1
|
Zhang Y, Zhang X, Cheng A, Wang M, Yin Z, Huang J, Jia R. Apoptosis Triggered by ORF3 Proteins of the Circoviridae Family. Front Cell Infect Microbiol 2021; 10:609071. [PMID: 33604306 PMCID: PMC7884757 DOI: 10.3389/fcimb.2020.609071] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Apoptosis, a form of the programmed cell death, is an indispensable defense mechanism regulating cellular homeostasis and is triggered by multiple stimuli. Because of the regulation of apoptosis in cellular homeostasis, viral proteins with apoptotic activity are particular foci of on antitumor therapy. One representative viral protein is the open reading frame 3 (ORF3) protein, also named as apoptin in the Circoviridae chicken anemia virus (CAV), and has the ability to induce tumor-specific apoptosis. Proteins encoded by ORF3 in other circovirus species, such as porcine circovirus (PCV) and duck circovirus (DuCV), have also been reported to induce apoptosis, with subtle differences in apoptotic activity based on cell types. This article is aimed at reviewing the latest research advancements in understanding ORF3 protein-mediated apoptosis mechanisms of Circoviridae from three perspectives: subcellular localization, interactions with host proteins, and participation in multiple apoptotic signaling pathways, providing a scientific basis for circovirus pathogenesis and a reference on its potential anticancer function.
Collapse
Affiliation(s)
- Yanting Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingcui Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Malla WA, Arora R, Khan RIN, Mahajan S, Tiwari AK. Apoptin as a Tumor-Specific Therapeutic Agent: Current Perspective on Mechanism of Action and Delivery Systems. Front Cell Dev Biol 2020; 8:524. [PMID: 32671070 PMCID: PMC7330108 DOI: 10.3389/fcell.2020.00524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide in humans and animals. Conventional treatment regimens often fail to produce the desired outcome due to disturbances in cell physiology that arise during the process of transformation. Additionally, development of treatment regimens with no or minimum side-effects is one of the thrust areas of modern cancer research. Oncolytic viral gene therapy employs certain viral genes which on ectopic expression find and selectively destroy malignant cells, thereby achieving tumor cell death without harming the normal cells in the neighborhood. Apoptin, encoded by Chicken Infectious Anemia Virus' VP3 gene, is a proline-rich protein capable of inducing apoptosis in cancer cells in a selective manner. In normal cells, the filamentous Apoptin becomes aggregated toward the cell margins, but is eventually degraded by proteasomes without harming the cells. In malignant cells, after activation by phosphorylation by a cancer cell-specific kinase whose identity is disputed, Apoptin accumulates in the nucleus, undergoes aggregation to form multimers, and prevents the dividing cancer cells from repairing their DNA lesions, thereby forcing them to undergo apoptosis. In this review, we discuss the present knowledge about the structure of Apoptin protein, elaborate on its mechanism of action, and summarize various strategies that have been used to deliver it as an anticancer drug in various cancer models.
Collapse
Affiliation(s)
- Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Richa Arora
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Sonalika Mahajan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardisation, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
3
|
Feng C, Liang Y, Teodoro JG. The Role of Apoptin in Chicken Anemia Virus Replication. Pathogens 2020; 9:pathogens9040294. [PMID: 32316372 PMCID: PMC7238243 DOI: 10.3390/pathogens9040294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
Apoptin is the Vp3 protein of chicken anemia virus (CAV), which infects the thymocytes and erythroblasts in young chickens, causing chicken infectious anemia and immunosuppression. Apoptin is highly studied for its ability to selectively induce apoptosis in human tumor cells and, thus, is a protein of interest in anti-tumor therapy. CAV apoptin is known to localize to different subcellular compartments in transformed and non-transformed cells, depending on the DNA damage response, and the phosphorylation of several identified threonine residues. In addition, apoptin interacts with molecular machinery such as the anaphase promoting complex/cyclosome (APC/C) to inhibit the cell cycle and induce arrest in G2/M phase. While these functions of apoptin contribute to the tumor-selective effect of the protein, they also provide an important fundamental framework to apoptin’s role in viral infection, pathogenesis, and propagation. Here, we reviewed how the regulation, localization, and functions of apoptin contribute to the viral life cycle and postulated its importance in efficient replication of CAV. A model of the molecular biology of infection is critical to informing our understanding of CAV and other related animal viruses that threaten the agricultural industry.
Collapse
Affiliation(s)
- Cynthia Feng
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Yingke Liang
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jose G. Teodoro
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Goodman Cancer Research Centre, Montreal, QC H3G 1A1, Canada
- Correspondence:
| |
Collapse
|
4
|
Pavesi A. New insights into the evolutionary features of viral overlapping genes by discriminant analysis. Virology 2020; 546:51-66. [PMID: 32452417 PMCID: PMC7157939 DOI: 10.1016/j.virol.2020.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
Abstract
Overlapping genes originate by a mechanism of overprinting, in which nucleotide substitutions in a pre-existing frame induce the expression of a de novo protein from an alternative frame. In this study, I assembled a dataset of 319 viral overlapping genes, which included 82 overlaps whose expression is experimentally known and the respective 237 homologs. Principal component analysis revealed that overlapping genes have a common pattern of nucleotide and amino acid composition. Discriminant analysis separated overlapping from non-overlapping genes with an accuracy of 97%. When applied to overlapping genes with known genealogy, it separated ancestral from de novo frames with an accuracy close to 100%. This high discriminant power was crucial to computationally design variants of de novo viral proteins known to possess selective anticancer toxicity (apoptin) or protection against neurodegeneration (X protein), as well as to detect two new potential overlapping genes in the genome of the new coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Angelo Pavesi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 23/A, I-43124, Parma, Italy.
| |
Collapse
|
5
|
Abstract
Inhibitor of apoptosis (IAP) family comprises a group of endogenous proteins that function as main regulators of caspase activity and cell death. They are considered the main culprits in evasion of apoptosis, which is a fundamental hallmark of carcinogenesis. Overexpression of IAP proteins has been documented in various solid and hematological malignancies, rendering them resistant to standard chemotherapeutics and radiation therapy and conferring poor prognosis. This observation has urged their exploitation as therapeutic targets in cancer with promising pre-clinical outcomes. This review describes the structural and functional features of IAP proteins to elucidate the mechanism of their anti-apoptotic activity. We also provide an update on patterns of IAP expression in different tumors, their impact on treatment response and prognosis, as well as the emerging investigational drugs targeting them. This aims at shedding the light on the advances in IAP targeting achieved to date, and encourage further development of clinically applicable therapeutic approaches.
Collapse
Affiliation(s)
- Mervat S Mohamed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
- Department of Chemistry, Biochemistry Speciality, Faculty of Science, Cairo University, Giza, Egypt.
- , Tabuk, Kingdom of Saudi Arabia.
| | - Mai K Bishr
- Department of Radiotherapy, Children's Cancer Hospital Egypt (CCHE), Cairo, Egypt
| | - Fahad M Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ayat G Ali
- Department of Biochemistry, El Sahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
6
|
Brown AC, Reddy VRAP, Lee J, Nair V. Marek's disease virus oncoprotein Meq physically interacts with the chicken infectious anemia virus-encoded apoptotic protein apoptin. Oncotarget 2018; 9:28910-28920. [PMID: 29988968 PMCID: PMC6034753 DOI: 10.18632/oncotarget.25628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
Marek's disease (MD) is a neoplastic disease of poultry caused by Marek's disease virus (MDV), a highly contagious alphaherpesvirus. Meq, the major MDV oncoprotein, induces neoplastic transformation of T-cells through several mechanisms, including inhibition of apoptosis. In contrast, the chicken anemia virus (CAV)-encoded protein apoptin (VP3) is a powerful inducer of apoptosis of tumor cells, a property that is exploited for anticancer therapeutics. Although the molecular mechanisms of selective induction of tumor cell apoptosis by apoptin are not fully understood, its tumor cell–restricted nuclear translocation is thought to be important. Co-infection with MDV and CAV is common in many countries, CAV antigens are readily detectable in MD lymphomas, and the MDV-transformed T-lymphoblastoid cell lines such as MSB-1 is widely used for propagating CAV for vaccine production. As MDV-transformed cell lines express high levels of Meq, we examined here whether CAV-encoded apoptin interacts with Meq in these cells. Using immunofluorescence microscopy, we found that apoptin and Meq co-localize to the nucleus, and biochemical analysis indicated that the two proteins do physically interact. Using a combination of Meq mutagenesis and co-immunoprecipitation, we demonstrate that apoptin interacts with Meq within a region between amino acids 130 and 140. Results from the IncuCyte assay suggested that Meq inhibits apoptin-induced apoptosis activity. In summary, our findings indicate that Meq interacts with and inhibits apoptin. Insights into this novel interaction between Meq and apoptin will relevance for pathogenesis of coinfections of the two viruses and in CAV vaccine production using MDV-transformed cell lines.
Collapse
Affiliation(s)
- Andrew C Brown
- Wellcome Trust Centre for Human Genetics, Oxford, OX3 7BN, UK
| | | | - Joshua Lee
- Bristol University, Bristol, BS8 1TH, UK
| | - Venugopal Nair
- Viral Oncogenesis Group, The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|