1
|
Zhu L, Wang S. A convergent fabrication of pH and redox dual-responsive hybrids of mesoporous silica nanoparticles for the treatment of breast cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:147-165. [PMID: 36136033 DOI: 10.1080/09205063.2022.2112303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mesoporous silica nanoparticle (MSN), sodium hyaluronate (SH), silk fibroin (SS), and oxidized sodium carboxymethyl cellulose (O-CMC) hybrids were used to develop an intelligent drug delivery platform that may be employed for pH and redox-responsive bi-drug administration. The first drug, cytarabine (Cyt), was loaded with amino-functionalized mesoporous silica (MSN-NH2) encased by the hydrogel of cystamine (Cys) and SH cross-linked by amide bonds. Hydrophobic doxorubicin (DOX) was co-loaded with Cyt/MSN-NH2/SA in the hydrogel of SS and O-CMC in the Cyt- loaded hydrogel. Dual-responsive drug delivery may be achieved by encapsulating SS and O-CMC in a hydrogel, including Cyt/MSN-NH2/SA/DOX/SS/O-CMC, which has acyl hydrazone bonds (-HC = N) and disulfide bond (-S-S-) exchange reaction with glutathione (GSH). Compared to hydrogels encapsulating only one drug (Cyt or DOX), cell survival analysis revealed that the newly fabricated hydrogels have significantly greater chemotherapeutic efficacy. The cell proliferation of the fabricated nanoparticles was examined in MCF-7 and MDA-MB-231 cells, which indicates that the nanoparticles effectively kill the cancer cells without affecting non-cancerous cells. Further, we effectively investigated the morphological changes, and various biochemical staining methods examined nuclear fragmentation/condensation. Furthermore, the biosafety of the nanoparticles was investigated by the in vivo animal model, which reveals that they remarkably enhanced the safety profile in various organs. These outcomes demonstrated that this nanoparticle platform was a promising beneficial agent for improving breast cancer treatment.
Collapse
Affiliation(s)
- Limin Zhu
- Department of Thyroid and Breast Surgery, the First People's Hospital of Wenling, Wenling, China
| | - Shuangyan Wang
- Department of Thyroid and Breast Surgery, the First People's Hospital of Wenling, Wenling, China
| |
Collapse
|
2
|
Understanding the Polyamine and mTOR Pathway Interaction in Breast Cancer Cell Growth. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2022; 10:medsci10030051. [PMID: 36135836 PMCID: PMC9504347 DOI: 10.3390/medsci10030051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/01/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
The polyamines putrescine, spermidine and spermine are nutrient-like polycationic molecules involved in metabolic processes and signaling pathways linked to cell growth and cancer. One important pathway is the PI3K/Akt pathway where studies have shown that polyamines mediate downstream growth effects. Downstream of PI3K/Akt is the mTOR signaling pathway, a nutrient-sensing pathway that regulate translation initiation through 4EBP1 and p70S6K phosphorylation and, along with the PI3K/Akt, is frequently dysregulated in breast cancer. In this study, we investigated the effect of intracellular polyamine modulation on mTORC1 downstream protein and general translation state in two breast cancer cell lines, MCF-7 and MDA-MB-231. The effect of mTORC1 pathway inhibition on the growth and intracellular polyamines was also measured. Results showed that polyamine modulation alters 4EBP1 and p70S6K phosphorylation and translation initiation in the breast cancer cells. mTOR siRNA gene knockdown also inhibited cell growth and decreased putrescine and spermidine content. Co-treatment of inhibitors of polyamine biosynthesis and mTORC1 pathway induced greater cytotoxicity and translation inhibition in the breast cancer cells. Taken together, these data suggest that polyamines promote cell growth in part through interaction with mTOR pathway. Similarly intracellular polyamine content appears to be linked to mTOR pathway regulation. Finally, dual inhibition of polyamine and mTOR pathways may provide therapeutic benefits in some breast cancers.
Collapse
|
3
|
Zhang M, Dai W, Li Z, Tang L, Chen J, Chen C. HSPA4 Knockdown Retarded Progression and Development of Colorectal Cancer. Cancer Manag Res 2021; 13:4679-4690. [PMID: 34163243 PMCID: PMC8214019 DOI: 10.2147/cmar.s310729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Colorectal cancer (CRC) is a common malignancy associated with high morbidity and mortality. Heat shock 70 kDa protein 4 (HSPA4) has been shown to exert regulatory roles during tumor progression in different cancer types. Here, we investigated the expression and cellular functions of HSPA4 in CRC. Materials and Methods Expression of HSPA4 in CRC tissues and paracancerous tissues was analyzed by RT-qPCR and immunohistochemistry IHC staining. The functional roles of HSPA4 were explored using shRNA-mediated knockdown in HCT116 and RKO CRC cell lines, both in vitro and in tumor xenograft studies. Results HSPA4 expression was significantly increased at the RNA and protein levels in CRC tissues compared with noncancerous tissues. Moreover, HSPA4 expression was positively associated with tumor stage and its high expression of HSPA4 indicated poor patient prognosis. In vitro studies established that HSPA4 knockdown inhibited proliferation and migration, causing arrest in the G2-phase of the cell cycle along with increased levels of apoptosis. This phenotype was recapitulated in vivo where HSPA4 knockdown suppressed xenograft growth. Mechanistic investigations showed silencing of HSPA4 reduced activation of the PI3K, Akt signaling axis while also downregulating the cell cycle progression markers, CCND1 and CDK6. Similarly, there was altered expression of apoptosis-related proteins consistent with the increase in apoptosis. Conclusion Our findings demonstrate clinical significance for HSPA4 in CRC, further showing that HSPA4 contributes to CRC tumorigenesis through effects on proliferation, migration and survival. Thus, HSPA4 represents a novel prognostic indicator as well as a promising therapeutic target in CRC.
Collapse
Affiliation(s)
- Mingliang Zhang
- Department of Colorectal Surgery, Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Weigang Dai
- Department of Colorectal Surgery, Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Zhanyu Li
- Department of Colorectal Surgery, Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Liang Tang
- Department of Colorectal Surgery, Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Jianhui Chen
- Department of Colorectal Surgery, Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Chuangqi Chen
- Department of Colorectal Surgery, Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong Province, People's Republic of China
| |
Collapse
|
4
|
Tran AQ, Sullivan SA, Chan LLY, Yin Y, Sun W, Fang Z, Dugar S, Zhou C, Bae-Jump V. SPR965, a Dual PI3K/mTOR Inhibitor, as a Targeted Therapy in Ovarian Cancer. Front Oncol 2021; 10:624498. [PMID: 33659215 PMCID: PMC7919852 DOI: 10.3389/fonc.2020.624498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022] Open
Abstract
SPR965 is an inhibitor of PI3K and mTOR C1/C2 and has demonstrated anti-tumorigenic activity in a variety of solid tumors. We sought to determine the effects of SPR965 on cell proliferation and tumor growth in human serous ovarian cancer cell lines and a transgenic mouse model of high grade serous ovarian cancer (KpB model) and identify the underlying mechanisms by which SPR965 inhibits cell and tumor growth. SPR965 showed marked anti-proliferative activity by causing cell cycle arrest and inducing cellular stress in ovarian cancer cells. Treatment with SPR965 significantly inhibited tumor growth in KpB mice, accompanied by downregulation of Ki67 and VEGF and upregulation of Bip expression in ovarian tumors. SPR965 also inhibited adhesion and invasion through induction of the epithelial–mesenchymal transition process. As expected, downregulation of phosphorylation of AKT and S6 was observed in SPR965-treated ovarian cancer cells and tumors. Our results suggest that SPR965 has significant anti-tumorigenic effects in serous ovarian cancer in vitro and in vivo. Thus, SPR965 should be evaluated as a promising targeted agent in future clinical trials of ovarian cancer.
Collapse
Affiliation(s)
- Arthur-Quan Tran
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie A Sullivan
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, United States
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ziwei Fang
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Sundeep Dugar
- Sphaera Pharma Singapore Pte Ltd., Singapore, Singapore
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Zhu L, Chen X, Zhu Y, Qin J, Niu T, Ding Y, Xiao Y, Jiang Y, Liu K, Lu J, Yang W, Qiao Y, Jin G, Ma J, Dong Z, Zhao J. Dihydroartemisinin Inhibits the Proliferation of Esophageal Squamous Cell Carcinoma Partially by Targeting AKT1 and p70S6K. Front Pharmacol 2020; 11:587470. [PMID: 33658929 PMCID: PMC7919191 DOI: 10.3389/fphar.2020.587470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Dihydroartemisinin (DHA), a sesquiterpene lactone with endoperoxide bridge, is one of the derivatives of artemisinin. In addition to having good antimalarial properties, DHA exhibits anticancer effects including against malignant solid tumors. However, the mechanism by which DHA inhibits the progression of esophageal cancer, especially esophageal squamous cell carcinoma (ESCC), is unclear. In this study, DHA was found to inhibit the proliferation of ESCC, and the underlying molecular mechanisms were explored. DHA inhibited ESCC cells proliferation and anchorage-independent growth. Flow cytometry analysis revealed that DHA significantly blocked cell cycle in the G1 phase. The results of human phospho-kinase array revealed that DHA downregulated the levels of p70S6KT389 and p70S6KT421/S424. Furthermore, the levels of mTORS2448, p70S6KT389, p70S6KT421/S424 and RPS6S235/S236 were decreased after DHA treatment in KYSE30 and KYSE150 cells. We then explored the proteins targeted by DHA to inhibit the mTOR-p70S6K-RPS6 pathway. Results of the in vitro kinase assay revealed that DHA significantly inhibited phosphorylation of mTORS2448 by binding to AKT1 and p70S6K kinases. In vivo, DHA inhibited the tumor growth of ESCC patient-derived xenografts and weakened p-mTOR, p-p70S6K, and p-RPS6 expression in tumor tissues. Altogether, our results indicate that DHA has antiproliferative effects in ESCC cells and can downregulate mTOR cascade pathway partially by binding to AKT1 and p70S6K. Thus, DHA has considerable potential for the prevention or treatment of ESCC.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yanyan Zhu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jiace Qin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Tingting Niu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yongwei Ding
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yang Xiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Wanjing Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Ge Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junfen Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Yang XG, Zhu LC, Wang YJ, Li YY, Wang D. Current Advance of Therapeutic Agents in Clinical Trials Potentially Targeting Tumor Plasticity. Front Oncol 2019; 9:887. [PMID: 31552191 PMCID: PMC6746935 DOI: 10.3389/fonc.2019.00887] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/27/2019] [Indexed: 01/02/2023] Open
Abstract
Tumor plasticity refers to tumor cell's inherent property of transforming one type of cell to different types of cells. Tumor plasticity is the main cause of tumor relapse, metastasis and drug resistance. Cancer stem cell (CSC) model embodies the trait of tumor plasticity. During carcinoma progression, epithelial-mesenchymal transition (EMT) plays crucial role in the formation of CSCs and vasculogenic mimicry (VM) based on epithelial-mesenchymal plasticity. And the unique tumor microenvironment (TME) not only provides suitable niche for CSCs but promotes the building of CSCs and VM that nourishes tumor tissue together with neoplasm metabolism by affecting tumor plasticity. Therapeutic strategies targeting tumor plasticity are promising ways to treat malignant tumor. In this article, we discuss the recent developments of potential drug targets related to CSCs, EMT, TME, VM, and metabolic pathways and summarize drugs that target these areas in clinical trials.
Collapse
Affiliation(s)
- Xiao-Guang Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Lan-Cao Zhu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yan-Jun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yan-Yu Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Dun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
7
|
Li Z, Zhang Y, Wang R, Zou K, Zou L. Genetic alterations in anaplastic thyroid carcinoma and targeted therapies. Exp Ther Med 2019; 18:2369-2377. [PMID: 31555347 DOI: 10.3892/etm.2019.7869] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/21/2019] [Indexed: 02/06/2023] Open
Abstract
Thyroid cancer is the most common type of endocrine malignancy, and its incidence is increasing. Anaplastic thyroid cancer (ATC), referring to undifferentiated subtypes, is considered to be aggressive and associated with poor prognosis. Conventional therapies, including surgery, chemotherapy and radioiodine therapy, have been used for ATC, but these do not provide any significant reduction of the overall mortality rate. The tumorigenesis, development, dedifferentiation and metastasis of ATC are closely associated with the activation of various tyrosine cascades and inactivation of tumor suppressor genes, including B-Raf proto-oncogene, serine/threonine kinaseV600E, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α,tumor protein 53 mutations and telomerase reverse transcriptase mutation. These pathways exert their functions individually or through a complex network. Identification of these mutations may provide a deeper understanding of ATC. A variety of tyrosine kinase inhibitors have been successfully employed for controlling ATC growth in vitro and in xenografts. Certain novel compounds are still in clinical trials. Multi-kinase inhibitors provide a novel approach with great potential. This systematic review determined the prevalence of the major genetic alterations and their inhibitors in ATC.
Collapse
Affiliation(s)
- Zongjuan Li
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Yang Zhang
- Department of Radiation Oncology, Yantai Yuhuangding Hospital Affiliated to Qingdao University Medical College, Yantai, Shandong 264000, P.R. China
| | - Ruonan Wang
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Kun Zou
- Department of Radiation Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lijuan Zou
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|