1
|
Torres-Obreque K, Kleingesinds EK, Santos JHPM, Carretero G, Rabelo J, Converti A, Monteiro G, Pessoa A, Rangel-Yagui CO. PEGylation versus glycosylation: effect on the thermodynamics and thermostability of crisantaspase. Prep Biochem Biotechnol 2024; 54:503-513. [PMID: 37698175 DOI: 10.1080/10826068.2023.2249100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Thermostability is an important and desired feature of therapeutic proteins and is critical for the success or failure of protein drugs development. It can be increased by PEGylation-binding of poly(ethylene glycol) moieties-or glycosylation-post-translational modification to add glycans. Here, the thermostability and thermodynamic parameters of native, PEGylated, and glycosylated versions of the antileukemic enzyme crisantaspase were investigated. First-order kinetics was found to describe the irreversible deactivation process. Activation energy of the enzyme-catalyzed reaction (E*) was estimated for native, PEGylated, and glycosylated enzyme (10.2, 14.8, and 18.8 kJ mol-1 respectively). Half-life decreased progressively with increasing temperature, and longer half-life was observed for PEG-crisantaspase (87.74 min) at 50 °C compared to the native form (9.79 min). The activation energy of denaturation of PEG-crisantaspase (307.1 kJ mol-1) was higher than for crisantaspase (218.1 kJ mol-1) and Glyco-crisantaspase (120.0 kJ mol-1), which means that more energy is required to overcome the energy barrier of the unfolding process. According to our results, PEG-crisantaspase is more thermostable than its native form, while Glyco-crisantaspase is more thermosensitive.
Collapse
Affiliation(s)
- Karin Torres-Obreque
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | | | - João H P M Santos
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | - Gustavo Carretero
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jheniffer Rabelo
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Genoa, Italy
| | - Gisele Monteiro
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | - Carlota O Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Tosta Pérez M, Herrera Belén L, Letelier P, Calle Y, Pessoa A, Farías JG. L-Asparaginase as the gold standard in the treatment of acute lymphoblastic leukemia: a comprehensive review. Med Oncol 2023; 40:150. [PMID: 37060469 DOI: 10.1007/s12032-023-02014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
L-Asparaginase is an antileukemic drug long approved for clinical use to treat childhood acute lymphoblastic leukemia, the most common cancer in this population worldwide. However, the efficacy and its use as a drug have been subject to debate due to the variety of adverse effects that patients treated with it present, as well as the prompt elimination in plasma, the need for multiple administrations, and high rates of allergic reactions. For this reason, the search for new, less immunogenic variants has long been the subject of study. This review presents the main aspects of the L-asparaginase enzyme from a structural, pharmacological, and clinical point of view, from the perspective of its use in chemotherapy protocols in conjunction with other drugs in the different treatment phases.
Collapse
Affiliation(s)
- María Tosta Pérez
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago de Chile, Chile
| | - Pablo Letelier
- Precision Health Research Laboratory, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de La Salud, Universidad Católica de Temuco, Temuco, Chile
| | - Yolanda Calle
- Department of Life Sciences, Whitelands College, University of Roehampton, London, UK
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jorge G Farías
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
3
|
Gladilina YA, Shishparenok AN, Zhdanov DD. [Approaches for improving L-asparaginase expression in heterologous systems]. BIOMEDITSINSKAIA KHIMIIA 2023; 69:19-38. [PMID: 36857424 DOI: 10.18097/pbmc20236901019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
L-asparaginase (EC 3.5.1.1) is one of the most demanded enzymes used in the pharmaceutical industry as a drug and in the food industry to prevent the formation of toxic acrylamide. Researchers aimed to improve specific activity and reduce side effects to create safer and more potent enzyme products. However, protein modifications and heterologous expression remain problematic in the production of asparaginases from different species. Heterologous expression in optimized producer strains is rationally organized; therefore, modified and heterologous protein expression is enhanced, which is the main strategy in the production of asparaginase. This strategy solves several problems: incorrect protein folding, metabolic load on the producer strain and codon misreading, which affects translation and final protein domains, leading to a decrease in catalytic activity. The main approaches developed to improve the heterologous expression of L-asparaginases are considered in this paper.
Collapse
Affiliation(s)
| | | | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
4
|
Alexandrova SS, Gladilina YA, Pokrovskaya MV, Sokolov NN, Zhdanov DD. [Mechanisms of development of side effects and drug resistance to asparaginase and ways to overcome them]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:104-116. [PMID: 35485484 DOI: 10.18097/pbmc20226802104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Asparaginase is one of the most important chemotherapeutic agents against acute lymphoblastic leukemia, the most common form of blood cancer. To date, both asparaginases from E. coli and Dickeya dadantii (formerly known as Erwinia chrysanthemi), used in hematology, induce chemoresistance in cancer cells and side effects in the form of hypersensitivity of immune reactions. Leukemic cells may be resistant to asparaginase due to the increased activity of asparagine synthetase and other mechanisms associated with resistance to asparaginase. Therefore, the search for new sources of L-asparaginases with improved pharmacological properties remains a promising and prospective study. This article discusses the mechanisms of development of resistance and drug resistance to L-asparaginase, as well as possible ways to overcome them.
Collapse
Affiliation(s)
| | | | | | - N N Sokolov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
5
|
Dobryakova NV, Zhdanov DD, Sokolov NN, Aleksandrova SS, Pokrovskaya MV, Kudryashova EV. Improvement of Biocatalytic Properties and Cytotoxic Activity of L-Asparaginase from Rhodospirillum rubrum by Conjugation with Chitosan-Based Cationic Polyelectrolytes. Pharmaceuticals (Basel) 2022; 15:ph15040406. [PMID: 35455403 PMCID: PMC9029710 DOI: 10.3390/ph15040406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
L-asparaginases (L-ASNases, EC 3.5.1.1) are a family of enzymes that are widely used for the treatment of lymphoblastic leukemias. L-ASNase from Rhodospirillum rubrum (RrA) has a low molecular weight, low glutaminase activity, and low immunogenicity, making it a promising enzyme for antitumor drug development. In our work, the complex formation and covalent conjugation of the enzyme with synthetic or natural polycationic polymers was studied. Among non-covalent polyelectrolyte complexes (PEC), polyethyleneimine (PEI) yielded the highest effect on RrA, increasing its activity by 30%. The RrA-PEI complex had increased stability to trypsinolysis, with an inactivation constant decrease up to 10-fold compared to that of the native enzyme. The covalent conjugation of RrA with chitosan-PEI, chitosan-polyethylene glycol (chitosan-PEG), and chitosan-glycol resulted in an increase in the specific activity of L-asparagine (up to 30%). RrA-chitosan-PEG demonstrated dramatically (by 60%) increased cytotoxic activity for human chronic myeloma leukemia K562 cells in comparison to the native enzyme. The antiproliferative activity of RrA and its conjugates was significantly higher (up to 50%) than for that of the commercially available EcA at the same concentration. The results of this study demonstrated that RrA conjugates with polycations can become a promising strategy for antitumor drug development.
Collapse
Affiliation(s)
- Natalia V. Dobryakova
- Chemical Faculty, Lomonosov Moscow State University, Leninskie Gory St. 1, 119991 Moscow, Russia;
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (N.N.S.); (S.S.A.); (M.V.P.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (N.N.S.); (S.S.A.); (M.V.P.)
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Correspondence: (D.D.Z.); (E.V.K.)
| | - Nikolay N. Sokolov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (N.N.S.); (S.S.A.); (M.V.P.)
| | - Svetlana S. Aleksandrova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (N.N.S.); (S.S.A.); (M.V.P.)
| | - Marina V. Pokrovskaya
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (N.N.S.); (S.S.A.); (M.V.P.)
| | - Elena V. Kudryashova
- Chemical Faculty, Lomonosov Moscow State University, Leninskie Gory St. 1, 119991 Moscow, Russia;
- Correspondence: (D.D.Z.); (E.V.K.)
| |
Collapse
|
6
|
Pokrovskaya MV, Pokrovsky VS, Aleksandrova SS, Sokolov NN, Zhdanov DD. Molecular Analysis of L-Asparaginases for Clarification of the Mechanism of Action and Optimization of Pharmacological Functions. Pharmaceutics 2022; 14:pharmaceutics14030599. [PMID: 35335974 PMCID: PMC8948990 DOI: 10.3390/pharmaceutics14030599] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
L-asparaginases (EC 3.5.1.1) are a family of enzymes that catalyze the hydrolysis of L-asparagine to L-aspartic acid and ammonia. These proteins with different biochemical, physicochemical and pharmacological properties are found in many organisms, including bacteria, fungi, algae, plants and mammals. To date, asparaginases from E. coli and Dickeya dadantii (formerly known as Erwinia chrysanthemi) are widely used in hematology for the treatment of lymphoblastic leukemias. However, their medical use is limited by side effects associated with the ability of these enzymes to hydrolyze L-glutamine, as well as the development of immune reactions. To solve these issues, gene-editing methods to introduce amino-acid substitutions of the enzyme are implemented. In this review, we focused on molecular analysis of the mechanism of enzyme action and to optimize the antitumor activity.
Collapse
Affiliation(s)
- Marina V. Pokrovskaya
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
| | - Vadim S. Pokrovsky
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia;
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478 Moscow, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Olimpiisky Prospect 1, 354340 Sochi, Russia
| | - Svetlana S. Aleksandrova
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
| | - Nikolay N. Sokolov
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia;
- Correspondence:
| |
Collapse
|
7
|
|
8
|
Modi T, Gervais D. Improved pharmacokinetic and pharmacodynamic profile of a novel PEGylated native Erwinia chrysanthemi L-Asparaginase. Invest New Drugs 2021; 40:21-29. [PMID: 34468906 PMCID: PMC8763762 DOI: 10.1007/s10637-021-01173-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022]
Abstract
Introduction. Erwinase® (native Erwinia chrysanthemi L-Asparaginase (nErA)) is an approved second-line treatment for acute lymphoblastic leukaemia (ALL) in children and adolescents, who develop hypersensitivity or neutralising antibodies to E.coli derived L-Asparaginases (ASNases). However, nErA has a short in vivo half-life requiring frequent dosing schedules in patients. In this study, nErA was covalently conjugated to PEG molecules with the aim of extending its half-life in vivo. Methods. Firstly, efficacy of this novel product PEG-nErA was investigated on human ALL cell lines (Jurkat, CCRF-CEM and CCRF-HSB2), in vitro. Secondly, its pharmacokinetic (PK) and pharmacodynamic (PD) characteristics were determined, in vivo (12 rats in each group). Results. It was found that the specific activity (U/mg of enzyme) and the kinetic constant (KM) of nErA remained unaltered post PEGylation. PEG-nErA was shown to have similar cytotoxicity to nErA (IC50: 0.06–0.17 U/mL) on human ALL cell lines, in vitro. Further, when compared to nErA, PEG-nErA showed a significantly improved half-life in vivo, which meant that L-Asparagine (Asn) levels in plasma remained depleted for up to 25 days with a four-fold lower dose (100 U/kg) compared with 72 h for nErA at 400 U/kg dose. Conclusion. Overall, this next generation product PEG-nErA (with improved PK and PD characteristics compared to nErA) would bring a significant advantage to the therapeutic needs of ALL patients and should be further explored in clinical trials.
Collapse
Affiliation(s)
- Tapasvi Modi
- Porton Biopharma Limited, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.
| | - David Gervais
- Porton Biopharma Limited, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| |
Collapse
|
9
|
Emadi A, Kapadia B, Bollino D, Bhandary B, Baer MR, Niyongere S, Strovel ET, Kaizer H, Chang E, Choi EY, Ma X, Tighe KM, Carter-Cooper B, Moses BS, Civin CI, Mahurkar A, Shetty AC, Gartenhaus RB, Kamangar F, Lapidus RG. Venetoclax and pegcrisantaspase for complex karyotype acute myeloid leukemia. Leukemia 2021; 35:1907-1924. [PMID: 33199836 PMCID: PMC10976320 DOI: 10.1038/s41375-020-01080-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/25/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
Complex karyotype acute myeloid leukemia (CK-AML) has a dismal outcome with current treatments, underscoring the need for new therapies. Here, we report synergistic anti-leukemic activity of the BCL-2 inhibitor venetoclax (Ven) and the asparaginase formulation Pegylated Crisantaspase (PegC) in CK-AML in vitro and in vivo. Ven-PegC combination inhibited growth of multiple AML cell lines and patient-derived primary CK-AML cells in vitro. In vivo, Ven-PegC showed potent reduction of leukemia burden and improved survival, compared with each agent alone, in a primary patient-derived CK-AML xenograft. Superiority of Ven-PegC, compared to single drugs, and, importantly, the clinically utilized Ven-azacitidine combination, was also demonstrated in vivo in CK-AML. We hypothesized that PegC-mediated plasma glutamine depletion inhibits 4EBP1 phosphorylation, decreases the expression of proteins such as MCL-1, whose translation is cap dependent, synergizing with the BCL-2 inhibitor Ven. Ven-PegC treatment decreased cellular MCL-1 protein levels in vitro by enhancing eIF4E-4EBP1 interaction on the cap-binding complex via glutamine depletion. In vivo, Ven-PegC treatment completely depleted plasma glutamine and asparagine and inhibited mRNA translation and cellular protein synthesis. Since this novel mechanistically-rationalized regimen combines two drugs already in use in acute leukemia treatment, we plan a clinical trial of the Ven-PegC combination in relapsed/refractory CK-AML.
Collapse
Affiliation(s)
- Ashkan Emadi
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Bandish Kapadia
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, USA
| | - Dominique Bollino
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Binny Bhandary
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Maria R Baer
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sandrine Niyongere
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erin T Strovel
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hannah Kaizer
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth Chang
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Eun Yong Choi
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Xinrong Ma
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Kayla M Tighe
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Brandon Carter-Cooper
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Blake S Moses
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Center for Stem Cell Biology & Regenerative Medicine, Baltimore, MD, USA
| | - Curt I Civin
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Center for Stem Cell Biology & Regenerative Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anup Mahurkar
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Institute of Genome Sciences, University of Maryland, Baltimore, MD, USA
| | - Amol C Shetty
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Institute of Genome Sciences, University of Maryland, Baltimore, MD, USA
| | - Ronald B Gartenhaus
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, USA
| | - Farin Kamangar
- Department of Biology, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD, USA
| | - Rena G Lapidus
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Circumventing the side effects of L-asparaginase. Biomed Pharmacother 2021; 139:111616. [PMID: 33932739 DOI: 10.1016/j.biopha.2021.111616] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
L-asparaginase is an enzyme that catalyzes the degradation of asparagine and successfully used in the treatment of acute lymphoblastic leukemia. L-asparaginase toxicity is either related to hypersensitivity to the foreign protein or to a secondary L-glutaminase activity that causes inhibition of protein synthesis. PEGylated versions have been incorporated into the treatment protocols to reduce immunogenicity and an alternative L-asparaginase derived from Dickeya chrysanthemi is used in patients with anaphylactic reactions to the E. coli L-asparaginase. Alternative approaches commonly explore new sources of the enzyme as well as the use of protein engineering techniques to create less immunogenic, more stable variants with lower L-glutaminase activity. This article reviews the main strategies used to overcome L-asparaginase shortcomings and introduces recent tools that can be used to create therapeutic enzymes with improved features.
Collapse
|
11
|
|
12
|
Zhang Z, Zhang Y, Song S, Yin L, Sun D, Gu J. Recent advances in the bioanalytical methods of polyethylene glycols and PEGylated pharmaceuticals. J Sep Sci 2020; 43:1978-1997. [DOI: 10.1002/jssc.201901340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Zhi Zhang
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Yuyao Zhang
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Shiwen Song
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Lei Yin
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Research Institute of Translational MedicineThe First Bethune Hospital of Jilin University Changchun P. R. China
| | - Dong Sun
- Department of Biopharmacy, College of Life ScienceJilin University Changchun P. R. China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education”Yantai University Yantai P. R. China
| | - Jingkai Gu
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| |
Collapse
|
13
|
Hunt JP, Wilding KM, Barnett RJ, Robinson H, Soltani M, Cho JE, Bundy BC. Engineering Cell‐Free Protein Synthesis for High‐Yield Production and Human Serum Activity Assessment of Asparaginase: Toward On‐Demand Treatment of Acute Lymphoblastic Leukemia. Biotechnol J 2020; 15:e1900294. [DOI: 10.1002/biot.201900294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/13/2019] [Indexed: 12/22/2022]
Affiliation(s)
- J. Porter Hunt
- Department of Chemical Engineering Brigham Young University Provo UT 84602 USA
| | - Kristen M. Wilding
- Department of Chemical Engineering Brigham Young University Provo UT 84602 USA
| | - R. Jordan Barnett
- Department of Chemical Engineering Brigham Young University Provo UT 84602 USA
| | - Hannah Robinson
- Department of Chemical Engineering Brigham Young University Provo UT 84602 USA
| | - Mehran Soltani
- Department of Chemical Engineering Brigham Young University Provo UT 84602 USA
| | - Jae Eun Cho
- Department of Chemical Engineering Brigham Young University Provo UT 84602 USA
| | - Bradley C. Bundy
- Department of Chemical Engineering Brigham Young University Provo UT 84602 USA
| |
Collapse
|
14
|
Wilding KM, Zhao EL, Earl CC, Bundy BC. Thermostable lyoprotectant-enhanced cell-free protein synthesis for on-demand endotoxin-free therapeutic production. N Biotechnol 2019; 53:73-80. [DOI: 10.1016/j.nbt.2019.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 12/15/2022]
|
15
|
Faschinger AM, Sessler N. Development of a Lyophilized Formulation of Pegaspargase and Comparability Versus Liquid Pegaspargase. Adv Ther 2019; 36:2106-2121. [PMID: 31140125 PMCID: PMC6822849 DOI: 10.1007/s12325-019-00988-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Pegaspargase, a pegylated asparaginase, is a core component in the treatment of acute lymphoblastic leukemia. Pegaspargase in liquid form has a limited shelf life of 8 months due to depegylation, leading to changes in purity and potency over time. Lyophilization is an approach that can improve the stability of biological drug conjugates. METHODS Here we describe the development of a lyophilized formulation of pegaspargase and present results of a series of tests demonstrating that the lyophilized form has comparable physicochemical properties to the liquid form. RESULTS Stability tests of critical quality attributes, including purity, potency, aggregates and total free polyethylene glycol, demonstrate that lyophilized pegaspargase remains stable for at least 3 years, with optimum stability achieved with storage under refrigerated conditions (2-8 °C). CONCLUSIONS Lyophilization improved the stability of pegaspargase without altering other physicochemical properties, permitting a prolonged shelf life of at least 2 years when stored at 2-8 °C. This may enable greater storage flexibility and allow for better management of pegaspargase. FUNDING Study Sponsor: Baxalta (now part of Takeda). Publication Sponsor: Servier Affaires Médicales.
Collapse
|
16
|
Effer B, Lima GM, Cabarca S, Pessoa A, Farías JG, Monteiro G. L-Asparaginase from E. chrysanthemi expressed in glycoswitch®: effect of His-Tag fusion on the extracellular expression. Prep Biochem Biotechnol 2019; 49:679-685. [DOI: 10.1080/10826068.2019.1599396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Brian Effer
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Francisco Salazar, Chile
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guilherme Meira Lima
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sindy Cabarca
- Department of Microbiology, Laboratory of Applied Structural Biology, University of São Paulo, São Paulo, Brazil
- Institute of Biology, University of Campinas, Campinas, Brazil
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jorge G. Farías
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Francisco Salazar, Chile
| | - Gisele Monteiro
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Torres-Obreque K, Meneguetti GP, Custódio D, Monteiro G, Pessoa-Junior A, de Oliveira Rangel-Yagui C. Production of a novel N-terminal PEGylated crisantaspase. Biotechnol Appl Biochem 2019; 66:281-289. [PMID: 30597637 DOI: 10.1002/bab.1723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/25/2018] [Indexed: 11/08/2022]
Abstract
Crisantaspase is an asparaginase enzyme produced by Erwinia chrysanthemi and used to treat acute lymphoblastic leukemia (ALL) in case of hypersensitivity to Escherichia coli l-asparaginase (ASNase). The main disadvantages of crisantaspase are the short half-life (10 H) and immunogenicity. In this sense, its PEGylated form (PEG-crisantaspase) could not only reduce immunogenicity but also improve plasma half-life. In this work, we developed a process to obtain a site-specific N-terminal PEGylated crisantaspase (PEG-crisantaspase). Crisantaspase was recombinantly expressed in E. coli BL21(DE3) strain cultivated in a shaker and in a 2-L bioreactor. Volumetric productivity in bioreactor increased 37% compared to shaker conditions (460 and 335 U L-1 H-1 , respectively). Crisantaspase was extracted by osmotic shock and purified by cation exchange chromatography, presenting specific activity of 694 U mg-1 , 21.7 purification fold, and yield of 69%. Purified crisantaspase was PEGylated with 10 kDa methoxy polyethylene glycol-N-hydroxysuccinimidyl (mPEG-NHS) at different pH values (6.5-9.0). The highest N-terminal pegylation yield (50%) was at pH 7.5 with the lowest poly-PEGylation ratio (7%). PEG-crisantaspase was purified by size exclusion chromatography and presented a KM value three times higher than crisantaspase (150 and 48.5 µM, respectively). Nonetheless, PEG-crisantaspase was found to be more stable at high temperatures and over longer periods of time. In 2 weeks, crisantaspase lost 93% of its specific activity, whereas PEG-crisantaspase was stable for 20 days. Therefore, the novel PEG-crisantaspase enzyme represents a promising biobetter alternative for the treatment of ALL.
Collapse
Affiliation(s)
- Karin Torres-Obreque
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | | | - Débora Custódio
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | - Gisele Monteiro
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | - Adalberto Pessoa-Junior
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
18
|
Wilding KM, Hunt JP, Wilkerson JW, Funk PJ, Swensen RL, Carver WC, Christian ML, Bundy BC. Endotoxin-Free E. coli-
Based Cell-Free Protein Synthesis: Pre-Expression Endotoxin Removal Approaches for on-Demand Cancer Therapeutic Production. Biotechnol J 2018; 14:e1800271. [DOI: 10.1002/biot.201800271] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/12/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Kristen M. Wilding
- Chemical Engineering; Brigham Young University; 350 Clyde Provo UT 84602 USA
| | - John P. Hunt
- Chemical Engineering; Brigham Young University; 350 Clyde Provo UT 84602 USA
| | - Joshua W. Wilkerson
- Chemical Engineering; Brigham Young University; 350 Clyde Provo UT 84602 USA
| | - Parker J. Funk
- Chemical Engineering; Brigham Young University; 350 Clyde Provo UT 84602 USA
| | - Rebecca L. Swensen
- Chemical Engineering; Brigham Young University; 350 Clyde Provo UT 84602 USA
| | - William C. Carver
- Chemical Engineering; Brigham Young University; 350 Clyde Provo UT 84602 USA
| | | | - Bradley C. Bundy
- Chemical Engineering; Brigham Young University; 350 Clyde Provo UT 84602 USA
| |
Collapse
|
19
|
Nguyen HA, Su Y, Zhang JY, Antanasijevic A, Caffrey M, Schalk AM, Liu L, Rondelli D, Oh A, Mahmud DL, Bosland MC, Kajdacsy-Balla A, Peirs S, Lammens T, Mondelaers V, De Moerloose B, Goossens S, Schlicht MJ, Kabirov KK, Lyubimov AV, Merrill BJ, Saunthararajah Y, Van Vlierberghe P, Lavie A. A Novel l-Asparaginase with low l-Glutaminase Coactivity Is Highly Efficacious against Both T- and B-cell Acute Lymphoblastic Leukemias In Vivo. Cancer Res 2018; 78:1549-1560. [PMID: 29343523 DOI: 10.1158/0008-5472.can-17-2106] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/13/2017] [Accepted: 01/11/2018] [Indexed: 01/04/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of pediatric cancer, although about 4 of every 10 cases occur in adults. The enzyme drug l-asparaginase serves as a cornerstone of ALL therapy and exploits the asparagine dependency of ALL cells. In addition to hydrolyzing the amino acid l-asparagine, all FDA-approved l-asparaginases also have significant l-glutaminase coactivity. Since several reports suggest that l-glutamine depletion correlates with many of the side effects of these drugs, enzyme variants with reduced l-glutaminase coactivity might be clinically beneficial if their antileukemic activity would be preserved. Here we show that novel low l-glutaminase variants developed on the backbone of the FDA-approved Erwinia chrysanthemi l-asparaginase were highly efficacious against both T- and B-cell ALL, while displaying reduced acute toxicity features. These results support the development of a new generation of safer l-asparaginases without l-glutaminase activity for the treatment of human ALL.Significance: A new l-asparaginase-based therapy is less toxic compared with FDA-approved high l-glutaminase enzymes Cancer Res; 78(6); 1549-60. ©2018 AACR.
Collapse
Affiliation(s)
- Hien Anh Nguyen
- The Jesse Brown VA Medical Center, Chicago, Illinois.,Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois,
| | - Ying Su
- The Jesse Brown VA Medical Center, Chicago, Illinois.,Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois,
| | - Jenny Y Zhang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois,
| | - Aleksandar Antanasijevic
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois,
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois,
| | - Amanda M Schalk
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois,
| | - Li Liu
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois
| | - Damiano Rondelli
- Division of Hematology/Oncology, University of Illinois Hospital and Health Sciences System, Chicago, Illinois
| | - Annie Oh
- Division of Hematology/Oncology, University of Illinois Hospital and Health Sciences System, Chicago, Illinois
| | - Dolores L Mahmud
- Division of Hematology/Oncology, University of Illinois Hospital and Health Sciences System, Chicago, Illinois
| | - Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | | | - Sofie Peirs
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Tim Lammens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Veerle Mondelaers
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Barbara De Moerloose
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Steven Goossens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Michael J Schlicht
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Kasim K Kabirov
- Toxicology Research Laboratory, Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Alexander V Lyubimov
- Toxicology Research Laboratory, Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois,
| | - Yogen Saunthararajah
- Department of Translational Hematology & Oncology Research, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Pieter Van Vlierberghe
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Arnon Lavie
- The Jesse Brown VA Medical Center, Chicago, Illinois. .,Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois,
| |
Collapse
|
20
|
Ribera JM, Morgades M, Montesinos P, Martino R, Barba P, Soria B, Bermúdez A, Moreno MJ, González-Campos J, Vives S, Gil C, Abella E, Guàrdia R, Martínez-Carballeira D, Martínez-Sánchez P, Amigo ML, Mercadal S, Serrano A, López-Martínez A, Vall-Llovera F, Sánchez-Sánchez MJ, Peñarrubia MJ, Calbacho M, Méndez JA, Bergua J, Cladera A, Tormo M, García-Belmonte D, Feliu E, Ciudad J, Orfao A. Efficacy and safety of native versus pegylated Escherichia coli asparaginase for treatment of adults with high-risk, Philadelphia chromosome-negative acute lymphoblastic leukemia. Leuk Lymphoma 2017; 59:1634-1643. [PMID: 29165013 DOI: 10.1080/10428194.2017.1397661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Native or pegylated (PEG) asparaginase (ASP) are commonly used in treatment of acute lymphoblastic leukemia (ALL), but have been scarcely compared in the same trial in adult patients. Native vs. PEG-ASP administered according to availability in each center were prospectively evaluated in adults with high-risk ALL. Ninety-one patients received native ASP and 35 PEG-ASP in induction. No significant differences were observed in complete remission, minimal residual disease levels after induction and after consolidation, disease-free survival, and overall survival. No significant differences in grades 3-4 toxicity were observed in the induction period, although a trend for higher hepatic toxicity was observed in patients receiving PEG-ASP. In this trial the type of ASP did not influence patient response and outcome.
Collapse
Affiliation(s)
- Josep-Maria Ribera
- a ICO Badalona-Hospital Germans Trias i Pujol , Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona , Badalona , Spain
| | - Mireia Morgades
- a ICO Badalona-Hospital Germans Trias i Pujol , Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona , Badalona , Spain
| | - Pau Montesinos
- b Hospital Universitari i Politècnic La Fe , Valencia , Spain
| | | | - Pere Barba
- d Hospital Vall d'Hebron Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Beatriz Soria
- e Hospital Universitario de Canarias , Santa Cruz de Tenerife , Spain
| | - Arancha Bermúdez
- f Hospital Universitario Marqués de Valdecilla , Santander , Spain
| | - María-José Moreno
- g Hospital Clínico Universitario Virgen de la Victoria , Málaga , Spain
| | | | - Susana Vives
- a ICO Badalona-Hospital Germans Trias i Pujol , Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona , Badalona , Spain
| | - Cristina Gil
- i Hospital General de Alicante , Alicante , Spain
| | | | | | | | | | | | - Santiago Mercadal
- o ICO L'Hospitalet-Hospital Duran i Reynals, L'Hospitalet de Llobregat , L'Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | | | | - Juan Bergua
- w Hospital San Pedro de Alcántara , Cáceres , Spain
| | | | - Mar Tormo
- y Hospital Clínico Universitario de Valencia , Valencia , Spain
| | | | - Evarist Feliu
- a ICO Badalona-Hospital Germans Trias i Pujol , Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona , Badalona , Spain
| | - Juana Ciudad
- aa Centro de Investigación del Cáncer (CIC, IBMCC USAL-CSIC), Servicio General de Citometría, and Instituto de Investigación Biomédica de Salamanca (IBSAL) , Universidad de Salamanca , Salamanca , Spain
| | - Alberto Orfao
- aa Centro de Investigación del Cáncer (CIC, IBMCC USAL-CSIC), Servicio General de Citometría, and Instituto de Investigación Biomédica de Salamanca (IBSAL) , Universidad de Salamanca , Salamanca , Spain
| | | |
Collapse
|
21
|
Fung MKL, Chan GCF. Drug-induced amino acid deprivation as strategy for cancer therapy. J Hematol Oncol 2017; 10:144. [PMID: 28750681 PMCID: PMC5530962 DOI: 10.1186/s13045-017-0509-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer is caused by uncontrollable growth of neoplastic cells, leading to invasion of adjacent and distant tissues resulting in death. Cancer cells have specific nutrient(s) auxotrophy and have a much higher nutrient demand compared to normal tissues. Therefore, different metabolic inhibitors or nutrient-depleting enzymes have been tested for their anti-cancer activities. We review recent available laboratory and clinical data on using various specific amino acid metabolic pathways inhibitors in treating cancers. Our focus is on glutamine, asparagine, and arginine starvation. These three amino acids are chosen due to their better scientific evidence compared to other related approaches in cancer treatment. Amino acid-specific depleting enzymes have been adopted in different standard chemotherapy protocols. Glutamine starvation by glutaminase inhibitior, transporter inhibitor, or glutamine depletion has shown to have significant anti-cancer effect in pre-clinical studies. Currently, glutaminase inhibitor is under clinical trial for testing anti-cancer efficacy. Clinical data suggests that asparagine depletion is effective in treating hematologic malignancies even as a single agent. On the other hand, arginine depletion has lower toxicity profile and can effectively reduce the level of pro-cancer biochemicals in patients as shown by ours and others’ data. This supports the clinical use of arginine depletion as anti-cancer therapy but its exact efficacy in various cancers requires further investigation. However, clinical application of these enzymes is usually hindered by common problems including allergy to these foreign proteins, off-target cytotoxicity, short half-life and rapidly emerging chemoresistance. There have been efforts to overcome these problems by modifying the drugs in different ways to circumvent these hindrance such as (1) isolate human native enzymes to reduce allergy, (2) isolate enzyme isoforms with higher specificities and efficiencies, (3) pegylate the enzymes to reduce allergy and prolong the half-lives, and (4) design drug combinations protocols to enhance the efficacy of chemotherapy by drug synergy and minimizing resistance. These improvements can potentially lead to the development of more effective anti-cancer treatment with less adverse effects and higher therapeutic efficacy.
Collapse
Affiliation(s)
- Marcus Kwong Lam Fung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
22
|
Adult T-type lymphoblastic lymphoma: Treatment advances and prognostic indicators. Exp Hematol 2017; 51:7-16. [DOI: 10.1016/j.exphem.2017.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/24/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022]
|
23
|
Fernandes HS, Silva Teixeira CS, Fernandes PA, Ramos MJ, Cerqueira NMFSA. Amino acid deprivation using enzymes as a targeted therapy for cancer and viral infections. Expert Opin Ther Pat 2016; 27:283-297. [DOI: 10.1080/13543776.2017.1254194] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- H. S. Fernandes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - C. S. Silva Teixeira
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - P. A. Fernandes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M. J. Ramos
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - N. M. F. S. A. Cerqueira
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
24
|
Lorentz KM, Kontos S, Diaceri G, Henry H, Hubbell JA. Engineered binding to erythrocytes induces immunological tolerance to E. coli asparaginase. SCIENCE ADVANCES 2015; 1:e1500112. [PMID: 26601215 PMCID: PMC4646778 DOI: 10.1126/sciadv.1500112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/14/2015] [Indexed: 05/29/2023]
Abstract
Antigen-specific immune responses to protein drugs can hinder efficacy and compromise safety because of drug neutralization and secondary clinical complications. We report a tolerance induction strategy to prevent antigen-specific humoral immune responses to therapeutic proteins. Our modular, biomolecular approach involves engineering tolerizing variants of proteins such that they bind erythrocytes in vivo upon injection, on the basis of the premise that aged erythrocytes and the payloads they carry are cleared tolerogenically, driving the deletion of antigen-specific T cells. We demonstrate that binding the clinical therapeutic enzyme Escherichia coli l-asparaginase to erythrocytes in situ antigen-specifically abrogates development of antibody titers by >1000-fold and extends the pharmacodynamic effect of the drug 10-fold in mice. Additionally, a single pretreatment dose of erythrocyte-binding asparaginase tolerized mice to multiple subsequent doses of the wild-type enzyme. This strategy for reducing antigen-specific humoral responses may enable more effective and safer treatment with therapeutic proteins and drug candidates that are hampered by immunogenicity.
Collapse
Affiliation(s)
- Kristen M. Lorentz
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Anokion SA, CH-1024 Ecublens, Switzerland
| | - Stephan Kontos
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Anokion SA, CH-1024 Ecublens, Switzerland
| | - Giacomo Diaceri
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hugues Henry
- Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Jeffrey A. Hubbell
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Anokion SA, CH-1024 Ecublens, Switzerland
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
25
|
Chien WW, Le Beux C, Rachinel N, Julien M, Lacroix CE, Allas S, Sahakian P, Cornut-Thibaut A, Lionnard L, Kucharczak J, Aouacheria A, Abribat T, Salles G. Differential mechanisms of asparaginase resistance in B-type acute lymphoblastic leukemia and malignant natural killer cell lines. Sci Rep 2015; 5:8068. [PMID: 25626693 PMCID: PMC5389037 DOI: 10.1038/srep08068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/02/2015] [Indexed: 12/02/2022] Open
Abstract
Bacterial L-asparaginase (ASNase), hydrolyzing L-asparagine (Asn), is an important drug for treating patients with acute lymphoblastic leukaemia (ALL) and natural killer (NK) cell lymphoma. Although different native or pegylated ASNase-based chemotherapy are efficient, disease relapse is frequently observed, especially in adult patients. The neo-synthesis of Asn by asparagine synthetase (AsnS) following ASNase treatment, which involves the amino acid response and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways, is believed to be the basis of ASNase-resistance mechanisms. However, AsnS expression has not emerged as an accurate predictive factor for ASNase susceptibility. The aim of this study was to identify possible ASNase sensitivity/resistance-related genes or pathways using a new asparaginase, namely a pegylated r-crisantaspase, with a focus on classic Asn-compensatory responses and cell death under conditions of Asn/L-glutamine limitation. We show that, for B-ALL cell lines, changes in the expression of apoptosis-regulatory genes (especially NFκB-related genes) are associated with ASNase susceptibility. The response of malignant NK cell lines to ASNase may depend on Asn-compensatory mechanisms and other cellular processes such as cleavage of BCL2A1, a prosurvival member of the Bcl-2 protein family. These results suggest that according to cellular context, factors other than AsnS can influence ASNase susceptibility.
Collapse
Affiliation(s)
- Wei-Wen Chien
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Céline Le Beux
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Nicolas Rachinel
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Michel Julien
- Alizeé Pharma, 15 Chemin du Saquin, Espace Européen, Building G, 69130, Ecully, FRANCE
| | - Claire-Emmanuelle Lacroix
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Soraya Allas
- Alizeé Pharma, 15 Chemin du Saquin, Espace Européen, Building G, 69130, Ecully, FRANCE
| | - Pierre Sahakian
- Alizeé Pharma, 15 Chemin du Saquin, Espace Européen, Building G, 69130, Ecully, FRANCE
| | - Aurélie Cornut-Thibaut
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Loïc Lionnard
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Jérôme Kucharczak
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Abdel Aouacheria
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Thierry Abribat
- Alizeé Pharma, 15 Chemin du Saquin, Espace Européen, Building G, 69130, Ecully, FRANCE
| | - Gilles Salles
- 1] Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE [2] Hospices Civils de Lyon, Service d'Hématologie, 165 Chemin du Grand Revoyet, 69495 Pierre-Bénite, FRANCE
| |
Collapse
|
26
|
Fréling E, Granel-Brocard F, Serrier C, Ortonne N, Barbaud A, Schmutz JL. [Extranodal NK/T-cell lymphoma, nasal-type, revealed by cutaneous breast involvement]. Ann Dermatol Venereol 2014; 142:104-11. [PMID: 25554664 DOI: 10.1016/j.annder.2014.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/04/2014] [Accepted: 11/07/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND Extranodal NK/T-cell lymphoma (ENKTL) is a rare form of non-Hodgkin's lymphoma and carries a poor prognosis. Depending on the primary sites of anatomical involvement, it is subcategorized into nasal or extra-nasal ENKTL. Cutaneous involvement is the second localization reported for these lymphomas. PATIENTS AND METHODS A woman was admitted for erythematous infiltrative patches on the breasts having an ulcerative course. Cutaneous histopathology showed a dense, diffuse infiltrate of atypical lymphocytes. Immunohistochemistry revealed expression of specific markers for NK-cells and of cytotoxic molecules (TIA-1, granzyme B and perforin), lack of expression of T-cell markers (except positivity of cytoplasmic CD3 and CD2), and the presence of EBV-DNA in lymphoma cells. Positron emission tomography-computed tomography revealed sub- and supra-diaphragmatic multi-organ involvement (kidneys, breasts, stomach, duodenum, lungs, pleural cavity, uterus, bones). No bone marrow infiltration was noted. PCR (polymerase chain reaction) showed high circulating levels of EBV-DNA in peripheral blood. A systemic nasal-type ENKTL was diagnosed. A chemotherapy regimen including high-dose methotrexate, oxaliplatin, gemcitabine, L-asparaginase and dexamethasone was started. Despite good initial therapeutic response, the outcome was rapidly fatal with bone marrow involvement and multi-organ failure. DISCUSSION Major cutaneous manifestations of ENKTL comprise erythematous infiltrative patches mimicking panniculitis or cellulitis and evolving towards ulceration or necrosis. Subcutaneous nodules may also be noted. Late diagnosis at an advanced stage accounts for the poorer prognosis in extra-nasal ENKTL. In the advanced stages, treatment is based on a chemotherapy regimen including L-asparaginase, possibly followed by autologous or allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- E Fréling
- Département de dermatologie et allergologie, CHU de Nancy, rue du Morvan, 54500 Vandœuvre-lès-Nancy, France.
| | - F Granel-Brocard
- Département de dermatologie et allergologie, CHU de Nancy, rue du Morvan, 54500 Vandœuvre-lès-Nancy, France
| | - C Serrier
- Service d'hématologie et médecine interne, CHU de Nancy, rue du Morvan, 54500 Vandœuvre-lès-Nancy, France
| | - N Ortonne
- Département de pathologie, CHU Henri-Mondor, 51, avenue Maréchal-de-Lattre-de-Tassigny, 94010 Créteil cedex, France
| | - A Barbaud
- Département de dermatologie et allergologie, CHU de Nancy, rue du Morvan, 54500 Vandœuvre-lès-Nancy, France
| | - J-L Schmutz
- Département de dermatologie et allergologie, CHU de Nancy, rue du Morvan, 54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|