 was a phase 2 single-arm study evaluating efficacy in children with relapsed/refractory solid malignancies or acute leukemias. Patients received alisertib 80 mg/m2 as enteric-coated tablets once daily for 7 days in 21-day cycles. Sparse PK samples were collected up to 8 hours after dosing on cycle 1, day 1. Sources of alisertib PK variability were characterized and quantified using nonlinear mixed-effects modeling to support dosing recommendations in children and adolescents. A 2-compartment model with oral absorption described by 3 transit compartments was developed using data from 146 patients. Apparent oral clearance and central distribution volume were correlated with body surface area across the age range of 2 to 21 years, supporting the use of body surface area-based alisertib dosing in the pediatric population. The recommended dose of 80 mg/m2 once daily enteric-coated tablets provided similar alisertib exposures across pediatric age groups and comparable exposure to that in adults receiving 50 mg twice daily (recommended adult dose). Statistically significant relationships (P < .01) were observed between alisertib exposures and incidence of grade ≥2 stomatitis and febrile neutropenia, consistent with antiproliferative mechanism-related toxicities.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Millennium Pharmaceuticals, Inc, Cambridge, Massachusetts, USAa wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | | | - Ying Yuan
- Millennium Pharmaceuticals, Inc, Cambridge, Massachusetts, USAa wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Elizabeth Fox
- St. Jude Children's Research HospitalMemphisTennesseeUSA
| | | | - Douglas V. Faller
- Millennium Pharmaceuticals, Inc, Cambridge, Massachusetts, USAa wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Karthik Venkatakrishnan
- Millennium Pharmaceuticals, Inc, Cambridge, Massachusetts, USAa wholly owned subsidiary of Takeda Pharmaceutical Company Limited
- Current affiliation: EMD Serono IncBillericaMassachusettsUSA
| |
Collapse
|
7
|
Kahl I, Mense J, Finke C, Boller AL, Lorber C, Győrffy B, Greve B, Götte M, Espinoza-Sánchez NA. The cell cycle-related genes RHAMM, AURKA, TPX2, PLK1, and PLK4 are associated with the poor prognosis of breast cancer patients. J Cell Biochem 2022; 123:581-600. [PMID: 35014077 DOI: 10.1002/jcb.30205] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023]
Abstract
Breast cancer is the third most common type of cancer diagnosed. Cell cycle is a complex but highly organized and controlled process, in which normal cells sense mitogenic growth signals that instruct them to enter and progress through their cell cycle. This process culminates in cell division generating two daughter cells with identical amounts of genetic material. Uncontrolled proliferation is one of the hallmarks of cancer. In this study, we analyzed the expression of the cell cycle-related genes receptor for hyaluronan (HA)-mediated motility (RHAMM), AURKA, TPX2, PLK1, and PLK4 and correlated them with the prognosis in a collective of 3952 breast cancer patients. A high messenger RNA expression of all studied genes correlated with a poor prognosis. Stratifying the patients according to the expression of hormonal receptors, we found that in patients with estrogen and progesterone receptor-positive and human epithelial growth factor receptor 2-negative tumors, and Luminal A and Luminal B tumors, the expression of the five analyzed genes correlates with worse survival. qPCR analysis of a panel of breast cancer cell lines representative of major molecular subtypes indicated a predominant expression in the luminal subtype. In vitro experiments showed that radiation influences the expression of the five analyzed genes both in luminal and triple-negative model cell lines. Functional analysis of MDA-MB-231 cells showed that small interfering RNA knockdown of PLK4 and TPX2 and pharmacological inhibition of PLK1 had an impact on the cell cycle and colony formation. Looking for a potential upstream regulation by microRNAs, we observed a differential expression of RHAMM, AURKA, TPX2, PLK1, and PLK4 after transfecting the MDA-MB-231 cells with three different microRNAs. Survival analysis of miR-34c-5p, miR-375, and miR-142-3p showed a different impact on the prognosis of breast cancer patients. Our study suggests that RHAMM, AURKA, TPX2, PLK1, and PLK4 can be used as potential targets for treatment or as a prognostic value in breast cancer patients.
Collapse
Affiliation(s)
- Iris Kahl
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Julian Mense
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Christopher Finke
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Anna-Lena Boller
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Clara Lorber
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary.,Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| |
Collapse
|
8
|
Novais P, Silva PMA, Amorim I, Bousbaa H. Second-Generation Antimitotics in Cancer Clinical Trials. Pharmaceutics 2021; 13:1011. [PMID: 34371703 PMCID: PMC8309102 DOI: 10.3390/pharmaceutics13071011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Mitosis represents a promising target to block cancer cell proliferation. Classical antimitotics, mainly microtubule-targeting agents (MTAs), such as taxanes and vinca alkaloids, are amongst the most successful anticancer drugs. By disrupting microtubules, they activate the spindle assembly checkpoint (SAC), which induces a prolonged delay in mitosis, expected to induce cell death. However, resistance, toxicity, and slippage limit the MTA's effectiveness. With the desire to overcome some of the MTA's limitations, mitotic and SAC components have attracted great interest as promising microtubule-independent targets, leading to the so-called second-generation antimitotics (SGAs). The identification of inhibitors against most of these targets, and the promising outcomes achieved in preclinical assays, has sparked the interest of academia and industry. Many of these inhibitors have entered clinical trials; however, they exhibited limited efficacy as monotherapy, and failed to go beyond phase II trials. Combination therapies are emerging as promising strategies to give a second chance to these SGAs. Here, an updated view of the SGAs that reached clinical trials is here provided, together with future research directions, focusing on inhibitors that target the SAC components.
Collapse
Affiliation(s)
- Pedro Novais
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (P.N.); (P.M.A.S.)
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia M. A. Silva
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (P.N.); (P.M.A.S.)
| | - Isabel Amorim
- GreenUPorto (Sustainable Agrifood Production) Research Center, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal;
| | - Hassan Bousbaa
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (P.N.); (P.M.A.S.)
| |
Collapse
|
9
|
Machado CB, DA Silva EL, Dias Nogueira BM, DA Silva JBS, DE Moraes Filho MO, Montenegro RC, DE Moraes MEA, Moreira-Nunes CA. The Relevance of Aurora Kinase Inhibition in Hematological Malignancies. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:111-126. [PMID: 35399305 DOI: 10.21873/cdp.10016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 12/26/2022]
Abstract
Aurora kinases are a family of serine/threonine protein kinases that play a central role in eukaryotic cell division. Overexpression of aurora kinases in cancer and their role as major regulators of the cell cycle quickly inspired the idea that their inhibition might be a potential pathway when treating oncologic patients. Over the past couple of decades, the search for designing and testing of molecules capable of inhibiting aurora activities fueled many pre-clinical and clinical studies. In this study, data from the past 10 years of in vitro and in vivo investigations, as well as clinical trials, utilizing aurora kinase inhibitors as therapeutics for hematological malignancies were compiled and discussed, aiming to highlight potential uses of these inhibitors as a novel monotherapy model or alongside conventional chemotherapies. While there is still much to be elucidated, it is clear that these kinases play a key role in oncogenesis, and their manageable toxicity and potentially synergistic effects still render them a focus of interest for future investigations in combinatorial clinical trials.
Collapse
Affiliation(s)
- Caio Bezerra Machado
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Emerson Lucena DA Silva
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Beatriz Maria Dias Nogueira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Jean Breno Silveira DA Silva
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico DE Moraes Filho
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Raquel Carvalho Montenegro
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
10
|
van Nieuwenhuijzen N, Frunt R, May AM, Minnema MC. Therapeutic outcome of early-phase clinical trials in multiple myeloma: a meta-analysis. Blood Cancer J 2021; 11:44. [PMID: 33649328 PMCID: PMC7921415 DOI: 10.1038/s41408-021-00441-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
Great progress in the treatment of patients with multiple myeloma (MM) has been made due to the development of novel drugs. Patients with relapsed/refractory MM (RRMM) can be enrolled in early-phase clinical trials, but their performance across the last decade is unknown. We conducted a meta-analysis on the overall response rate (ORR) and toxicity. PubMed, Embase, and Cochrane Library were systematically searched for phase I and phase II trials investigating an experimental compound as a single agent or in combination with dexamethasone, published from January 1, 2010 to July 1, 2020. Eighty-eight articles were included, describing 61 phase I trials involving 1835 patients and 37 phase II trials involving 2644 patients. There was a high degree of heterogeneity. Using a random-effects model, the 95% CIs of the estimated ORR were 8-17% for phase I trials and 18-28% for phase II trials. There were significant subgroup differences in ORR between the years of publication in phase I trials and between drug classes in both phase I and phase II trials. The ORR in early-phase clinical trials in RRMM is substantial, especially in phase II trials, but due to high heterogeneity a general assessment of clinical benefit before participation is difficult to offer to patients.
Collapse
Affiliation(s)
- Niels van Nieuwenhuijzen
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rowan Frunt
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anne M May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Monique C Minnema
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Du R, Huang C, Liu K, Li X, Dong Z. Targeting AURKA in Cancer: molecular mechanisms and opportunities for Cancer therapy. Mol Cancer 2021; 20:15. [PMID: 33451333 PMCID: PMC7809767 DOI: 10.1186/s12943-020-01305-3] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Aurora kinase A (AURKA) belongs to the family of serine/threonine kinases, whose activation is necessary for cell division processes via regulation of mitosis. AURKA shows significantly higher expression in cancer tissues than in normal control tissues for multiple tumor types according to the TCGA database. Activation of AURKA has been demonstrated to play an important role in a wide range of cancers, and numerous AURKA substrates have been identified. AURKA-mediated phosphorylation can regulate the functions of AURKA substrates, some of which are mitosis regulators, tumor suppressors or oncogenes. In addition, enrichment of AURKA-interacting proteins with KEGG pathway and GO analysis have demonstrated that these proteins are involved in classic oncogenic pathways. All of this evidence favors the idea of AURKA as a target for cancer therapy, and some small molecules targeting AURKA have been discovered. These AURKA inhibitors (AKIs) have been tested in preclinical studies, and some of them have been subjected to clinical trials as monotherapies or in combination with classic chemotherapy or other targeted therapies.
Collapse
Affiliation(s)
- Ruijuan Du
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.
| | - Chuntian Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China. .,College of medicine, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
12
|
Lin X, Xiang X, Hao L, Wang T, Lai Y, Abudoureyimu M, Zhou H, Feng B, Chu X, Wang R. The role of Aurora-A in human cancers and future therapeutics. Am J Cancer Res 2020; 10:2705-2729. [PMID: 33042612 PMCID: PMC7539775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023] Open
Abstract
Aurora-A is a mitotic serine/threonine-protein kinase and an oncogene. In normal cells, Aurora-A appears from G2 phase and localizes at the centrosome, where it participates in centrosome replication, isolation and maturation. Aurora-A also maintains Golgi apparatus structure and spindle assembly. Aurora-A undergoes ubiquitination-mediated degradation after the cell division phase. Aurora-A is abnormally expressed in tumor cells and promotes cell proliferation by regulating mitotic substrates, such as PP1, PLK1, TPX2, and LAST2, and affects other molecules through a non-mitotic pathway to promote cell invasion and metastasis. Some molecules in tumor cells also indirectly act on Aurora-A to regulate tumor cells. Aurora-A also mediates resistance to chemotherapy and radiotherapy and is involved in tumor immunotherapy. Clinical trials of Aurora-A molecular inhibitors are currently underway, and clinical transformation is just around the corner.
Collapse
Affiliation(s)
- Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Xiaosong Xiang
- Affiliated Jinling Hospital Research Institution of General Surgery, Medical School of Nanjing UniversityNanjing, China
| | - Liping Hao
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Ting Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Yongting Lai
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, First School of Clinical Medicine, Southern Medical UniversityNanjing, China
| | - Mubalake Abudoureyimu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Hao Zhou
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Bing Feng
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| |
Collapse
|
13
|
Beksac M, Balli S, Akcora Yildiz D. Drug Targeting of Genomic Instability in Multiple Myeloma. Front Genet 2020; 11:228. [PMID: 32373151 PMCID: PMC7179656 DOI: 10.3389/fgene.2020.00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
Genomic instability can be observed at both chromosomal and chromatin levels. Instability at the macro level includes centrosome abnormalities (CA) resulting in numerical as well as structural chromosomal changes, whereas instability at the micro level is characterized by defects in DNA repair pathways resulting in microsatellite instability (MIN) or mutations. Genomic instability occurs during carcinogenesis without impairing survival and growth, though the precise mechanisms remain unclear. Solid tumors arising from most cells of epithelial origin are characterized by genomic instability which renders them resistant to chemotherapy and radiotherapy. This instability is also observed in 25% of myeloma patients and has been shown to be highly prognostic, independently of the international staging system (ISS). However, a biomarker of aberrant DNA repair and loss of heterozygosity (LOH), was only observed at a frequency of 5% in newly diagnosed patients. Several new molecules targeting the pathways involved in genomic instability are under development and some have already entered clinical trials. Poly(ADP-ribose) polymerase-1 (PARP) inhibitors have been FDA-approved for the treatment of breast cancer type 1 susceptibility protein (BRCA1)-mutated metastatic breast cancer, as well as ovarian and lung cancer. Topoisomerase inhibitors and epigenetic histone modification-targeting inhibitors, such as HDAC (Histone Deacetylase) inhibitors which are novel agents that can target genomic instability. Several of the small molecule inhibitors targeting chromosomal level instability such as PARP, Akt, Aurora kinase, cyclin dependent kinase or spindle kinase inhibitors have been tested in mouse models and early phase I/II trials. ATM, ATR kinase inhibitors and DNA helicase inhibitors are also promising novel agents. However, most of these drugs are not effective as single agents but appear to act synergistically with DNA damaging agents such as radiotherapy, platinum derivatives, immunomodulators, and proteasome inhibitors. In this review, new drugs targeting genomic instability and their mechanisms of action will be discussed.
Collapse
Affiliation(s)
- Meral Beksac
- Department of Hematology, School of Medicine, Ankara University, Ankara, Turkey
| | - Sevinc Balli
- Kars Selim Public Hospital, Internal Medicine, Kars, Turkey
| | - Dilara Akcora Yildiz
- Department of Biology, Science & Art Faculty, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
14
|
Pusalkar S, Zhou X, Li Y, Cohen L, Yang JJ, Balani SK, Xia C, Shyu WC, Lu C, Venkatakrishnan K, Chowdhury SK. Biotransformation Pathways and Metabolite Profiles of Oral [ 14C]Alisertib (MLN8237), an Investigational Aurora A Kinase Inhibitor, in Patients with Advanced Solid Tumors. Drug Metab Dispos 2020; 48:217-229. [PMID: 31911485 PMCID: PMC11022938 DOI: 10.1124/dmd.119.087338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Alisertib (MLN8237) is an investigational, orally available, selective aurora A kinase inhibitor in clinical development for the treatment of solid tumors and hematologic malignancies. This metabolic profiling analysis was conducted as part of a broader phase 1 study evaluating mass balance, pharmacokinetics, metabolism, and routes of excretion of alisertib following a single 35-mg dose of [14C]alisertib oral solution (∼80 μCi) in three patients with advanced malignancies. On average, 87.8% and 2.7% of the administered dose was recovered in feces and urine, respectively, for a total recovery of 90.5% by 14 days postdose. Unchanged [14C]alisertib was the predominant drug-related component in plasma, followed by O-desmethyl alisertib (M2), and alisertib acyl glucuronide (M1), which were present at 47.8%, 34.6%, and 12.0% of total plasma radioactivity. In urine, of the 2.7% of the dose excreted, unchanged [14C]alisertib was a negligible component (trace), with M1 (0.84% of dose) and glucuronide conjugate of hydroxy alisertib (M9; 0.66% of dose) representing the primary drug-related components in urine. Hydroxy alisertib (M3; 20.8% of the dose administered) and unchanged [14C]alisertib (26.3% of the dose administered) were the major drug-related components in feces. In vitro, oxidative metabolism of alisertib was primarily mediated by CYP3A. The acyl glucuronidation of alisertib was primarily mediated by uridine 5'-diphospho-glucuronosyltransferase 1A1, 1A3, and 1A8 and was stable in 0.1 M phosphate buffer and in plasma and urine. Further in vitro evaluation of alisertib and its metabolites M1 and M2 for cytochrome P450-based drug-drug interaction (DDI) showed minimal potential for perpetrating DDI with coadministered drugs. Overall, renal elimination played an insignificant role in the disposition of alisertib, and metabolites resulting from phase 1 oxidative pathways contributed to >58% of the alisertib dose recovered in urine and feces over 192 hours postdose. SIGNIFICANCE STATEMENT: This study describes the primary clearance pathways of alisertib and illustrates the value of timely conduct of human absorption, distribution, metabolism, and excretion studies in providing guidance to the clinical pharmacology development program for oncology drugs, for which a careful understanding of sources of exposure variability is crucial to inform risk management for drug-drug interactions given the generally limited therapeutic window for anticancer drugs and polypharmacy that is common in cancer patients.
Collapse
Affiliation(s)
- Sandeepraj Pusalkar
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - Xiaofei Zhou
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - Yuexian Li
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - Lawrence Cohen
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - Jun Johnny Yang
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - Suresh K Balani
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - Cindy Xia
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - Wen Chyi Shyu
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - Chuang Lu
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - Karthik Venkatakrishnan
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - Swapan K Chowdhury
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Tokyo, Japan
| |
Collapse
|
15
|
Siddiqi T, Frankel P, Beumer JH, Kiesel BF, Christner S, Ruel C, Song JY, Chen R, Kelly KR, Ailawadhi S, Kaesberg P, Popplewell L, Puverel S, Piekarz R, Forman SJ, Newman EM. Phase 1 study of the Aurora kinase A inhibitor alisertib (MLN8237) combined with the histone deacetylase inhibitor vorinostat in lymphoid malignancies. Leuk Lymphoma 2020; 61:309-317. [PMID: 31617432 PMCID: PMC6982547 DOI: 10.1080/10428194.2019.1672052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/28/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
Abstract
Alisertib, an Aurora kinase A inhibitor, was evaluated in a Phase 1 study in combination with the histone deacetylase inhibitor vorinostat, in patients with relapsed/refractory lymphoid malignancies (N = 34; NCT01567709). Patients received alisertib plus vorinostat in 21-day treatment cycles with escalating doses of alisertib following a continuous or an intermittent schedule. All dose-limiting toxicities (DLTs) were hematologic and there were no study-related deaths. The recommended phase 2 dose (RP2D) of the combination was 20 mg bid of alisertib and 200 mg bid of vorinostat on the intermittent schedule. A 13-patient expansion cohort was treated for a total of 18 patients at the RP2D. There were no DLTs at the RP2D, and toxicities were mainly hematologic. Two patients with DLBCL achieved a durable complete response, and two patients with HL achieved partial response. Alisertib plus vorinostat showed encouraging clinical activity with a manageable safety profile in heavily pretreated patients with advanced disease.
Collapse
Affiliation(s)
- Tanya Siddiqi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Paul Frankel
- Department of Information Sciences, City of Hope National Medical Center, Duarte, CA
| | - Jan H. Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Brian F. Kiesel
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
| | - Susan Christner
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Chris Ruel
- Department of Information Sciences, City of Hope National Medical Center, Duarte, CA
| | - Joo Y. Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Robert Chen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Kevin R. Kelly
- Division of Hematology, University of Southern California, Los Angeles, CA
| | | | - Paul Kaesberg
- Department of Internal Medicine, Division of Hematology and Oncology, University of California-Davis Medical Center, Sacramento, CA
| | - Leslie Popplewell
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Sandrine Puverel
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Richard Piekarz
- Cancer Therapy Evaluation Program, National Institutes of Health, National Cancer Institute, Bethesda, MD
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Edward M. Newman
- Department of Medical Oncology, Division of Molecular Pharmacology, City of Hope, Duarte, CA
| |
Collapse
|
16
|
Combined inhibition of Aurora A and p21-activated kinase 1 as a new treatment strategy in breast cancer. Breast Cancer Res Treat 2019; 177:369-382. [PMID: 31254157 PMCID: PMC6661032 DOI: 10.1007/s10549-019-05329-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/18/2019] [Indexed: 01/01/2023]
Abstract
Purpose The serine-threonine kinases Aurora A (AURKA) and p21-activated kinase 1 (PAK1) are frequently overexpressed in breast tumors, with overexpression promoting aggressive breast cancer phenotypes and poor clinical outcomes. Besides the well-defined roles of these proteins in control of cell division, proliferation, and invasion, both kinases support MAPK kinase pathway activation and can contribute to endocrine resistance by phosphorylating estrogen receptor alpha (ERα). PAK1 directly phosphorylates AURKA and its functional partners, suggesting potential value of inhibiting both kinases activity in tumors overexpressing PAK1 and/or AURKA. Here, for the first time, we evaluated the effect of combining the AURKA inhibitor alisertib and the PAK inhibitor FRAX1036 in preclinical models of breast cancer. Methods Combination of alisertib and FRAX1036 was evaluated in a panel of 13 human breast tumor cell lines and BT474 xenograft model, with assessment of the cell cycle by FACS, and signaling changes by immunohistochemistry and Western blot. Additionally, we performed in silico analysis to identify markers of response to alisertib and FRAX1036. Results Pharmacological inhibition of AURKA and PAK1 synergistically decreased survival of multiple tumor cell lines, showing particular effectiveness in luminal and HER2-enriched models, and inhibited growth and ERα-driven signaling in a BT474 xenograft model. In silico analysis suggested cell lines with dependence on AURKA are most likely to be sensitive to PAK1 inhibition. Conclusion Dual targeting of AURKA and PAK1 may be a promising therapeutic strategy for treatment of breast cancer, with a particular effectiveness in luminal and HER2-enriched tumor subtypes. Electronic supplementary material The online version of this article (10.1007/s10549-019-05329-2) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Maes A, Maes K, De Raeve H, De Smedt E, Vlummens P, Szablewski V, Devin J, Faict S, De Veirman K, Menu E, Offner F, Spaargaren M, Moreaux J, Vanderkerken K, Van Valckenborgh E, De Bruyne E. The anaphase-promoting complex/cyclosome: a new promising target in diffuse large B-cell lymphoma and mantle cell lymphoma. Br J Cancer 2019; 120:1137-1146. [PMID: 31089208 PMCID: PMC6738099 DOI: 10.1038/s41416-019-0471-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/03/2023] Open
Abstract
Background The aggressive B-cell non-Hodgkin lymphomas diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) are characterised by a high proliferation rate. The anaphase-promoting complex/cyclosome (APC/C) and its co-activators Cdc20 and Cdh1 represent an important checkpoint in mitosis. Here, the role of the APC/C and its co-activators is examined in DLBCL and MCL. Methods The expression and prognostic value of Cdc20 and Cdh1 was investigated using GEP data and immunohistochemistry. Moreover, the therapeutic potential of APC/C targeting was evaluated using the small-molecule inhibitor proTAME and the underlying mechanisms of action were investigated by western blot. Results We demonstrated that Cdc20 is highly expressed in DLBCL and aggressive MCL, correlating with a poor prognosis in DLBCL. ProTAME induced a prolonged metaphase, resulting in accumulation of the APC/C-Cdc20 substrate cyclin B1, inactivation/degradation of Bcl-2 and Bcl-xL and caspase-dependent apoptosis. In addition, proTAME strongly enhanced the anti-lymphoma effect of the clinically relevant agents doxorubicin and venetoclax. Conclusion We identified for the first time APC/C as a new, promising target in DLBCL and MCL. Moreover, we provide evidence that Cdc20 might be a novel, independent prognostic factor in DLBCL and MCL.
Collapse
Affiliation(s)
- Anke Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hendrik De Raeve
- Department of Pathology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva De Smedt
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Philip Vlummens
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Julie Devin
- Laboratory for Monitoring Innovative Therapies, Institute of Human Genetics, CNRS, Montpellier, France
| | - Sylvia Faict
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fritz Offner
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Marcel Spaargaren
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jérôme Moreaux
- Laboratory for Monitoring Innovative Therapies, Institute of Human Genetics, CNRS, Montpellier, France
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
18
|
Zhou X, Lockhart AC, Fu S, Nemunaitis J, Sarantopoulos J, Muehler A, Rangachari L, Bargfrede M, Venkatakrishnan K. Pharmacokinetics of the Investigational Aurora A Kinase Inhibitor Alisertib in Adult Patients With Advanced Solid Tumors or Relapsed/Refractory Lymphoma With Varying Degrees of Hepatic Dysfunction. J Clin Pharmacol 2019; 59:1204-1215. [PMID: 30985952 DOI: 10.1002/jcph.1416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/16/2019] [Indexed: 11/11/2022]
Abstract
This clinical trial was designed to evaluate the effect of moderate or severe hepatic impairment on the single-dose pharmacokinetics (PK) of the investigational anticancer agent, alisertib, in adult patients with advanced solid tumors or lymphoma. Patients with normal hepatic function (total bilirubin and alanine transaminase [ALT] ≤ upper limit of normal [ULN]), moderate hepatic impairment (1.5 × ULN < total bilirubin ≤ 3 × ULN, with any ALT) or severe hepatic impairment (total bilirubin > 3 × ULN, with any ALT), received a single 50-mg oral dose of alisertib. Blood samples for PK were collected up to 168 hours postdose. Predose samples were also used to assess alisertib plasma protein binding. Patients could continue to receive alisertib for 7 days in 21-day cycles (50, 30, or 10 mg twice daily for normal hepatic function, moderate hepatic impairment, and severe hepatic impairment, respectively). Alisertib was approximately 99% protein bound in all hepatic function groups. Alisertib exposure was similar in moderate and severe hepatic impairment groups, but higher than the normal hepatic function group. The geometric least-squares mean ratios (90% confidence intervals) for unbound alisertib area under the curve extrapolated to infinity for moderate/severe impairment groups versus the normal hepatic function group was 254% (184%, 353%). Patients with moderate or severe hepatic impairment have approximately 150% higher unbound alisertib exposures compared with patients with normal hepatic function. An approximately 60% reduction of the starting dose of alisertib in patients with moderate/severe hepatic impairment is recommended based on pharmacokinetic considerations.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - A Craig Lockhart
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Siqing Fu
- University of Texas - MD Anderson Cancer Center - Houston, TX, USA
| | | | - John Sarantopoulos
- Institute for Drug Development, Mays Cancer Center at University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
| | - Andreas Muehler
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Lakshmi Rangachari
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | | | - Karthik Venkatakrishnan
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| |
Collapse
|
19
|
O'Connor OA, Özcan M, Jacobsen ED, Roncero JM, Trotman J, Demeter J, Masszi T, Pereira J, Ramchandren R, Beaven A, Caballero D, Horwitz SM, Lennard A, Turgut M, Hamerschlak N, d'Amore FA, Foss F, Kim WS, Leonard JP, Zinzani PL, Chiattone CS, Hsi ED, Trümper L, Liu H, Sheldon-Waniga E, Ullmann CD, Venkatakrishnan K, Leonard EJ, Shustov AR. Randomized Phase III Study of Alisertib or Investigator's Choice (Selected Single Agent) in Patients With Relapsed or Refractory Peripheral T-Cell Lymphoma. J Clin Oncol 2019; 37:613-623. [PMID: 30707661 PMCID: PMC6494247 DOI: 10.1200/jco.18.00899] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The aim of this open-label, first-in-setting, randomized phase III trial was to evaluate the efficacy of alisertib, an investigational Aurora A kinase inhibitor, in patients with relapsed/refractory peripheral T-cell lymphoma (PTCL). PATIENTS AND METHODS Adult patients with relapsed/refractory PTCL—one or more prior therapy—were randomly assigned 1:1 to receive oral alisertib 50 mg two times per day (days 1 to 7; 21-day cycle) or investigator-selected single-agent comparator, including intravenous pralatrexate 30 mg/m2 (once per week for 6 weeks; 7-week cycle), or intravenous gemcitabine 1,000 mg/m2 or intravenous romidepsin 14 mg/m2 (days 1, 8, and 15; 28-day cycle). Tumor tissue (disease subtype) and imaging were assessed by independent central review. Primary outcomes were overall response rate and progression-free survival (PFS). Two interim analyses and one final analysis were planned. RESULTS Between May 2012 and October 2014, 271 patients were randomly assigned (alisertib, n = 138; comparator, n = 133). Enrollment was stopped early on the recommendation of the independent data monitoring committee as a result of the low probability of alisertib achieving PFS superiority with full enrollment. Centrally assessed overall response rate was 33% for alisertib and 45% for the comparator arm (odds ratio, 0.60; 95% CI, 0.33 to 1.08). Median PFS was 115 days for alisertib and 104 days for the comparator arm (hazard ratio, 0.87; 95% CI, 0.637 to 1.178). The most common adverse events were anemia (53% of alisertib-treated patients v 34% of comparator-treated patients) and neutropenia (47% v 31%, respectively). A lower percentage of patients who received alisertib (9%) compared with the comparator (14%) experienced events that led to study drug discontinuation. Of 26 on-study deaths, five were considered treatment related (alisertib, n = 3 of 11; comparator, n = 2 of 15). Two-year overall survival was 35% for each arm. CONCLUSION In patients with relapsed/refractory PTCL, alisertib was not statistically significantly superior to the comparator arm.
Collapse
Affiliation(s)
| | - Muhit Özcan
- 2 Ankara University Medical School, Ankara, Turkey
| | | | | | - Judith Trotman
- 5 Concord Repatriation General Hospital, Concord, New South Wales, Australia.,6 University of Sydney, New South Wales, Australia
| | - Judit Demeter
- 7 Semmelweis Egyetem Általános Orvostudományi Kar, Budapest, Hungary
| | - Tamás Masszi
- 8 St. István and St. László Hospital, Budapest, Hungary.,9 Semmelweis University, Budapest, Hungary
| | - Juliana Pereira
- 10 Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Anne Beaven
- 12 Duke University Health System, Durham, NC
| | | | | | - Anne Lennard
- 15 Northern Centre for Cancer Care, Newcastle upon Tyne, United Kingdom
| | | | | | | | - Francine Foss
- 19 Smilow Cancer Hospital at Yale New Haven, New Haven, CT
| | - Won-Seog Kim
- 20 Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | | | - Lorenz Trümper
- 25 University Medical Center Göttingen, Göttingen, Germany
| | - Hua Liu
- 26 Millennium Pharmaceuticals, Cambridge, MA
| | | | | | | | | | - Andrei R Shustov
- 27 University of Washington, Seattle Cancer Care Alliance, Seattle, WA
| | | |
Collapse
|
20
|
Falchook G, Coleman RL, Roszak A, Behbakht K, Matulonis U, Ray-Coquard I, Sawrycki P, Duska LR, Tew W, Ghamande S, Lesoin A, Schwartz PE, Buscema J, Fabbro M, Lortholary A, Goff B, Kurzrock R, Martin LP, Gray HJ, Fu S, Sheldon-Waniga E, Lin HM, Venkatakrishnan K, Zhou X, Leonard EJ, Schilder RJ. Alisertib in Combination With Weekly Paclitaxel in Patients With Advanced Breast Cancer or Recurrent Ovarian Cancer: A Randomized Clinical Trial. JAMA Oncol 2019; 5:e183773. [PMID: 30347019 DOI: 10.1001/jamaoncol.2018.3773] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Importance There is an unmet medical need for the treatment of recurrent ovarian cancer, and new approaches are needed to improve progression-free survival (PFS) and overall survival. Objective This phase 1/2 study evaluated the activity of alisertib in combination with weekly paclitaxel in patients with breast (phase 1) and ovarian cancer (phase 1 and phase 2). Design, Setting, and Participants An open-label phase 1 and randomized phase 2 clinical trial conducted from April 16, 2010, for phase 1 and March 28, 2012, to August 12, 2013, for phase 2 was conducted at 33 sites (United States, France, and Poland). Data are reported from a cutoff date of August 12, 2014, with a median duration of follow-up of 7.2 months in the alisertib plus paclitaxel arm and 4.6 months in the paclitaxel arm. A total of 191 women with advanced breast (phase 1 only) or recurrent ovarian cancer were enrolled, including 142 patients randomized to alisertib plus paclitaxel (n = 73) or paclitaxel alone (n = 69) in the phase 2 study. Interventions Patients were randomized 1:1 stratified by platinum-free interval (refractory, 0-6 months, 6-12 months) and prior weekly taxane treatment (yes, no) to receive alisertib 40 mg twice per day orally and 3 days on and 4 days off for 3 weeks, plus paclitaxel (60 mg/m2 intravenously, days 1, 8, and 15), or weekly paclitaxel 80 mg/m2 intravenously in 28-day cycles. Main Outcomes and Measures Primary endpoint was PFS; primary efficacy analysis and safety analysis used modified intention to treat (mITT) population (all randomized patients who received ≥1 dose of study drug). Results The median age for the 191 patients enrolled in phase 1 was 59 (range, 29-75) years. The median age for the 142 patients enrolled in phase 2 was 63 (range, 30-81) years for patients receiving alisertib plus paclitaxel and 61 (range, 41-81) years for patients receiving paclitaxel. At data cutoff, 107 (75%) patients had a documented PFS event; 52 (71%) in the alisertib plus paclitaxel arm, and 55 (80%) in the paclitaxel arm. Median PFS was 6.7 months with alisertib plus paclitaxel vs 4.7 months with paclitaxel (HR, 0.75; 80% CI, 0.58-0.96; P = .14; 2-sided P value cutoff = .20 to be considered worthy of further investigation). Drug-related grade 3 or higher adverse events were reported in 63 (86%) vs 14 (20%) patients in the alisertib plus paclitaxel and paclitaxel arms, including 56 (77%) vs 7 (10%) neutropenia, 18 (25%) vs 0 stomatitis, and 10 (14%) vs 2 (3%) anemia; 54 (74%) vs 17 (25%) had adverse events leading to dose reductions. Two patients died during the study (1 in each arm); neither death was considered related to study drug. Conclusions and Relevance The primary endpoint, PFS, significantly favored alisertib plus paclitaxel over paclitaxel alone. Further investigation is warranted. Trial Registration ClinicalTrials.gov identifier: NCT01091428.
Collapse
Affiliation(s)
- Gerald Falchook
- Sarah Cannon Research Institute at HealthONE, Denver, Colorado
| | | | - Andrzej Roszak
- Greater Poland Cancer Centre/University of Medical Sciences, Poznan, Poland
| | - Kian Behbakht
- Department of Gynecologic Oncology, University of Colorado School of Medicine, Aurora
| | - Ursula Matulonis
- Gynecologic Oncology Program, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Piotr Sawrycki
- Department of Oncology and Chemotherapy, L. Rydygiera District Hospital, Torun, Poland
| | - Linda R Duska
- University of Virginia Health System, Charlottesville
| | - William Tew
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sharad Ghamande
- Georgia Cancer Center at Augusta University, Augusta, Georgia
| | | | | | | | | | | | | | | | | | | | - Siqing Fu
- University of Texas, MD Anderson Cancer Center, Houston
| | - Emily Sheldon-Waniga
- Millennium Pharmaceuticals Inc (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachusetts
| | - Huamao Mark Lin
- Millennium Pharmaceuticals Inc (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachusetts
| | - Karthik Venkatakrishnan
- Millennium Pharmaceuticals Inc (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachusetts
| | - Xiaofei Zhou
- Millennium Pharmaceuticals Inc (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachusetts
| | - E Jane Leonard
- Millennium Pharmaceuticals Inc (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachusetts
| | - Russell J Schilder
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Phase I trial of alisertib with concurrent fractionated stereotactic re-irradiation for recurrent high grade gliomas. Radiother Oncol 2019; 132:135-141. [PMID: 30825962 DOI: 10.1016/j.radonc.2018.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE We conducted a phase I trial of alisertib, an oral aurora kinase inhibitor, with fractionated stereotactic re-irradiation therapy (FSRT) for patients with recurrent high grade glioma (HGG). MATERIALS AND METHODS Adult patients with recurrent HGG were enrolled from Feb 2015 to Feb 2017. Patients were treated with concurrent FSRT and alisertib followed by maintenance alisertib. Concurrent alisertib dose was escalated from 20 mg to 50 mg twice daily (BID). RESULTS 17 patients were enrolled. Median follow-up was 11 months. Median FSRT dose was 35 Gy. There were 6, 6, 3, and 2 patients enrolled in 20 mg, 30 mg, 40 mg, and 50 mg cohort, respectively. Only one DLT was observed. One patient in the 20 mg cohort had severe headache (Grade 3) resolved with steroids. There was no non-hematological grade 3 or higher toxicity. There were two Grade 4 late toxicities (one with grade 4 neutropenia and leukopenia, one with pulmonary embolism). One patient developed radiation necrosis (Grade 3). Sixteen patients finished concurrent treatment and received maintenance therapy (median cycles was 3, range 1-9). OS for all cohorts at 6 months was 88.2% with median survival time of 11.1 months. PFS at 6 months was 35.3% with median time to progression of 4.9 months. The trial stopped early due to closure of alisertib program with only 2 of 3 planned patients enrolled in the 50 mg cohort. CONCLUSION Re-irradiation with FSRT combined with alisertib is safe and well tolerated for HGG with doses up to 40 mg BID. Although no DLT observed in the 50 mg cohort, this cohort was not fully enrolled and MTD was not reached. Clinical outcomes appear comparable to historical results. (NCT02186509).
Collapse
|
22
|
Zhou X, Pusalkar S, Chowdhury SK, Searle S, Li Y, Ullmann CD, Venkatakrishnan K. Mass balance, routes of excretion, and pharmacokinetics of investigational oral [14C]-alisertib (MLN8237), an Aurora A kinase inhibitor in patients with advanced solid tumors. Invest New Drugs 2018; 37:666-673. [DOI: 10.1007/s10637-018-0693-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/30/2018] [Indexed: 11/28/2022]
|
23
|
Okabe S, Tauchi T, Tanaka Y, Ohyashiki K. Therapeutic targeting of Aurora A kinase in Philadelphia chromosome-positive ABL tyrosine kinase inhibitor-resistant cells. Oncotarget 2018; 9:32496-32506. [PMID: 30197758 PMCID: PMC6126699 DOI: 10.18632/oncotarget.25985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/29/2018] [Indexed: 11/25/2022] Open
Abstract
Abelson murine leukemia viral oncogene homolog (ABL) tyrosine kinase inhibitors (TKIs) have been shown to be effective for treatment of chronic myeloid leukemia (CML) and Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia patients. However, resistance to ABL TKIs can develop as a result of breakpoint cluster region-ABL point mutations. Aurora kinases regulate many processes associated with mitosis. In this study, we investigated whether inhibiting Aurora kinase can reduce the viability of Ph+ leukemia cells. Treatment with the Aurora kinase A inhibitor alisertib blocked Ph+ leukemia cell proliferation and Aurora kinase A phosphorylation; it also induced G2/M-phase arrest and increased the intracellular levels of reactive oxygen species. Combined treatment of Ph+ cells with ABL TKIs and alisertib was cytotoxic, with the fraction of senescent cells increasing in a time- and dose-dependent manner. Aurora A gene silencing suppressed cell proliferation and enhanced ABL TKI efficacy. In a mouse xenograft model, co-administration of ponatinib and alisertib enhanced survival and reduced tumor size; moreover, the treatments were well tolerated by the animals. These results indicate that inhibiting Aurora kinase can enhance the cytotoxic effects of ABL TKIs and is, therefore, an effective therapeutic strategy against ABL TKI-resistant cells, including those with the T315I mutation.
Collapse
Affiliation(s)
- Seiichi Okabe
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Tetsuzo Tauchi
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Yuko Tanaka
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
24
|
Kelly KR, Friedberg JW, Park SI, McDonagh K, Hayslip J, Persky D, Ruan J, Puvvada S, Rosen P, Iyer SP, Stefanovic A, Bernstein SH, Weitman S, Karnad A, Monohan G, VanderWalde A, Mena R, Schmelz M, Spier C, Groshen S, Venkatakrishnan K, Zhou X, Sheldon-Waniga E, Leonard EJ, Mahadevan D. Phase I Study of the Investigational Aurora A Kinase Inhibitor Alisertib plus Rituximab or Rituximab/Vincristine in Relapsed/Refractory Aggressive B-cell Lymphoma. Clin Cancer Res 2018; 24:6150-6159. [PMID: 30082475 DOI: 10.1158/1078-0432.ccr-18-0286] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/08/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE The aurora A kinase inhibitor alisertib demonstrated single-agent clinical activity and preclinical synergy with vincristine/rituximab in B-cell non-Hodgkin lymphoma (B-NHL). This phase I study aimed to determine the safety and recommended phase II dose (RP2D) of alisertib in combination with rituximab ± vincristine in patients with relapsed/refractory aggressive B-NHL. PATIENTS AND METHODS Patients with relapsed/refractory, diffuse, large, or other aggressive B-NHL received oral alisertib 50 mg b.i.d. days 1 to 7, plus i.v. rituximab 375 mg/m2 on day 1, for up to eight 21-day cycles (MR). Patients in subsequent cohorts (3 + 3 design) received increasing doses of alisertib (30 mg starting dose; 10 mg increments) b.i.d. days 1 to 7 plus rituximab and vincristine [1.4 mg/m2 (maximum 2 mg) days 1, 8] for 8 cycles (MRV). Patients benefiting could continue single-agent alisertib beyond 8 cycles. Cell-of-origin and MYC/BCL2 IHC was performed on available archival tissue. RESULTS Forty-five patients participated. The alisertib RP2D for MR was 50 mg b.i.d. For MRV (n = 32), the RP2D was determined as 40 mg b.i.d. [1 dose-limiting toxicity (DLT) at 40 mg; 2 DLTs at 50 mg]. Drug-related adverse events were reported in 89% of patients, the most common was neutropenia (47%). Seven patients had complete responses (CR), 7 had partial responses (PRs); 9 of 20 (45%) patients at the MRV RP2D responded (4 CRs, 5 PRs), all with non-germinal center B-cell (GCB) diffuse large B-cell lymphoma (DLBCL). CONCLUSIONS The combination of alisertib 50 mg b.i.d. plus rituximab or alisertib 40 mg b.i.d. plus rituximab and vincristine was well tolerated and demonstrated activity in non-GCB DLBCL.
Collapse
Affiliation(s)
- Kevin R Kelly
- USC Norris Comprehensive Cancer Center, Los Angeles, California (previously University of Texas Health Science Center at San Antonio, San Antonio, Texas).
| | | | - Steven I Park
- Levine Cancer Institute and Carolinas Healthcare System, Charlotte, North Carolina
| | - Kevin McDonagh
- Vanderbilt University, Nashville, Tennessee (previously University of Kentucky Markey Cancer Center, Lexington, Kentucky)
| | - John Hayslip
- University of Kentucky Markey Cancer Center, Lexington, Kentucky
| | | | - Jia Ruan
- Weill Cornell Medical College, New York, New York
| | | | - Peter Rosen
- Providence St Joseph Medical Center, Disney Family Cancer Center, Burbank, California
| | | | - Alexandra Stefanovic
- University of Miami Miller School of Medicine, Sylvester Cancer Center, Miami, Florida
| | | | - Steven Weitman
- University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Anand Karnad
- University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Gregory Monohan
- University of Kentucky Markey Cancer Center, Lexington, Kentucky
| | - Ari VanderWalde
- University of Tennessee Health Science Center and West Clinic, Memphis, Tennessee
| | - Raul Mena
- Providence St Joseph Medical Center, Disney Family Cancer Center, Burbank, California
| | - Monika Schmelz
- Department of Pathology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Catherine Spier
- Department of Pathology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Susan Groshen
- USC Norris Comprehensive Cancer Center, Los Angeles, California (previously University of Texas Health Science Center at San Antonio, San Antonio, Texas)
| | - Karthik Venkatakrishnan
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Xiaofei Zhou
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Emily Sheldon-Waniga
- Bluebird Bio, Cambridge, Massachusetts (previously Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited)
| | - E Jane Leonard
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | | |
Collapse
|
25
|
Kogiso M, Qi L, Braun FK, Injac SG, Zhang L, Du Y, Zhang H, Lin FY, Zhao S, Lindsay H, Su JM, Baxter PA, Adesina AM, Liao D, Qian MG, Berg S, Muscal JA, Li XN. Concurrent Inhibition of Neurosphere and Monolayer Cells of Pediatric Glioblastoma by Aurora A Inhibitor MLN8237 Predicted Survival Extension in PDOX Models. Clin Cancer Res 2018; 24:2159-2170. [PMID: 29463553 DOI: 10.1158/1078-0432.ccr-17-2256] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/28/2017] [Accepted: 02/16/2018] [Indexed: 12/27/2022]
Abstract
Purpose: Pediatric glioblastoma multiforme (pGBM) is a highly aggressive tumor in need of novel therapies. Our objective was to demonstrate the therapeutic efficacy of MLN8237 (alisertib), an orally available selective inhibitor of Aurora A kinase (AURKA), and to evaluate which in vitro model system (monolayer or neurosphere) can predict therapeutic efficacy in vivoExperimental Design: AURKA mRNA expressions were screened with qRT-PCR. In vitro antitumor effects were examined in three matching pairs of monolayer and neurosphere lines established from patient-derived orthotopic xenograft (PDOX) models of the untreated (IC-4687GBM), recurrent (IC-3752GBM), and terminal (IC-R0315GBM) tumors, and in vivo therapeutic efficacy through log rank analysis of survival times in two models (IC-4687GBM and IC-R0315GBM) following MLN8237 treatment (30 mg/kg/day, orally, 12 days). Drug concentrations in vivo and mechanism of action and resistance were also investigated.Results: AURKA mRNA overexpression was detected in 14 pGBM tumors, 10 PDOX models, and 6 cultured pGBM lines as compared with 11 low-grade gliomas and normal brains. MLN8237 penetrated into pGBM xenografts in mouse brains. Significant extension of survival times were achieved in IC-4687GBM of which both neurosphere and monolayer were inhibited in vitro, but not in IC-R0315GBM of which only neurosphere cells responded (similar to IC-3752GBM). Apoptosis-mediated MLN8237 induced cell death, and the presence of AURKA-negative and CD133+ cells appears to have contributed to in vivo therapy resistance.Conclusions: MLN8237 successfully targeted AURKA in a subset of pGBMs. Our data suggest that combination therapy should aim at AURKA-negative and/or CD133+ pGBM cells to prevent tumor recurrence. Clin Cancer Res; 24(9); 2159-70. ©2018 AACR.
Collapse
Affiliation(s)
- Mari Kogiso
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Lin Qi
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Frank K Braun
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Sarah G Injac
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Linna Zhang
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Yuchen Du
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Huiyuan Zhang
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Frank Y Lin
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Sibo Zhao
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Holly Lindsay
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Jack M Su
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Patricia A Baxter
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Adekunle M Adesina
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Debra Liao
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts
| | - Mark G Qian
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts
| | - Stacey Berg
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Jodi A Muscal
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Xiao-Nan Li
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas. .,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
26
|
Abramson HN. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Oncotarget 2018; 7:81926-81968. [PMID: 27655636 PMCID: PMC5348443 DOI: 10.18632/oncotarget.10745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the number of therapeutic options available for the treatment of multiple myeloma (MM) - from immunomodulating agents to proteasome inhibitors to histone deacetylase (HDAC) inhibitors and, most recently, monoclonal antibodies. Used in conjunction with autologous hematopoietic stem cell transplantation, these modalities have nearly doubled the disease's five-year survival rate over the last three decades to about 50%. In spite of these advances, MM still is considered incurable as resistance and relapse are common. While small molecule protein kinase inhibitors have made inroads in the therapy of a number of cancers, to date their application to MM has been less than successful. Focusing on MM, this review examines the roles played by a number of kinases in driving the malignant state and the rationale for target development in the design of a number of kinase inhibitors that have demonstrated anti-myeloma activity in both in vitro and in vivo xenograph models, as well as those that have entered clinical trials. Among the targets and their inhibitors examined are receptor and non-receptor tyrosine kinases, cell cycle control kinases, the PI3K/AKT/mTOR pathway kinases, protein kinase C, mitogen-activated protein kinase, glycogen synthase kinase, casein kinase, integrin-linked kinase, sphingosine kinase, and kinases involved in the unfolded protein response.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
27
|
Schmidt M, Mock A, Jungk C, Sahm F, Ull AT, Warta R, Lamszus K, Gousias K, Ketter R, Roesch S, Rapp C, Schefzyk S, Urbschat S, Lahrmann B, Kessler AF, Löhr M, Senft C, Grabe N, Reuss D, Beckhove P, Westphal M, von Deimling A, Unterberg A, Simon M, Herold-Mende C. Transcriptomic analysis of aggressive meningiomas identifies PTTG1 and LEPR as prognostic biomarkers independent of WHO grade. Oncotarget 2018; 7:14551-68. [PMID: 26894859 PMCID: PMC4924735 DOI: 10.18632/oncotarget.7396] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/27/2016] [Indexed: 12/20/2022] Open
Abstract
Meningiomas are frequent central nervous system tumors. Although most meningiomas are benign (WHO grade I) and curable by surgery, WHO grade II and III tumors remain therapeutically challenging due to frequent recurrence. Interestingly, relapse also occurs in some WHO grade I meningiomas. Hence, we investigated the transcriptional features defining aggressive (recurrent, malignantly progressing or WHO grade III) meningiomas in 144 cases. Meningiomas were categorized into non-recurrent (NR), recurrent (R), and tumors undergoing malignant progression (M) in addition to their WHO grade. Unsupervised transcriptomic analysis in 62 meningiomas revealed transcriptional profiles lining up according to WHO grade and clinical subgroup. Notably aggressive subgroups (R+M tumors and WHO grade III) shared a large set of differentially expressed genes (n=332; p<0.01, FC>1.25). In an independent multicenter validation set (n=82), differential expression of 10 genes between WHO grades was confirmed. Additionally, among WHO grade I tumors differential expression between NR and aggressive R+M tumors was affirmed for PTTG1, AURKB, ECT2, UBE2C and PRC1, while MN1 and LEPR discriminated between NR and R+M WHO grade II tumors. Univariate survival analysis revealed a significant association with progression-free survival for PTTG1, LEPR, MN1, ECT2, PRC1, COX10, UBE2C expression, while multivariate analysis identified a prediction for PTTG1 and LEPR mRNA expression independent of gender, WHO grade and extent of resection. Finally, stainings of PTTG1 and LEPR confirmed malignancy-associated protein expression changes. In conclusion, based on the so far largest study sample of WHO grade III and recurrent meningiomas we report a comprehensive transcriptional landscape and two prognostic markers.
Collapse
Affiliation(s)
- Melissa Schmidt
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Andreas Mock
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Christine Jungk
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Theresa Ull
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Rolf Warta
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ralf Ketter
- Department of Neurosurgery, Saarland University, Medical School, Homburg, Germany
| | - Saskia Roesch
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Carmen Rapp
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Schefzyk
- Department of Neuropathology, Heidelberg University Hospital, CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffi Urbschat
- Department of Neurosurgery, Saarland University, Medical School, Homburg, Germany
| | - Bernd Lahrmann
- Bioquant, Medical Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - Almuth F Kessler
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany
| | - Mario Löhr
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany
| | - Christian Senft
- Department of Neurosurgery, University of Frankfurt, Frankfurt, Germany
| | - Niels Grabe
- Bioquant, Medical Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - David Reuss
- Department of Neuropathology, Heidelberg University Hospital, CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology, RCI and University Medical Center of Regensburg, Regensburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Unterberg
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Matthias Simon
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Liewer S, Huddleston A. Alisertib: a review of pharmacokinetics, efficacy and toxicity in patients with hematologic malignancies and solid tumors. Expert Opin Investig Drugs 2018; 27:105-112. [PMID: 29260599 DOI: 10.1080/13543784.2018.1417382] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Aurora kinases are essential mediators in cell mitosis. Amplification of these kinases can lead to the development of malignancy and may be associated with inferior survival. Alisertib is an oral aurora kinase inhibitor which has been shown to induce cell-cycle arrest and apoptosis in preclinical studies. It is currently under investigation for a wide variety of malignancies including hematologic (specifically Non-Hodgkin's lymphoma) and solid tumors. Areas covered: A PubMed search was performed to identify clinical studies reporting outcomes with alisertib. Promising results are notable in patients with peripheral T cell lymphoma in particular, forming the basis for the first phase 3 randomized trial of alisertib. Although it did show encouraging response rates, it failed to demonstrate superiority over the comparator arm at an interim analysis, halting further enrollment. Expert opinion: Despite disappointing early results, alisertib remains under investigation in a number of cancer types both as monotherapy and in combination with traditional cytotoxic chemotherapy, with encouraging results. Most common toxicities in early trials include myelosuppression alopecia, mucositis and fatigue. The relatively manageable toxicity profile of alisertib along with ease of dosing may allow it to be combined with other oral agents or traditional chemotherapy across a wide variety of malignancy types.
Collapse
Affiliation(s)
- Susanne Liewer
- a Department of Pharmacy , Nebraska Medicine , Omaha , NE , USA.,b College of Pharmacy , University of Nebraska Medical Center , Omaha , NE , USA
| | - Ashley Huddleston
- c Department of Pharmacy , Mercy Hospital , Oklahoma City , OK , USA
| |
Collapse
|
29
|
Zhou X, Mould DR, Takubo T, Sheldon-Waniga E, Huebner D, Milton A, Venkatakrishnan K. Global population pharmacokinetics of the investigational Aurora A kinase inhibitor alisertib in cancer patients: rationale for lower dosage in Asia. Br J Clin Pharmacol 2017; 84:35-51. [PMID: 28891222 PMCID: PMC5736852 DOI: 10.1111/bcp.13430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/06/2017] [Accepted: 09/01/2017] [Indexed: 12/02/2022] Open
Abstract
Aims This population pharmacokinetic analysis was conducted to describe quantitatively the regional differences and sources of interpatient variability on the apparent oral clearance of alisertib. Methods A population pharmacokinetic analysis was performed on data from 671 cancer patients in Western countries and in Japan/East Asia to whom alisertib 5–150 mg once or twice daily (b.i.d.) was administered in multiple dosing schedules. The final model was used to simulate alisertib pharmacokinetics in patients in the West and East Asian regions in the single‐agent schedule of 7 days of dosing in a 21‐day cycle. Exposure–safety relationships for mechanism‐related antiproliferative toxicities (neutropenia, mucositis and diarrhoea) were estimated by logistic regression. Results Alisertib pharmacokinetics were described by a two‐compartment model with four‐transit compartment absorption and linear elimination. The final model included a covariate effect of region on relative bioavailability, with patients in the East Asian region estimated to have a 52% higher bioavailability compared with Western patients. Population simulated exposure at 30 mg b.i.d. in patients in Asia was similar to that at 50 mg b.i.d. in Western patients [geometric mean (coefficient of variation) steady state area under the concentration‐time curve over the dosing interval (AUC(0–τ)): 21.4 μM.h (52.3%) and 24.1 μM.h (53.6%), respectively]. Exposure–AE relationships could be described for neutropenia, stomatitis and diarrhoea, supporting the lower dosage of alisertib in Asia for global clinical development. Conclusions Model‐based simulations support the achievement of similar alisertib exposures in patients in Asia who are administered a 40% lower dose compared with the Western population, thereby providing a quantitative clinical pharmacology bridging and regional dosing rationale for global drug development. What is Already Known about this Subject Alisertib is an Aurora kinase A inhibitor in development for haematological and nonhaematological malignancies. Ethnic differences may affect a medication's pharmacokinetics and benefit–risk profile, making quantitative clinical pharmacological characterization of these effects important, to optimize dosage in global drug development. The maximum tolerated dose of alisertib is 50 mg twice daily and 30 mg twice daily, respectively, in Western and East Asian patients.
What this Study Adds This study provided a global population pharmacokinetic model for alisertib that quantitatively describes the sources of interpatient variability in pharmacokinetics and estimates the effect of the East Asian region on the apparent oral clearance of this agent, to support appropriate dosing recommendations for global drug development.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | | | | | - Emily Sheldon-Waniga
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Dirk Huebner
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | | | - Karthik Venkatakrishnan
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| |
Collapse
|
30
|
Niu H, Shin H, Gao F, Zhang J, Bahamon B, Danaee H, Melichar B, Schilder RJ, Coleman RL, Falchook G, Adenis A, Behbakht K, DeMichele A, Dees EC, Perez K, Matulonis U, Sawrycki P, Huebner D, Ecsedy J. Aurora A Functional Single Nucleotide Polymorphism (SNP) Correlates With Clinical Outcome in Patients With Advanced Solid Tumors Treated With Alisertib, an Investigational Aurora A Kinase Inhibitor. EBioMedicine 2017; 25:50-57. [PMID: 29122619 PMCID: PMC5704062 DOI: 10.1016/j.ebiom.2017.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/01/2022] Open
Abstract
Background Alisertib (MLN8237) is an investigational, oral, selective Aurora A kinase inhibitor. Aurora A contains two functional single nucleotide polymorphisms (SNPs; codon 31 [F/I] and codon 57 [V/I]) that lead to functional changes. This study investigated the prognostic and predictive significance of these SNPs. Methods This study evaluated associations between Aurora A SNPs and overall survival (OS) in The Cancer Genome Atlas (TCGA) database. The Aurora A SNPs were also evaluated as predictive biomarkers for clinical outcomes to alisertib in two phase 2 studies (NCT01045421 and NCT01091428). Aurora A SNP genotyping was obtained from 85 patients with advanced solid tumors receiving single-agent alisertib and 122 patients with advanced recurrent ovarian cancer treated with alisertib plus weekly paclitaxel (n = 62) or paclitaxel alone (n = 60). Whole blood was collected prior to treatment and genotypes were analyzed by PCR. Findings TCGA data suggested prognostic significance for codon 57 SNP; solid tumor patients with VV and VI alleles had significantly reduced OS versus those with II alleles (HR 1.9 [VI] and 1.8 [VV]; p < 0.0001). In NCT01045421, patients carrying the VV alleles at codon 57 (n = 53, 62%) had significantly longer progression-free survival (PFS) than patients carrying IV or II alleles (n = 32, 38%; HR 0.5; p = 0.0195). In NCT01091428, patients with the VV alleles at codon 57 who received alisertib plus paclitaxel (n = 47, 39%) had a trend towards improved PFS (7.5 months) vs paclitaxel alone (n = 32, 26%; 3.8 months; HR 0.618; p = 0.0593). In the paclitaxel alone arm, patients with the VV alleles had reduced PFS vs modified intent-to-treat (mITT) patients (3.8 vs 5.1 months), consistent with the TCGA study identifying the VV alleles as a poor prognostic biomarker. No significant associations were identified for codon 31 SNP from the same data set. Interpretation These findings suggest that Aurora A SNP at codon 57 may predict disease outcome and response to alisertib in patients with solid tumors. Further investigation is warranted. Aurora A contains two single nucleotide polymorphisms (SNPs) at codons 31 and 57 that lead to functional amino acid changes We evaluated the potential prognostic and predictive value of these SNPs and revealed the SNP at codon 57 may predict disease outcome and response to Alisertib in patients with solid tumors
Alisertib, an investigational Aurora A kinase inhibitor, was evaluated in clinical trials and showed clinically meaningful benefit in patients with solid tumors. Two coding region single nucleotide polymorphisms (SNPs) in the Aurora A gene have been reported to be associated with functional changes of the protien. Here we assessed the prognostic and predictive value of Aurora A SNPs in a range of solid tumors. The results suggest that codon 57 SNP may predict disease outcome and response to alisertib in patients. These findings warrant further investigation and may ultimately provide a patient selection strategy for alisertib in certain cancers.
Collapse
Affiliation(s)
- Huifeng Niu
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA.
| | - Hyunjin Shin
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Feng Gao
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Jacob Zhang
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | - Hadi Danaee
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Bohuslav Melichar
- Department of Oncology, Palacky University Medical School and Teaching Hospital, Olomouc, Czech Republic
| | - Russell J Schilder
- Department of Medical Oncology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Robert L Coleman
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gerald Falchook
- Sarah Cannon Research Institute at HealthONE, Denver, CO, USA
| | | | - Kian Behbakht
- Department of Gynecologic Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Angela DeMichele
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kimberly Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ursula Matulonis
- Gynecologic Oncology Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Piotr Sawrycki
- Department of Oncology and Chemotherapy, L. Rydygiera District Hospital, Torun, Poland
| | - Dirk Huebner
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA
| | | |
Collapse
|
31
|
Liu L, Xu F, Chang CK, He Q, Wu LY, Zhang Z, Li X. MYCN contributes to the malignant characteristics of erythroleukemia through EZH2-mediated epigenetic repression of p21. Cell Death Dis 2017; 8:e3126. [PMID: 29022893 PMCID: PMC5682688 DOI: 10.1038/cddis.2017.526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 01/18/2023]
Abstract
MYC proto-oncogene family including c-myc and n-myc (MYCN) are critical for normal cell development and tumorigenesis. Overexpression of c-myc causes acute erythroleukemia in vivo. However, the role of MYCN in acute erythroleukemia remains poorly understood. In this study, we found that the patients with erythroleukemia showed higher expression of MYCN than normal controls. In vitro experiments, knockdown of MYCN resulted in decreased cell proliferation, elevated autonomously cell apoptosis and increased P21-mediated cell senescence. On the contrary, overexpression of MYCN obviously promoted cell proliferation, and induced erythroid differentiation block and apoptosis resistance to cytotoxic agent. Further gene microarray and functional analysis revealed that EZH2 is a target of MYCN. Knockdown of MYCN inhibited the expression of EZH2, and then activated p21 expression through removal of H3K27me3 at the p21 promoter. Overexpression of ezh2 could antagonize the p21 activation caused by MYCN knockdown. In addition, Aurora inhibitor MLN8237 inhibited the proliferation of erythroleukemia cells through repression of MYCN/EZH2 axis, whereas it minimally affected the normal hematopoietic cells. In conclusion, MYCN contributes to the malignant characteristics of erythroleukemia through EZH2-meidated epigenetic repression of p21. MYCN may serve as a therapy target for the patients with acute erythroleukemia.
Collapse
Affiliation(s)
- Li Liu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233, China
| | - Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233, China
| | - Qi He
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233, China
| |
Collapse
|
32
|
Critical risk-benefit assessment of the novel anti-cancer aurora a kinase inhibitor alisertib (MLN8237): A comprehensive review of the clinical data. Crit Rev Oncol Hematol 2017; 119:59-65. [PMID: 29065986 DOI: 10.1016/j.critrevonc.2017.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/29/2017] [Accepted: 09/11/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Many current anticancer chemotherapeutics suffer from significant side effects, which have led to the exploration of more targeted therapies. This resulted in the exploration of inhibitors of Aurora A kinase as a potential anti-cancer treatment. Alisertib (MLN8237) has proven to be a potent Aurora A kinase inhibitor that had the highest safety profile among its therapeutic family. Phase I/II/III clinical trials with Alisertib have been carried out and reported promising efficacy, yet serious side effects. This article attempts to assess the clinical effect of Alisertib administration in various cancer phenotypes while describing the reported side effects. METHODS Alisertib clinical data were systematically retrieved from Medline, CINAHL, PubMed, and Cochrane Central Register of Controlled Trials and analyzed for quality, relevance, and originality in three stages prior to inclusion. RESULTS Overall, seven studies met inclusion criteria and enrolled a total of 630 patients. The reported "potential" clinical effect of Alisertib in various tumours is promising as it improved time to disease progression, progression-free survival, and the duration of disease stability. The achieved improvement therefore rationalizes its further investigation as a novel anticancer therapy. However, the administration of the drug was associated with serious haematological disturbances in a relatively high percentage of patients. CONCLUSION The evidence of the anti-tumour effect of Alisertib administration is compelling in various types of malignancies. The reported side effects were serious but manageable in many cases. Topical or more targeted routes of administration are suggested when possible to overcome off-target events with systematic administration of the drug.
Collapse
|
33
|
The therapeutic potential of cell cycle targeting in multiple myeloma. Oncotarget 2017; 8:90501-90520. [PMID: 29163849 PMCID: PMC5685770 DOI: 10.18632/oncotarget.18765] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/11/2017] [Indexed: 12/15/2022] Open
Abstract
Proper cell cycle progression through the interphase and mitosis is regulated by coordinated activation of important cell cycle proteins (including cyclin-dependent kinases and mitotic kinases) and several checkpoint pathways. Aberrant activity of these cell cycle proteins and checkpoint pathways results in deregulation of cell cycle progression, which is one of the key hallmarks of cancer. Consequently, intensive research on targeting these cell cycle regulatory proteins identified several candidate small molecule inhibitors that are able to induce cell cycle arrest and even apoptosis in cancer cells. Importantly, several of these cell cycle regulatory proteins have also been proposed as therapeutic targets in the plasma cell malignancy multiple myeloma (MM). Despite the enormous progress in the treatment of MM the past 5 years, MM still remains most often incurable due to the development of drug resistance. Deregulated expression of the cyclins D is observed in virtually all myeloma patients, emphasizing the potential therapeutic interest of cyclin-dependent kinase inhibitors in MM. Furthermore, other targets have also been identified in MM, such as microtubules, kinesin motor proteins, aurora kinases, polo-like kinases and the anaphase promoting complex/cyclosome. This review will provide an overview of the cell cycle proteins and checkpoint pathways deregulated in MM and discuss the therapeutic potential of targeting proteins or protein complexes involved in cell cycle control in MM.
Collapse
|
34
|
Cohen JB, Maddocks KJ, Huang Y, Christian BA, Jaglowski SM, Flowers CR, Blum KA. A phase 2 trial of alisertib in patients with relapsed or refractory B-cellnon-Hodgkin lymphoma. Leuk Lymphoma 2017; 58:1-2. [PMID: 28278718 DOI: 10.1080/10428194.2017.1289527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jonathon B Cohen
- a Department of Hematology and Medical Oncology , Emory University - Winship Cancer Institute , Atlanta , GA , USA
| | - Kami J Maddocks
- b Division of Hematology , The Ohio State University James Comprehensive Cancer Center , Columbus , OH , USA
| | - Ying Huang
- b Division of Hematology , The Ohio State University James Comprehensive Cancer Center , Columbus , OH , USA
| | - Beth A Christian
- b Division of Hematology , The Ohio State University James Comprehensive Cancer Center , Columbus , OH , USA
| | - Samantha M Jaglowski
- b Division of Hematology , The Ohio State University James Comprehensive Cancer Center , Columbus , OH , USA
| | - Christopher R Flowers
- a Department of Hematology and Medical Oncology , Emory University - Winship Cancer Institute , Atlanta , GA , USA
| | - Kristie A Blum
- b Division of Hematology , The Ohio State University James Comprehensive Cancer Center , Columbus , OH , USA
| |
Collapse
|
35
|
Abstract
Mutations in cancer cells frequently result in cell cycle alterations that lead to unrestricted growth compared to normal cells. Considering this phenomenon, many drugs have been developed to inhibit different cell-cycle phases. Mitotic phase targeting disturbs mitosis in tumor cells, triggers the spindle assembly checkpoint and frequently results in cell death. The first anti-mitotics to enter clinical trials aimed to target tubulin. Although these drugs improved the treatment of certain cancers, and many anti-microtubule compounds are already approved for clinical use, severe adverse events such as neuropathies were observed. Since then, efforts have been focused on the development of drugs that also target kinases, motor proteins and multi-protein complexes involved in mitosis. In this review, we summarize the major proteins involved in the mitotic phase that can also be targeted for cancer treatment. Finally, we address the activity of anti-mitotic drugs tested in clinical trials in recent years.
Collapse
|
36
|
Fathi AT, Wander SA, Blonquist TM, Brunner AM, Amrein PC, Supko J, Hermance NM, Manning AL, Sadrzadeh H, Ballen KK, Attar EC, Graubert TA, Hobbs G, Joseph C, Perry AM, Burke M, Silver R, Foster J, Bergeron M, Ramos AY, Som TT, Fishman KM, McGregor KL, Connolly C, Neuberg DS, Chen YB. Phase I study of the aurora A kinase inhibitor alisertib with induction chemotherapy in patients with acute myeloid leukemia. Haematologica 2016; 102:719-727. [PMID: 28034990 PMCID: PMC5395112 DOI: 10.3324/haematol.2016.158394] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/26/2016] [Indexed: 12/17/2022] Open
Abstract
Aberrant expression of aurora kinase A is implicated in the genesis of various
neoplasms, including acute myeloid leukemia. Alisertib, an aurora A kinase
inhibitor, has demonstrated efficacy as monotherapy in trials of myeloid
malignancy, and this efficacy appears enhanced in combination with conventional
chemotherapies. In this phase I, dose-escalation study, newly diagnosed patients
received conventional induction with cytarabine and idarubicin, after which
alisertib was administered for 7 days. Dose escalation occurred
via cohorts. Patients could then receive up to four cycles
of consolidation, incorporating alisertib, and thereafter alisertib maintenance
for up to 12 months. Twenty-two patients were enrolled. One dose limiting
toxicity occurred at dose level 2 (prolonged thrombocytopenia), and the
recommended phase 2 dose was established at 30mg twice daily. Common
therapy-related toxicities included cytopenias and mucositis. Only three
(14%) patients had persistent disease at mid-cycle, requiring
“5+2” reinduction. The composite remission rate (complete
remission and complete remission with incomplete neutrophil recovery) was
86% (nineteen of twenty-two patients; 90% CI
68–96%). Among those over age 65 and those with high-risk
disease (secondary acute leukemia or cytogenetically high-risk disease), the
composite remission rate was 88% and 100%, respectively. The
median follow up was 13.5 months. Of those treated at the recommended phase 2
dose, the 12-month overall survival and progression-free survival were
62% (90% CI 33–81%) and 42% (90%
CI 17–65%), respectively. Alisertib is well tolerated when
combined with induction chemotherapy in acute myeloid leukemia, with a promising
suggestion of efficacy. (clinicaltrials.gov Identifier:01779843).
Collapse
Affiliation(s)
- Amir T Fathi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Seth A Wander
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | | | - Andrew M Brunner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Philip C Amrein
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Jeffrey Supko
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Nicole M Hermance
- Worcester Polytechnic Institute, Department of Biology, Worcester, MA, USA
| | - Amity L Manning
- Worcester Polytechnic Institute, Department of Biology, Worcester, MA, USA
| | - Hossein Sadrzadeh
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Karen K Ballen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Eyal C Attar
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Timothy A Graubert
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Gabriela Hobbs
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Christelle Joseph
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Ashley M Perry
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Meghan Burke
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Regina Silver
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Julia Foster
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Meghan Bergeron
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Aura Y Ramos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Tina T Som
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Kaitlyn M Fishman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Kristin L McGregor
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Christine Connolly
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Donna S Neuberg
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Yi-Bin Chen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| |
Collapse
|
37
|
Abstract
The centrosome, an organelle discovered >100 years ago, is the main microtubule-organizing center in mammalian organisms. The centrosome is composed of a pair of centrioles surrounded by the pericentriolar material (PMC) and plays a major role in the regulation of cell cycle transitions (G1-S, G2-M, and metaphase-anaphase), ensuring the normality of cell division. Hundreds of proteins found in the centrosome exert a variety of roles, including microtubule dynamics, nucleation, and kinetochore–microtubule attachments that allow correct chromosome alignment and segregation. Errors in these processes lead to structural (shape, size, number, position, and composition), functional (abnormal microtubule nucleation and disorganized spindles), and numerical (centrosome amplification [CA]) centrosome aberrations causing aneuploidy and genomic instability. Compelling data demonstrate that centrosomes are implicated in cancer, because there are important oncogenic and tumor suppressor proteins that are localized in this organelle and drive centrosome aberrations. Centrosome defects have been found in pre-neoplasias and tumors from breast, ovaries, prostate, head and neck, lung, liver, and bladder among many others. Several drugs/compounds against centrosomal proteins have shown promising results. Other drugs have higher toxicity with modest or no benefits, and there are more recently developed agents being tested in clinical trials. All of this emerging evidence suggests that targeting centrosome aberrations may be a future avenue for therapeutic intervention in cancer research.
Collapse
Affiliation(s)
- Yainyrette Rivera-Rivera
- Department of Pharmacology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Harold I Saavedra
- Department of Pharmacology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
38
|
Qin Y, Zhang S, Deng S, An G, Qin X, Li F, Xu Y, Hao M, Yang Y, Zhou W, Chang H, Qiu L. Epigenetic silencing of miR-137 induces drug resistance and chromosomal instability by targeting AURKA in multiple myeloma. Leukemia 2016; 31:1123-1135. [PMID: 27857131 DOI: 10.1038/leu.2016.325] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/26/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022]
Abstract
Multiple myeloma (MM) is the second most prevalent hematologic malignancy. Aberrant microRNAs (miRNAs) expression has been shown to be involved in the pathogenesis of MM. In this study, we further demonstrated that miR-137 was significantly downregulated in MM and negatively correlated with clinical prognosis. Moreover, we described the epigenetic regulation of miR-137 and its association with progression-free survival in MM patients. Furthermore, overexpression of miR-137 in MM cell line (miR-137 OE) increased its sensitivity to bortezomib and eprirubicin in vitro. Also, some high-risk genetic abnormalities in MM, including deletion of chromosome 1p22.2, 14q or 17p13, and gain of chromosome 1p22.2 were detected in NCI-H929 empty vector (NCI-H929 EV) treated cells but not in the NCI-H929 miR-137 overexpression (NCI-H929 miR-137 OE) cells. Luciferase reporter assays demonstrated that miR-137 targeted AURKA. Ectopic expression of miR-137 strongly reduced the expression of AURKA and p-ATM/Chk2 in MM cells, and increased the expression of p53, and p21. Importantly, miR-137 overexpression together with bortezomib treatment significantly inhibited tumor growth in MM xenograft model. Taken together, this study demonstrates that miR-137 is epigenetically silenced in MM, and overexpression of miR-137 could reduce drug resistance and overcome chromosomal instability of the MM cells via affecting the apoptosis and DNA damage pathways.
Collapse
Affiliation(s)
- Y Qin
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China.,Department of Diagnostics, College of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - S Zhang
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - S Deng
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - G An
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - X Qin
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - F Li
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Y Xu
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - M Hao
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Y Yang
- Division of Molecular and Cellular Biology, Department of Laboratory Hematology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.,School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - W Zhou
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - H Chang
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China.,Division of Molecular and Cellular Biology, Department of Laboratory Hematology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - L Qiu
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
39
|
Aurora A Kinase Inhibitor AKI603 Induces Cellular Senescence in Chronic Myeloid Leukemia Cells Harboring T315I Mutation. Sci Rep 2016; 6:35533. [PMID: 27824120 PMCID: PMC5099696 DOI: 10.1038/srep35533] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022] Open
Abstract
The emergence of resistance to imatinib mediated by mutations in the BCR-ABL has become a major challenge in the treatment of chronic myeloid leukemia (CML). Alternative therapeutic strategies to override imatinib-resistant CML are urgently needed. In this study, we investigated the effect of AKI603, a novel small molecule inhibitor of Aurora kinase A (AurA) to overcome resistance mediated by BCR-ABL-T315I mutation. Our results showed that AKI603 exhibited strong anti-proliferative activity in leukemic cells. AKI603 inhibited cell proliferation and colony formation capacities in imatinib-resistant CML cells by inducing cell cycle arrest with polyploidy accumulation. Surprisingly, inhibition of AurA by AKI603 induced leukemia cell senescence in both BCR-ABL wild type and T315I mutation cells. Furthermore, the induction of senescence was associated with enhancing reactive oxygen species (ROS) level. Moreover, the anti-tumor effect of AKI603 was proved in the BALB/c nude mice KBM5-T315I xenograft model. Taken together, our data demonstrate that the small molecule AurA inhibitor AKI603 may be used to overcome drug resistance induced by BCR-ABL-T315I mutation in CML.
Collapse
|
40
|
Subramaniyan B, Jagadeesan K, Ramakrishnan S, Mathan G. Targeting the interaction of Aurora kinases and SIRT1 mediated by Wnt signaling pathway in colorectal cancer: A critical review. Biomed Pharmacother 2016; 82:413-24. [DOI: 10.1016/j.biopha.2016.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
|
41
|
Kozyreva VK, Kiseleva AA, Ice RJ, Jones BC, Loskutov YV, Matalkah F, Smolkin MB, Marinak K, Livengood RH, Salkeni MA, Wen S, Hazard HW, Layne GP, Walsh CM, Cantrell PS, Kilby GW, Mahavadi S, Shah N, Pugacheva EN. Combination of Eribulin and Aurora A Inhibitor MLN8237 Prevents Metastatic Colonization and Induces Cytotoxic Autophagy in Breast Cancer. Mol Cancer Ther 2016; 15:1809-22. [PMID: 27235164 DOI: 10.1158/1535-7163.mct-15-0688] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/18/2016] [Indexed: 12/26/2022]
Abstract
Recent findings suggest that the inhibition of Aurora A (AURKA) kinase may offer a novel treatment strategy against metastatic cancers. In the current study, we determined the effects of AURKA inhibition by the small molecule inhibitor MLN8237 both as a monotherapy and in combination with the microtubule-targeting drug eribulin on different stages of metastasis in triple-negative breast cancer (TNBC) and defined the potential mechanism of its action. MLN8237 as a single agent and in combination with eribulin affected multiple steps in the metastatic process, including migration, attachment, and proliferation in distant organs, resulting in suppression of metastatic colonization and recurrence of cancer. Eribulin application induces accumulation of active AURKA in TNBC cells, providing foundation for the combination therapy. Mechanistically, AURKA inhibition induces cytotoxic autophagy via activation of the LC3B/p62 axis and inhibition of pAKT, leading to eradication of metastases, but has no effect on growth of mammary tumor. Combination of MLN8237 with eribulin leads to a synergistic increase in apoptosis in mammary tumors, as well as cytotoxic autophagy in metastases. These preclinical data provide a new understanding of the mechanisms by which MLN8237 mediates its antimetastatic effects and advocates for its combination with eribulin in future clinical trials for metastatic breast cancer and early-stage solid tumors. Mol Cancer Ther; 15(8); 1809-22. ©2016 AACR.
Collapse
Affiliation(s)
- Varvara K Kozyreva
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Anna A Kiseleva
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Tatarstan
| | - Ryan J Ice
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Brandon C Jones
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Yuriy V Loskutov
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Fatimah Matalkah
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Matthew B Smolkin
- Department of Pathology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Kristina Marinak
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Ryan H Livengood
- Department of Pathology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mohamad A Salkeni
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Sijin Wen
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Biostatistics, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Hannah W Hazard
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Surgery, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Ginger P Layne
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Radiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | | | | | - Greg W Kilby
- Protea Biosciences, Inc., Morgantown, West Virginia
| | - Sricharan Mahavadi
- INBRE Program, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Neal Shah
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Elena N Pugacheva
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia.
| |
Collapse
|
42
|
Durlacher CT, Li ZL, Chen XW, He ZX, Zhou SF. An update on the pharmacokinetics and pharmacodynamics of alisertib, a selective Aurora kinase A inhibitor. Clin Exp Pharmacol Physiol 2016; 43:585-601. [DOI: 10.1111/1440-1681.12571] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 03/12/2016] [Accepted: 03/15/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Cameron T Durlacher
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa FL USA
| | - Zhi-Ling Li
- Department of Pharmacy; Shanghai Children's Hospital; Shanghai Jiao Tong University; Shanghai China
| | - Xiao-Wu Chen
- Department of General Surgery; The First People's Hospital of Shunde Affiliated to Southern Medical University; Shunde Foshan Guangdong
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine; Stem Cell and Tissue Engineering Research Centre & Sino-US Joint Laboratory for Medical Sciences; Guizhou Medical University; Guiyang Guizhou China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa FL USA
| |
Collapse
|
43
|
Dominguez-Brauer C, Thu KL, Mason JM, Blaser H, Bray MR, Mak TW. Targeting Mitosis in Cancer: Emerging Strategies. Mol Cell 2016; 60:524-36. [PMID: 26590712 DOI: 10.1016/j.molcel.2015.11.006] [Citation(s) in RCA: 332] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cell cycle is an evolutionarily conserved process necessary for mammalian cell growth and development. Because cell-cycle aberrations are a hallmark of cancer, this process has been the target of anti-cancer therapeutics for decades. However, despite numerous clinical trials, cell-cycle-targeting agents have generally failed in the clinic. This review briefly examines past cell-cycle-targeted therapeutics and outlines how experience with these agents has provided valuable insight to refine and improve anti-mitotic strategies. An overview of emerging anti-mitotic approaches with promising pre-clinical results is provided, and the concept of exploiting the genomic instability of tumor cells through therapeutic inhibition of mitotic checkpoints is discussed. We believe this strategy has a high likelihood of success given its potential to enhance therapeutic index by targeting tumor-specific vulnerabilities. This reasoning stimulated our development of novel inhibitors targeting the critical regulators of genomic stability and the mitotic checkpoint: AURKA, PLK4, and Mps1/TTK.
Collapse
Affiliation(s)
- Carmen Dominguez-Brauer
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Kelsie L Thu
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Jacqueline M Mason
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Heiko Blaser
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Mark R Bray
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
44
|
The Aurora kinase inhibitors in cancer research and therapy. J Cancer Res Clin Oncol 2016; 142:1995-2012. [PMID: 26932147 DOI: 10.1007/s00432-016-2136-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
Abstract
Compounds that affect enzymatic function of kinases are valuable for the understanding of the complex biochemical processes in cells. Aurora kinases (AURKs) play a key role in the control of the mitosis. These kinases are frequently deregulated in different human cancers: overexpression, amplifications, translocations and deletions were reported in many cancer cell lines as well as patient tissues. These findings steered a rigorous hunt for small-molecule AURK inhibitors not only for research purposes as well as for therapeutic uses. In this review, we describe a number of AURK inhibitors and their use in cancer research and/or therapy. We hope to assist researchers and clinicians in deciding which inhibitor is most appropriate for their specific purpose. The review will also provide a broad overview of the clinical studies performed with some of these inhibitors (if such studies have been performed).
Collapse
|
45
|
Bavetsias V, Linardopoulos S. Aurora Kinase Inhibitors: Current Status and Outlook. Front Oncol 2015; 5:278. [PMID: 26734566 PMCID: PMC4685048 DOI: 10.3389/fonc.2015.00278] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/27/2015] [Indexed: 11/24/2022] Open
Abstract
The Aurora kinase family comprises of cell cycle-regulated serine/threonine kinases important for mitosis. Their activity and protein expression are cell cycle regulated, peaking during mitosis to orchestrate important mitotic processes including centrosome maturation, chromosome alignment, chromosome segregation, and cytokinesis. In humans, the Aurora kinase family consists of three members; Aurora-A, Aurora-B, and Aurora-C, which each share a conserved C-terminal catalytic domain but differ in their sub-cellular localization, substrate specificity, and function during mitosis. In addition, Aurora-A and Aurora-B have been found to be overexpressed in a wide variety of human tumors. These observations led to a number of programs among academic and pharmaceutical organizations to discovering small molecule Aurora kinase inhibitors as anti-cancer drugs. This review will summarize the known Aurora kinase inhibitors currently in the clinic, and discuss the current and future directions.
Collapse
Affiliation(s)
- Vassilios Bavetsias
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research , London , UK
| | - Spiros Linardopoulos
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK; Breast Cancer Now, Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| |
Collapse
|
46
|
Choudary I, Barr PM, Friedberg J. Recent advances in the development of Aurora kinases inhibitors in hematological malignancies. Ther Adv Hematol 2015; 6:282-94. [PMID: 26622997 PMCID: PMC4649604 DOI: 10.1177/2040620715607415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Over the last two decades, since the discovery of Drosophila mutants in 1995, much effort has been made to understand Aurora kinase biology. Three mammalian subtypes have been identified thus far which include the Aurora A, B and C kinases. These regulatory proteins specifically work at the cytoskeleton and chromosomal structures between the kinetochores and have vital functions in the early phases of the mitotic cell cycle. Today, there are multiple phase I and phase II clinical trials as well as numerous preclinical studies taking place looking at Aurora kinase inhibitors in both hematologic and solid malignancies. This review focuses on the preclinical and clinical development of Aurora kinase inhibitors in hematological malignancy and discusses their therapeutic potential.
Collapse
Affiliation(s)
- Iqra Choudary
- University of Rochester - James P. Wilmot Cancer Center, 601 Elmwood Ave, Rochester NY 14642, USA
| | - Paul M. Barr
- University of Rochester - James P. Wilmot Cancer Center, USA
| | | |
Collapse
|
47
|
78495111110.1016/j.molcel.2015.11.006" />
|
48
|
Nikonova AS, Deneka AY, Eckman L, Kopp MC, Hensley HH, Egleston BL, Golemis EA. Opposing Effects of Inhibitors of Aurora-A and EGFR in Autosomal-Dominant Polycystic Kidney Disease. Front Oncol 2015; 5:228. [PMID: 26528438 PMCID: PMC4607875 DOI: 10.3389/fonc.2015.00228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/01/2015] [Indexed: 01/24/2023] Open
Abstract
Aurora-A kinase (AURKA) overexpression in numerous tumors induces aneuploidy, in part because of cytokinetic defects. Alisertib and other small-molecule inhibitors targeting AURKA are effective in some patients as monotherapies or combination therapies. Epidermal growth factor receptor (EGFR) pro-proliferative signaling activity is commonly elevated in cancer, and the EGFR inhibitor erlotinib is commonly used as a standard of care agent for cancer. An erlotinib/alisertib combination therapy is currently under assessment in clinical trials, following pre-clinical studies that indicated synergy of these drugs in cancer. We were interested in further exploring the activity of this drug combination. Beyond well-established functions for AURKA in mitotic progression, additional non-mitotic AURKA functions include control of ciliary stability and calcium signaling. Interestingly, alisertib exacerbates the disease phenotype in mouse models for autosomal-dominant polycystic kidney disease (ADPKD), a common inherited syndrome induced by aberrant signaling from PKD1 and PKD2, cilia-localized proteins that have calcium channel activity. EGFR is also more active in ADPKD, making erlotinib also of potential interest in this disease setting. In this study, we have explored the interaction of alisertib and erlotinib in an ADPKD model. These experiments indicated erlotinib-restrained cystogenesis, opposing alisertib action. Erlotinib also interacted with alisertib to regulate proliferative signaling proteins, albeit in a complicated manner. Results suggest a nuanced role of AURKA signaling in different pathogenic conditions and inform the clinical use of AURKA inhibitors in cancer patients with comorbidities.
Collapse
Affiliation(s)
- Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA
| | - Alexander Y Deneka
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA ; Cancer Biology, Drexel University College of Medicine , Philadelphia, PA , USA
| | - Louisa Eckman
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA
| | - Meghan C Kopp
- Cancer Biology, Drexel University College of Medicine , Philadelphia, PA , USA
| | - Harvey H Hensley
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA
| | - Brian L Egleston
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center , Philadelphia, PA , USA
| |
Collapse
|
49
|
Hay AE, Murugesan A, DiPasquale AM, Kouroukis T, Sandhu I, Kukreti V, Bahlis NJ, Lategan J, Reece DE, Lyons JF, Sederias J, Xu H, Powers J, Seymour LK, Reiman T. A phase II study of AT9283, an aurora kinase inhibitor, in patients with relapsed or refractory multiple myeloma: NCIC clinical trials group IND.191. Leuk Lymphoma 2015; 57:1463-6. [PMID: 26376958 DOI: 10.3109/10428194.2015.1091927] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Annette E Hay
- a NCIC Clinical Trials Group, Queen's University , Kingston , ON , Canada
| | - Alli Murugesan
- b Department of Biology , University of New Brunswick , Saint John , NB , Canada
| | | | | | - Irwindeep Sandhu
- e Department of Medicine, Division of Hematology , University of Alberta , Edmonton , AB , Canada
| | - Vishal Kukreti
- f Department of Medical Oncology and Hematology , Princess Margaret Cancer Centre , Toronto , ON , Canada
| | - Nizar J Bahlis
- g Division of Hematology and Hematologic Malignancies , University of Calgary , Calgary , AB , Canada
| | - Johan Lategan
- g Division of Hematology and Hematologic Malignancies , University of Calgary , Calgary , AB , Canada
| | - Donna E Reece
- f Department of Medical Oncology and Hematology , Princess Margaret Cancer Centre , Toronto , ON , Canada
| | - John F Lyons
- h Astex Pharmaceuticals, Inc. , Dublin , CA , USA , and
| | - Joana Sederias
- a NCIC Clinical Trials Group, Queen's University , Kingston , ON , Canada
| | - Hao Xu
- a NCIC Clinical Trials Group, Queen's University , Kingston , ON , Canada
| | - Jean Powers
- a NCIC Clinical Trials Group, Queen's University , Kingston , ON , Canada
| | - Lesley K Seymour
- a NCIC Clinical Trials Group, Queen's University , Kingston , ON , Canada
| | - Tony Reiman
- b Department of Biology , University of New Brunswick , Saint John , NB , Canada .,i Department of Oncology, Saint John Regional Hospital and Department of Medicine , Dalhousie University , Saint John , NB , Canada
| |
Collapse
|
50
|
Rosenthal A, Kumar S, Hofmeister C, Laubach J, Vij R, Dueck A, Gano K, Stewart AK. A Phase Ib Study of the combination of the Aurora Kinase Inhibitor Alisertib (MLN8237) and Bortezomib in Relapsed Multiple Myeloma. Br J Haematol 2015; 174:323-5. [PMID: 26403323 DOI: 10.1111/bjh.13765] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Jacob Laubach
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ravi Vij
- University of Washington, St Louis, Missouri, USA
| | | | | | | |
Collapse
|