1
|
Hoshida T, Tsubaki M, Takeda T, Asano R, Choi IH, Takimoto K, Inukai A, Imano M, Tanabe K, Nagai N, Nishida S. Oxaliplatin and 5-fluorouracil promote epithelial-mesenchymal transition via activation of KRAS/ERK/NF-κB pathway in KRAS-mutated colon cancer cells. Mol Cell Biochem 2024:10.1007/s11010-024-05157-z. [PMID: 39586908 DOI: 10.1007/s11010-024-05157-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024]
Abstract
Oxaliplatin (L-OHP) and 5-fluorouracil (5-FU) are used to treat colon cancer; however, resistance contributes to poor prognosis. Epithelial-mesenchymal transition (EMT) has been induced in tumor tissues after administration of anticancer drugs and may be involved in drug resistance. We investigated the mechanism of EMT induction in colon cancer cells treated with 5-FU and L-OHP. We found that L-OHP and 5-FU at clinical steady-state concentrations induced EMT in LoVo and DLD-1 cells (KRAS G13D-mutated), but not in HT-29 and Caco-2 cells (KRAS wild type). L-OHP and 5-FU elevated vimentin, N-cadherin, Twist, Slug, and Snail and decreased E-cadherin expressions. Moreover, 5-FU- and L-OHP -induced EMT cells showed increased cell migration and decreased sensitivity to 5-FU and L-OHP. L-OHP and 5-FU treatment promoted KRAS, ERK1/2, and NF-κB activation. Combined administration with KRAS siRNA, MEK1/2 inhibitor trametinib, and NF-κB inhibitor dimethyl fumarate (DMF), suppressed L-OHP- and 5-FU-induced EMT. These results suggest that KRAS/ERK/NF-κB pathway activation is important for EMT induction by L-OHP and 5-FU treatment. Thus, MEK1/2 and NF-κB inhibitors may facilitate the resistance acquisition to L-OHP and 5-FU therapy in KRAS G13D-mutated colon cancer.
Collapse
Affiliation(s)
- Tadafumi Hoshida
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
- Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Wakayama, Japan
| | - Masanobu Tsubaki
- Laboratory of Pharmacotherapy, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Tomoya Takeda
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Ryota Asano
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Ik-Hyun Choi
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Koudai Takimoto
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Ayano Inukai
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Motohiro Imano
- Department of Surgery, Kindai University School of Medicine, Osakasayama, Osaka, 589-8511, Japan
| | - Kazufumi Tanabe
- Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Wakayama, Japan
| | - Noriaki Nagai
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Shozo Nishida
- Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
2
|
Lawrence S, Lin J, Khurshid A, Utami W, Singhania R, Ashraf S, Thorn GJ, Mangangcha IR, Spriggs K, Kim DH, Barrett D, de Moor CH. Cordycepin generally inhibits growth factor signal transduction in a systems pharmacology study. FEBS Lett 2024. [PMID: 39508147 DOI: 10.1002/1873-3468.15046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
Cordycepin (3' deoxyadenosine) has been widely researched as a potential cancer therapy, but many diverse mechanisms of action have been proposed. Here, we confirm that cordycepin triphosphate is likely to be the active metabolite of cordycepin and that it consistently represses growth factor-induced gene expression. Bioinformatic analysis, quantitative PCR and western blotting confirmed that cordycepin blocks the PI3K/AKT/mTOR and/or MEK/ERK pathways in six cell lines and that AMPK activation is not required. The effects of cordycepin on translation through mTOR pathway repression were detectable within 30 min, indicating a rapid process. These data therefore indicate that cordycepin has a universal mechanism of action, acting as cordycepin triphosphate on an as yet unknown target molecule involved in growth factor signalling.
Collapse
Affiliation(s)
- Steven Lawrence
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - Jialiang Lin
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - Asma Khurshid
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - Wahyu Utami
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - Richa Singhania
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - Sadaf Ashraf
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - Graeme J Thorn
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | | | - Keith Spriggs
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - Dong-Hyun Kim
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - David Barrett
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| | - Cornelia H de Moor
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, UK
| |
Collapse
|
3
|
Wilson GA, Vuina K, Sava G, Huard C, Meneguello L, Coulombe-Huntington J, Bertomeu T, Maizels RJ, Lauring J, Kriston-Vizi J, Tyers M, Ali S, Bertoli C, de Bruin RAM. Active growth signaling promotes senescence and cancer cell sensitivity to CDK7 inhibition. Mol Cell 2023; 83:4078-4092.e6. [PMID: 37977119 DOI: 10.1016/j.molcel.2023.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Tumor growth is driven by continued cellular growth and proliferation. Cyclin-dependent kinase 7's (CDK7) role in activating mitotic CDKs and global gene expression makes it therefore an attractive target for cancer therapies. However, what makes cancer cells particularly sensitive to CDK7 inhibition (CDK7i) remains unclear. Here, we address this question. We show that CDK7i, by samuraciclib, induces a permanent cell-cycle exit, known as senescence, without promoting DNA damage signaling or cell death. A chemogenetic genome-wide CRISPR knockout screen identified that active mTOR (mammalian target of rapamycin) signaling promotes samuraciclib-induced senescence. mTOR inhibition decreases samuraciclib sensitivity, and increased mTOR-dependent growth signaling correlates with sensitivity in cancer cell lines. Reverting a growth-promoting mutation in PIK3CA to wild type decreases sensitivity to CDK7i. Our work establishes that enhanced growth alone promotes CDK7i sensitivity, providing an explanation for why some cancers are more sensitive to CDK inhibition than normally growing cells.
Collapse
Affiliation(s)
- Gemma A Wilson
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Karla Vuina
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Georgina Sava
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Caroline Huard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Leticia Meneguello
- Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Cancer Institute, University College London, London, UK
| | - Jasmin Coulombe-Huntington
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada; Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - Thierry Bertomeu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Rory J Maizels
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Josh Lauring
- Janssen Research and Development, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Janos Kriston-Vizi
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada; Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Simak Ali
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Cosetta Bertoli
- Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Robertus A M de Bruin
- Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Cancer Institute, University College London, London, UK.
| |
Collapse
|
4
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Li H, Guo J, Cheng G, Wei Y, Liu S, Qi Y, Wang G, Xiao R, Qi W, Qiu W. Identification and Validation of SNP-Containing Genes With Prognostic Value in Gastric Cancer via Integrated Bioinformatics Analysis. Front Oncol 2021; 11:564296. [PMID: 33987081 PMCID: PMC8112818 DOI: 10.3389/fonc.2021.564296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Background Gastric cancer is one of the most common malignancies worldwide. Although the diagnosis and treatment of this disease have substantially improved in recent years, the five-year survival rate of gastric cancer is still low due to local recurrence and distant metastasis. An in-depth study of the molecular pathogenesis of gastric cancer and related prognostic markers will help improve the quality of life and prognosis of patients with this disease. The purpose of this study was to identify and verify key SNPs in genes with prognostic value for gastric cancer. Methods SNP-related data from gastric cancer patients were obtained from The Cancer Genome Atlas (TCGA) database, and the functions and pathways of the mutated genes were analyzed using DAVID software. A protein-protein interaction (PPI) network was constructed using the STRING database and visualized by Cytoscape software, and molecular complex detection (MCODE) was used to screen the PPI network to extract important mutated genes. Ten hub genes were identified using cytoHubba, and the expression levels and the prognostic value of the central genes were determined by UALCAN and Kaplan-Meier Plotter. Finally, quantitative PCR and Western blotting were used to verify the expression of the hub genes in gastric cancer cells. Results From the database, 945 genes with mutations in more than 25 samples were identified. The PPI network had 360 nodes and 1616 edges. Finally, cytoHubba identified six key genes (TP53, HRAS, BRCA1, PIK3CA, AKT1, and SMARCA4), and their expression levels were closely related to the survival rate of gastric cancer patients. Conclusion Our results indicate that TP53, HRAS, BRCA1, PIK3CA, AKT1, and SMARCA4 may be key genes for the development and prognosis of gastric cancer. Our research provides an important bioinformatics foundation and related theoretical foundation for further exploring the molecular pathogenesis of gastric cancer and evaluating the prognosis of patients.
Collapse
Affiliation(s)
- Hui Li
- Department of Medcine, Qingdao University, Qingdao, China
| | - Jing Guo
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guang Cheng
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yucheng Wei
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shihai Liu
- Central Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaoyue Qi
- Department of Medcine, Qingdao University, Qingdao, China
| | - Gongjun Wang
- Department of Medcine, Qingdao University, Qingdao, China
| | - Ruoxi Xiao
- Department of Medcine, Qingdao University, Qingdao, China
| | - Weiwei Qi
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wensheng Qiu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Dong C, Wu J, Chen Y, Nie J, Chen C. Activation of PI3K/AKT/mTOR Pathway Causes Drug Resistance in Breast Cancer. Front Pharmacol 2021; 12:628690. [PMID: 33790792 PMCID: PMC8005514 DOI: 10.3389/fphar.2021.628690] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Although chemotherapy, targeted therapy and endocrine therapy decrease rate of disease recurrence in most breast cancer patients, many patients exhibit acquired resistance. Hyperactivation of the PI3K/AKT/mTOR pathway is associated with drug resistance and cancer progression. Currently, a number of drugs targeting PI3K/AKT/mTOR are being investigated in clinical trials by combining them with standard therapies to overcome acquired resistance in breast cancer. In this review, we summarize the critical role of the PI3K/AKT/mTOR pathway in drug resistance, the development of PI3K/AKT/mTOR inhibitors, and strategies to overcome acquired resistance to standard therapies in breast cancer.
Collapse
Affiliation(s)
- Chao Dong
- Department of the Second Medical Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Jiao Wu
- Department of the Second Medical Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Yin Chen
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Jianyun Nie
- Department of the Third Breast Surgery, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
7
|
Zhang M, Wang F, Xiang Z, Huang T, Zhou WB. LncRNA XIST promotes chemoresistance of breast cancer cells to doxorubicin by sponging miR-200c-3p to upregulate ANLN. Clin Exp Pharmacol Physiol 2020; 47:1464-1472. [PMID: 32198770 DOI: 10.1111/1440-1681.13307] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 01/27/2023]
Abstract
The resistance of breast cancer cells to drugs is a major obstacle to effective cancer chemotherapy. Here, we study the function mechanisms of long non-coding RNA XIST in chemoresistance of breast cancer to doxorubicin. We examined the 50% inhibitive concentration of doxorubicin to MDA-MB-231 and MDA-MB-231/ADM cells, showing that the doxorubicin resistance of MDA-MB-231/ADM cells was much higher than MDA-MB-231 cells. The gene or protein expression of XIST and ANLN were also higher in MDA-MB-231/ADM cells than that in MDA-MB-231 cells. Moreover, XIST overexpression promoted cell proliferation and inhibited apoptosis of doxorubicin-treated MDA-MB-231 cells by promoting ANLN expression. XIST silencing inhibited cell proliferation and promoted apoptosis of doxorubicin-treated MDA-MB-231/ADM cells by inhibiting ANLN expression. Luciferase reporter assay showed that XIST functioned as a competing endogenous RNA to repress miR-200c-3p, which controlled its downstream target ANLN. In conclusion, these data reveal that XIST promotes chemoresistance of breast cancer cells to doxorubicin by sponging miR-200c-3p to upregulate ANLN. This work explores the relationship between lncRNA XIST and doxorubicin resistance in breast cancer cells and highlights a novel therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Min Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Feng Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Xiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Teng Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Bing Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Fu X, Tan T, Liu P. Regulation of Autophagy by Non-Steroidal Anti-Inflammatory Drugs in Cancer. Cancer Manag Res 2020; 12:4595-4604. [PMID: 32606952 PMCID: PMC7305821 DOI: 10.2147/cmar.s253345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/12/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer is the leading cause of death, placing a substantial global health burden. The development of the most effective treatment regimen is the unmet clinical need for cancer. Inflammation plays a role in tumorigenesis and progression, and anti-inflammation may be a promising option for cancer management and prevention. Emerging studies have shown that non-steroidal anti-inflammatory drugs (NSAIDs) display anticarcinogenic and chemopreventive properties through the regulation of autophagy in certain types of cancer. In this review, we summarize the pharmacological functions and side effects of NSAIDs as chemotherapeutic agents, and focus on its mode of action on autophagy regulation, which increases our knowledge of NSAIDs and cancer-related inflammation, and contributes to a putative addition of NSAIDs in the chemoprevention and treatment of cancer.
Collapse
Affiliation(s)
- Xiangjie Fu
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Tan Tan
- Translational Medicine Institute, The First Affiliated Hospital of Chenzhou, University of South China, Hunan, People’s Republic of China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Shanxi, People’s Republic of China
| |
Collapse
|
9
|
Vella V, Nicolosi ML, Giuliano M, Morrione A, Malaguarnera R, Belfiore A. Insulin Receptor Isoform A Modulates Metabolic Reprogramming of Breast Cancer Cells in Response to IGF2 and Insulin Stimulation. Cells 2019; 8:cells8091017. [PMID: 31480557 PMCID: PMC6770491 DOI: 10.3390/cells8091017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
Previously published work has demonstrated that overexpression of the insulin receptor isoform A (IR-A) might play a role in cancer progression and metastasis. The IR has a predominant metabolic role in physiology, but the potential role of IR-A in cancer metabolic reprogramming is unknown. We aimed to characterize the metabolic impact of IR-A and its ligand insulin like growth factor 2 (IGF2) in human breast cancer (BC) cells. To establish autocrine IGF2 action, we generated human BC cells MCF7 overexpressing the human IGF2, while we focused on the metabolic effect of IR-A by stably infecting IGF1R-ablated MCF7 (MCF7IGF1R-ve) cells with a human IR-A cDNA. We then evaluated the expression of key metabolism related molecules and measured real-time extracellular acidification rates and oxygen consumption rates using the Seahorse technology. MCF7/IGF2 cells showed increased proliferation and invasion associated with aerobic glycolysis and mitochondrial biogenesis and activity. In MCF7IGF1R-ve/IR-A cells insulin and IGF2 stimulated similar metabolic changes and were equipotent in eliciting proliferative responses, while IGF2 more potently induced invasion. The combined treatment with the glycolysis inhibitor 2-deoxyglucose (2DG) and the mitochondrial inhibitor metformin blocked cell invasion and colony formation with additive effects. Overall, these results indicate that IGF2 and IR-A overexpression may contribute to BC metabolic reprogramming.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania 95122, Italy
| | - Maria Luisa Nicolosi
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania 95122, Italy
| | - Marika Giuliano
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania 95122, Italy
| | - Andrea Morrione
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Roberta Malaguarnera
- School of Human and Social Sciences, "Kore" University of Enna, Enna 94100, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania 95122, Italy.
| |
Collapse
|