1
|
Liu X, Song Y, Cheng P, Liang B, Xing D. Targeting HER2 in solid tumors: Unveiling the structure and novel epitopes. Cancer Treat Rev 2024; 130:102826. [PMID: 39270365 DOI: 10.1016/j.ctrv.2024.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Human epidermal growth factor receptor-2 (HER2) is overexpressed in various solid tumor types, acting as an established therapeutic target. Over the last three decades, the fast-paced development of diverse HER2-targeted agents, notably marked by the introduction of the antibody-drug conjugate (ADC), yielding substantial improvements in survival rates. However, resistance to anti-HER2 treatments continues to pose formidable challenges. The complex structure and dynamic dimerization properties of HER2 create significant hurdles in the development of novel targeted therapeutics. In this review, we synthesize the latest insights into the structural intricacies of HER2 and present an unprecedented overview of the epitope characteristics of HER2-targeted antibodies and their derivatives. Furthermore, we delve into the correlation between anti-HER2 antibody binding epitopes and their respective functions, with a particular focus on their efficacy against resistant tumors. In addition, we highlight the potential of emerging anti-HER2 agents that target specific sites or non-overlapping epitopes, poised to transform the therapeutic landscape for HER2-positive tumors in the foreseeable future.
Collapse
Affiliation(s)
- Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao 266071, China
| | - Yunlong Song
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao 266033, China
| | - Panpan Cheng
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao 266033, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Roshani A, Mohammadi M, Bahadori T, Ahmadi Zare H, Judaki MA, Mobini M, Golsaz-Shirazi F, Jeddi-Tehrani M, Amiri MM, Shokri F. Comparison of different transient gene expression systems for the production of a new humanized anti-HER2 monoclonal antibody (Hersintuzumab). Daru 2023; 31:221-231. [PMID: 37695454 PMCID: PMC10624790 DOI: 10.1007/s40199-023-00477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/05/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Producing therapeutic proteins can be done quickly and on a large scale through Transient Gene Expression (TGE). Chinese hamster ovary (CHO) cell lines are commonly used to achieve this. Although there are few comparative studies, TGE has been observed in suspension-adapted CHO cells. OBJECTIVES We tested TGE's effectiveness in DG-44, CHO-S, and ExpiCHO-S cell lines with four transfection reagents. METHODS A design of experiments (DoE) was followed to optimize transfection using a recombinant monoclonal antibody (mAb) construct. To evaluate the efficacy, flow cytometry and ELISA were used. Feeding strategies and temperature shifts were implemented to enhance transfection effectiveness. The quality of the mAb was assessed through ELISA, SDS-PAGE, and proliferation inhibition assays. RESULTS We adapted all cell lines to grow in suspension using a serum-free medium. Our findings from flow cytometry and ELISA tests indicate that PEI and Pmax reagents had a higher rate of transfection and mAb production than the ExpiCHO commercial transfection reagent. While DG-44 cells had better transfection efficiency than CHO-S and ExpiCHO-S, there was no significant difference between CHO-S and ExpiCHO-S. Our TGE system was more productive at 32 °C than at 37 °C. In the optimized TGE of Pmax-based transfection in DG-44 at 37 and 32 °C, the production level of mAb was more than half of the amount of the commercial ExpiCHO-S expression system. Still, the number of transfected cells was three times higher, making it more efficient. The purified mAb from all transfected cell lines had similar structural and functional properties under different conditions. CONCLUSION Our research shows that using Pmax and DG-44 cells in the TGE system is a cost-effective and efficient way to produce humanized monoclonal antibodies. We discovered that this method outperforms the ExpiCHO-S kit.
Collapse
Affiliation(s)
- Ali Roshani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Bahadori
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Ahmadi Zare
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Ali Judaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Mohammadi M, Jeddi-Tehrani M, Golsaz-Shirazi F, Arjmand M, Torkashvand F, Bahadori T, Judaki MA, Shiravi F, Ahmadi Zare H, Notash Haghighat F, Mobini M, Shokri F, Amiri MM. A Novel Fc-Engineered Anti-HER2 Bispecific Antibody With Enhanced Antitumor Activity. J Immunother 2023; 46:121-131. [PMID: 36939675 DOI: 10.1097/cji.0000000000000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/17/2023] [Indexed: 03/21/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) overexpression has been demonstrated in a variety of cancers. Targeted therapy with anti-HER2 monoclonal antibodies (mAbs) has been approved as a therapeutic modality. Despite the efficacy of mAbs in tumor treatment, many patients do not benefit from this therapeutic platform. Fragment crystallizable (Fc) engineering is a common approach to improve the efficacy of therapeutic mAbs. Five Fc-engineered mAbs have so far been approved by FDA. We have recently developed an anti-HER2 bispecific mAb, BiHT, constructed from variable domains of trastuzumab, and our novel humanized anti-HER2 mAb, hersintuzumab. BiHT displayed promising antitumor activity as potently as the combination of the parental mAbs. Here, we aimed to modify the Fc of BiHT to improve its therapeutic efficacy. The Fc-engineered BiHT (MBiHT) bound to recombinant HER2 and its subdomains with an affinity similar to BiHT. It also recognized native HER2 on different cell lines, inhibited their proliferation, downregulated HER2 expression, and suppressed downstream signaling pathways similar to BiHT. Compared with BiHT, MBiHT displayed enhanced antibody-dependent cellular cytotoxicity activity against various tumor cell lines. It also inhibited the growth of ovarian xenograft tumors in nude mice more potently than BiHT. Our findings suggest that MBiHT could be a potent therapeutic candidate for the treatment of HER2-overexpressing cancer types.
Collapse
Affiliation(s)
- Mehdi Mohammadi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | | | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | | | | | - Tannaz Bahadori
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | - Mohammad Ali Judaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | - Fariba Shiravi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | | | | | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| |
Collapse
|
4
|
Shiravi F, Mohammadi M, Golsaz-Shirazi F, Bahadori T, Judaki MA, Fatemi F, Zare HA, Haghighat FN, Mobini M, Jeddi-Tehrani M, Amiri MM, Shokri F. Potent synergistic anti-tumor activity of a novel humanized anti-HER2 antibody hersintuzumab in combination with trastuzumab in xenograft models. Invest New Drugs 2021; 39:697-704. [PMID: 33389387 DOI: 10.1007/s10637-020-01048-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022]
Abstract
Immunotherapy of HER2-overexpressing cancers by FDA approved monoclonal antibodies (mAbs) such as trastuzumab and pertuzumab has shown promising results. We have recently produced a novel humanized anti-HER2 mAb, hersintuzumab, which did not sterically inhibit binding of trastuzumab and pertuzumab to HER2, thus recognizing a distinct epitope on subdomain I + II of HER2. In this study, we assessed the in vitro and in vivo anti-tumor activity of this mAb individually and in combination with trastuzumab. Different HER2-overexpressing human cancer cell lines, including SKOV3, NCI-N87 HCC1954 and BT-474 were cultured and binding reactivity of Hersintuzumab to these cell lines was analyzed by flow cytometry. In addition, the inhibitory effect of different concentrations of hersintuzumab, trastuzumab and their combination on tumor cells growth was assessed by XTT assay. For Assessment of tumor growth inhibition in xenograft model, Balb/c athymic nude mice were subcutaneously injected with NCI-N87 and SKOV3 tumor cells and then treated intravenously with these mAbs. Our results showed that hersintuzumab could bind to all HER2-overexpressing cell lines similar to trastuzumab. In vitro experiments showed that both hersintuzumab and trastuzumab individually and in combination inhibited growth of all cell lines with the exception of HCC-1954.Inhibitory effect of the combination of mAbs was significantly higher than that of each mAb alone. Similar results were obtained in the gastric (NCI-N87) and ovarian (SKOV-3) tumor xenograft models. Hersintuzumab in combination with trastuzumab induces synergic anti-tumor effects on HER2-overexpressing cells in vitro and in vivo and is potentially a therapeutic tool for treatment of HER2-overexpressing cancers.
Collapse
Affiliation(s)
- Fariba Shiravi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Bahadori
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Judaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Fatemi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hengameh Ahmadi Zare
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Mohammadi M, Jeddi-Tehrani M, Golsaz-Shirazi F, Arjmand M, Bahadori T, Judaki MA, Shiravi F, Zare HA, Haghighat FN, Mobini M, Amiri MM, Shokri F. A Novel Anti-HER2 Bispecific Antibody With Potent Tumor Inhibitory Effects In Vitro and In Vivo. Front Immunol 2021; 11:600883. [PMID: 33679691 PMCID: PMC7927792 DOI: 10.3389/fimmu.2020.600883] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/23/2020] [Indexed: 01/14/2023] Open
Abstract
Overexpression of HER2 has been reported in many types of cancer, making it a perfect candidate for targeted immunotherapy. The combination of two FDA approved monoclonal antibodies (mAbs), trastuzumab and pertuzumab, has more robust anti-tumor activity in patients with HER2-overexpressing breast cancer. We recently produced a new humanized anti-HER2 mAb, hersintuzumab, which recognizes a different epitope than trastuzumab and pertuzumab on HER2. This mAb, in combination with trastuzumab, exhibits more potent anti-tumor activity than each parental mAb alone. Here we have developed a novel bispecific anti-HER2 antibody (BsAb) designated as trasintuzumab, composed of trastuzumab and hersintuzumab, using dual variable domain immunoglobulin (DVD-Ig) technology. Both variable domains of trasintuzumab are fully functional and have similar affinities to the parental mAbs and are also able to bind to natural HER2 on the surface of several HER2-expressing cell lines. Trasintuzumab was found to inhibit the growth of different types of tumor cell lines through suppression of the AKT and ERK signaling pathways as efficiently as the combination of the parental mAbs. It also induced tumor regression as potently as the combination of the two mAbs in nude mice bearing ovarian and gastric cancer xenografts. Our data suggest that trasintuzumab may be a promising BsAb therapeutic candidate for the treatment of HER2-overexpressing cancers.
Collapse
Affiliation(s)
- Mehdi Mohammadi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Arjmand
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Tannaz Bahadori
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Judaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Shiravi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Ahmadi Zare
- Monoclonal Antibody Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Farzaneh Notash Haghighat
- Monoclonal Antibody Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Mansouri-Fard S, Ghaedi M, Shokri MR, Bahadori T, Khoshnoodi J, Golsaz-Shirazi F, Jeddi-Tehrani M, Amiri MM, Shokri F. Inhibitory Effect of Polyclonal Antibodies Against HER3 Extracellular Subdomains on Breast Cancer Cell Lines. Asian Pac J Cancer Prev 2020; 21:439-447. [PMID: 32102522 PMCID: PMC7332115 DOI: 10.31557/apjcp.2020.21.2.439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 11/25/2022] Open
Abstract
Objective: Human epidermal growth factor receptor 3 (HER3) is a unique member of the tyrosine kinase receptors with an inactive kinase domain and is the preferable dimerization partner for HER2 which lead to potent tumorigenic signaling. Methods: In this study, the expression plasmids coding for the human HER3 subdomains were transfected into CHO-K1 cells. Produced proteins were characterized by ELISA and SDS-PAGE. Rabbits were immunized and produced polyclonal antibodies (pAbs) that were characterized by ELISA, Immunoblotting and flowcytometry and their inhibitory effects were assessed by XTT on BT-474 and JIMT-1 breast cancer cell lines. Result: The recombinant subdomains were highly immunogenic in rabbits. The pAbs reacted with the recombinant subdomains as well as commercial HER3 and the native receptor on tumor cell membranes and could significantly inhibit growth of Trastuzumab sensitive (BT-474) and resistant (JIMT-1) breast cancer cell lines in vitro. Conclusion: It seems that HER3 extra cellular domains (ECD) induce a strong anti-tumor antibody response and may prove to be potentially useful for immunotherapeutic applications.
Collapse
Affiliation(s)
- Samaneh Mansouri-Fard
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Ghaedi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Shokri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tannaz Bahadori
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Khoshnoodi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
7
|
Meysami P, Rezaei F, Marashi SM, Amiri MM, Bakker E, Mokhtari-Azad T. Antitumor effects of a recombinant baculovirus displaying anti-HER2 scFv expressing Apoptin in HER2 positive SK-BR-3 breast cancer cells. Future Virol 2019. [DOI: 10.2217/fvl-2018-0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aim: Since HER2 targeted therapies have shown clinical benefit in breast cancer, in the present study recombinant baculovirus (BV) displaying anti-HER2 single-chain variable domain fragment (scFv) expressing Apoptin was generated. Methods: The binding specificity and surface display of anti-HER2 scFv were evaluated using enzyme-linked immunosorbent assay (ELISA) and electron microscopy, respectively. The targeting properties and cytotoxic effect on breast cancer cells determined by fluorescence microscopy and MTT assays. Results: The results demonstrated that recombinant BV could specifically bind to HER2-overexpressing SK-BR-3 cells but not to the HER2 negative MCF-7 cells and reduced the viability of SK-BR-3 cells by expressing Apoptin. Conclusion: These results suggest that the antitumor effect of Apoptin in combination with HER2 targeting of this recombinant BV makes it a promising vector in targeted cancer therapy.
Collapse
Affiliation(s)
- Parisa Meysami
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1471613151, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1471613151, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1471613151, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran 1471613151, Iran
| | - Emyr Bakker
- School of Medicine, University of Central Lancashire, Preston, UK
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1471613151, Iran
| |
Collapse
|
8
|
Soltantoyeh T, Bahadori T, Hosseini-Ghatar R, Khoshnoodi J, Roohi A, Mobini M, Golsaz-Shirazi F, Jeddi-Tehrani M, Amiri MM, Shokri F. Differential Effects of Inhibitory and Stimulatory Anti-HER2 Monoclonal Antibodies on AKT/ERK Signaling Pathways. Asian Pac J Cancer Prev 2018; 19:2255-2262. [PMID: 30139234 PMCID: PMC6171393 DOI: 10.22034/apjcp.2018.19.8.2255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Objective: Homo- and heterodimerization of the receptor tyrosine kinase HER2 hyperactivate several downstream signaling pathways, leading to uncontrolled growth and proliferation of tumor cells. Anti-HER2 monoclonal antibodies (mAbs) may induce different effects on HER2 dimerization and signaling. Methods: The effect of two inhibitory (2A8, 1T0) and one stimulatory (1H9) anti-HER2 mAbs either alone or in combination with trastuzumab was investigated on AKT and ERK signaling pathways and HER2 degradation in a human breast cancer cell line (BT-474) by Western blotting. Result: While 1H9 mAb had no significant effect on AKT and ERK signaling pathways, 1T0 and 2A8 mAbs inhibited phosphorylation of both pathways. Combination of 1T0 mAb with trastuzumab resulted in significant synergistic inhibition of both pathways and HER2 degradation, much more potently than the combination of trastuzumab and pertuzumab. Conclusion: Our data indicate that anti-HER2 mAbs may induce different signaling pathways depending on their effect on tumor cell growth and proliferation. The significant inhibition of ERK and AKT phosphorylation by 1T0 alone or particularly in combination with trastuzumab suggests its potential therapeutic application for targeted immunotherapy of HER2 overexpressing malignancies.
Collapse
Affiliation(s)
- Tahereh Soltantoyeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. and
| | | | | | | | | | | | | | | | | | | |
Collapse
|