1
|
Iriarte C, Yeh JE, Alloo A, Boull C, Carlberg VM, Coughlin CC, Lara-Corrales I, Levy R, Nguyen CV, Oza VS, Patel AB, Rotemberg V, Shah SD, Zheng L, Miller CH, Hlobik M, Daigneault J, Choi JN, Huang JT, Vivar KL. Mucocutaneous toxicities from MEK inhibitors: a scoping review of the literature. Support Care Cancer 2024; 32:610. [PMID: 39174797 DOI: 10.1007/s00520-024-08810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND MEK inhibitors cause a wide spectrum of mucocutaneous toxicities which can delay or interrupt life-saving therapy. PURPOSE To summarize the morphology, incidence, and clinical presentation of mucocutaneous toxicities from MEK inhibitors via a scoping review of the literature. METHODS We conducted a scoping review of the published literature, including clinical trials, retrospective and prospective studies, reviews, and case reports and series. All included literature was analyzed by a panel of pediatric and adult oncodermatologists. RESULTS Of 1626 initial citations, 227 articles met final inclusion criteria. Our review identified follicular reactions, ocular toxicities, xerosis, eczematous dermatitis, edema, and paronychia as the most common mucocutaneous side effects from MEK inhibitor therapy. Grade 1 and 2 reactions were the most prevalent and were typically managed while continuing treatment; however, grade 3 toxicities requiring dose reductions or treatment interruptions were also reported. CONCLUSION Mucocutaneous toxicities to MEK inhibitor therapy are common and most often mild in severity. Early recognition and treatment can mitigate disruptions in oncologic therapy.
Collapse
Affiliation(s)
- Christopher Iriarte
- Department of Dermatology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Gryzmish 522, Boston, MA, 02215, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
| | - Jennifer E Yeh
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
| | - Allireza Alloo
- Department of Dermatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Christina Boull
- Department of Dermatology, University of Minnesota, Minneapolis, MN, USA
| | - Valerie M Carlberg
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA
- Children's Wisconsin, Milwaukee, WI, USA
| | - Carrie C Coughlin
- Division of Dermatology, Departments of Medicine and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Irene Lara-Corrales
- Division of Dermatology, Hospital for Sick Children, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Rebecca Levy
- Division of Dermatology, Hospital for Sick Children, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Cuong V Nguyen
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vikash S Oza
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY, USA
| | - Anisha B Patel
- Department of Dermatology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas Health Science Center- Houston, Houston, TX, USA
| | - Veronica Rotemberg
- Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sonal D Shah
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lida Zheng
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Corinne H Miller
- Galter Health Sciences Library and Learning Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Madeline Hlobik
- Dermatology Section, Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Jaclyn Daigneault
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer N Choi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | - Jennifer T Huang
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Dermatology Section, Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Karina L Vivar
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Division of Pediatric Dermatology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Zahmatyar M, Kharaz L, Abiri Jahromi N, Jahanian A, Shokri P, Nejadghaderi SA. The safety and efficacy of binimetinib for lung cancer: a systematic review. BMC Pulm Med 2024; 24:379. [PMID: 39090580 PMCID: PMC11295668 DOI: 10.1186/s12890-024-03178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Lung cancer, accounting for a significant proportion of global cancer cases and deaths, poses a considerable health burden. Non-small cell lung cancer (NSCLC) patients have a poor prognosis and limited treatment options due to late-stage diagnosis and drug resistance. Dysregulated of the mitogen-activated protein kinase (MAPK) pathway, which is implicated in NSCLC pathogenesis, underscores the potential of MEK inhibitors such as binimetinib. Despite promising results in other cancers, comprehensive studies evaluating the safety and efficacy of binimetinib in lung cancer are lacking. This systematic review aimed to investigate the safety and efficacy of binimetinib for lung cancer treatment. METHODS We searched PubMed, Scopus, Web of Science, and Google Scholar until September 2023. Clinical trials evaluating the efficacy or safety of binimetinib for lung cancer treatment were included. Studies were excluded if they included individuals with conditions unrelated to lung cancer, investigated other treatments, or had different types of designs. The quality assessment was conducted utilizing the National Institutes of Health tool. RESULTS Seven studies with 228 participants overall were included. Four had good quality judgments, and three had fair quality judgments. The majority of patients experienced all-cause adverse events, with diarrhea, fatigue, and nausea being the most commonly reported adverse events of any grade. The objective response rate (ORR) was up to 75%, and the median progression-free survival (PFS) was up to 9.3 months. The disease control rate after 24 weeks varied from 41% to 64%. Overall survival (OS) ranged between 3.0 and 18.8 months. Notably, treatment-related adverse events were observed in more than 50% of patients, including serious adverse events such as colitis, febrile neutropenia, and pulmonary infection. Some adverse events led to dose limitation and drug discontinuation in five studies. Additionally, five studies reported cases of death, mostly due to disease progression. The median duration of treatment ranged from 14.8 weeks to 8.4 months. The most common dosage of binimetinib was 30 mg or 45 mg twice daily, sometimes used in combination with other agents like encorafenib or hydroxychloroquine. CONCLUSIONS Only a few studies have shown binimetinib to be effective, in terms of improving OS, PFS, and ORR, while most of the studies found nonsignificant efficacy with increased toxicity for binimetinib compared with traditional chemotherapy in patients with lung cancer. Further large-scale randomized controlled trials are recommended.
Collapse
Affiliation(s)
- Mahdi Zahmatyar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ladan Kharaz
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Jahanian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Shokri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Aria Nejadghaderi
- HIV/STI Surveillance Research Center, WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.
- Systematic Review and Meta‑analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Song Y, Cheng Y, Lan T, Bai Z, Liu Y, Bi Z, Alu A, Cheng D, Wei Y, Wei X. ERK inhibitor: A candidate enhancing therapeutic effects of conventional chemo-radiotherapy in esophageal squamous cell carcinoma. Cancer Lett 2023; 554:216012. [PMID: 36470544 DOI: 10.1016/j.canlet.2022.216012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
For patients with esophageal squamous cell carcinoma (ESCC), standard therapeutic methods (cisplatin and radiotherapy) have been found to be ineffective and severely toxic. Targeted therapy emerges as a promising solution for this dilemma. It has been reported that targeted therapies are applied alone or in combination with standard conventional therapies for the treatment of a variety of cancers. To the best of our knowledge, in patients with ESCC, the combinational methods containing standard therapy and ERK-targeted therapy have yet to be explored. To analyze the prognostic role of p-ERK in ESCC patients, the Kaplan-Meier analysis and Cox regression model were used. To assess the effects of ERK-targeted therapy (GDC0994) on ESCC cells, in vitro studies including CCK-8 assay, colony formation assay, and scratch wound healing assay were conducted. In addition, the changes in cell cycle distribution and apoptosis were analyzed by flow cytometry. Besides, to assess the efficacy of different therapies in vivo, the xenograft tumor models were established by subcutaneously inoculating tumor cells into the flank/leg of mice. In patients with ESCC, a strong correlation between the high expression level of p-ERK and the poor prognosis (p < 0.01, Log-Rank test) has been identified. By analyzing the results from CCK-8 and scratch wound healing assays, we demonstrated that the ERK inhibitor repressed the viability and migration of ESCC cells. In addition, following the treatment of GDC0994, the volumes of xenograft tumors significantly decreased (p < 0.001, one-way ANOVA). Furthermore, blocking the mitogen-activated protein kinase (MAPK/ERK) pathway enhanced the therapeutic efficacy of both cisplatin and radiotherapy (p < 0.05). These findings imply the role of p-ERK in the prognosis of ESCC patients and the therapeutic value of ERK inhibitors in ESCC.
Collapse
Affiliation(s)
- Yanlin Song
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ziyi Bai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Diou Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Stulpinas A, Sereika M, Vitkeviciene A, Imbrasaite A, Krestnikova N, Kalvelyte AV. Crosstalk between protein kinases AKT and ERK1/2 in human lung tumor-derived cell models. Front Oncol 2023; 12:1045521. [PMID: 36686779 PMCID: PMC9848735 DOI: 10.3389/fonc.2022.1045521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
There is no doubt that cell signaling manipulation is a key strategy for anticancer therapy. Furthermore, cell state determines drug response. Thus, establishing the relationship between cell state and therapeutic sensitivity is essential for the development of cancer therapies. In the era of personalized medicine, the use of patient-derived ex vivo cell models is a promising approach in the translation of key research findings into clinics. Here, we were focused on the non-oncogene dependencies of cell resistance to anticancer treatments. Signaling-related mechanisms of response to inhibitors of MEK/ERK and PI3K/AKT pathways (regulators of key cellular functions) were investigated using a panel of patients' lung tumor-derived cell lines with various stemness- and EMT-related markers, varying degrees of ERK1/2 and AKT phosphorylation, and response to anticancer treatment. The study of interactions between kinases was the goal of our research. Although MEK/ERK and PI3K/AKT interactions are thought to be cell line-specific, where oncogenic mutations have a decisive role, we demonstrated negative feedback loops between MEK/ERK and PI3K/AKT signaling pathways in all cell lines studied, regardless of genotype and phenotype differences. Our work showed that various and distinct inhibitors of ERK signaling - selumetinib, trametinib, and SCH772984 - increased AKT phosphorylation, and conversely, inhibitors of AKT - capivasertib, idelalisib, and AKT inhibitor VIII - increased ERK phosphorylation in both control and cisplatin-treated cells. Interaction between kinases, however, was dependent on cellular state. The feedback between ERK and AKT was attenuated by the focal adhesion kinase inhibitor PF573228, and in cells grown in suspension, showing the possible role of extracellular contacts in the regulation of crosstalk between kinases. Moreover, studies have shown that the interplay between MEK/ERK and PI3K/AKT signaling pathways may be dependent on the strength of the chemotherapeutic stimulus. The study highlights the importance of spatial location of the cells and the strength of the treatment during anticancer therapy.
Collapse
|
5
|
Song Y, Bi Z, Liu Y, Qin F, Wei Y, Wei X. Targeting RAS-RAF-MEK-ERK signaling pathway in human cancer: Current status in clinical trials. Genes Dis 2023; 10:76-88. [PMID: 37013062 PMCID: PMC10066287 DOI: 10.1016/j.gendis.2022.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Molecular target inhibitors have been regularly approved by Food and Drug Administration (FDA) for tumor treatment, and most of them intervene in tumor cell proliferation and metabolism. The RAS-RAF-MEK-ERK pathway is a conserved signaling pathway that plays vital roles in cell proliferation, survival, and differentiation. The aberrant activation of the RAS-RAF-MEK-ERK signaling pathway induces tumors. About 33% of tumors harbor RAS mutations, while 8% of tumors are driven by RAF mutations. Great efforts have been dedicated to targeting the signaling pathway for cancer treatment in the past decades. In this review, we summarized the development of inhibitors targeting the RAS-RAF-MEK-ERK pathway with an emphasis on those used in clinical treatment. Moreover, we discussed the potential combinations of inhibitors that target the RAS-RAF-MEK-ERK signaling pathway and other signaling pathways. The inhibitors targeting the RAS-RAF-MEK-ERK pathway have essentially modified the therapeutic strategy against various cancers and deserve more attention in the current cancer research and treatment.
Collapse
Affiliation(s)
| | | | - Yu Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Furong Qin
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Fung AS, Graham DM, Chen EX, Stockley TL, Zhang T, Le LW, Albaba H, Pisters KM, Bradbury PA, Trinkaus M, Chan M, Arif S, Zurawska U, Rothenstein J, Zawisza D, Effendi S, Gill S, Sawczak M, Law JH, Leighl NB. A phase I study of binimetinib (MEK 162), a MEK inhibitor, plus carboplatin and pemetrexed chemotherapy in non-squamous non-small cell lung cancer. Lung Cancer 2021; 157:21-29. [PMID: 34052705 DOI: 10.1016/j.lungcan.2021.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION MEK inhibition is a potential therapeutic strategy in non-small cell lung cancer (NSCLC). This phase I study evaluates the MEK inhibitor binimetinib plus carboplatin and pemetrexed in stage IV non-squamous NSCLC patients (NCT02185690). METHODS A standard 3 + 3 dose-escalation design was used. Binimetinib 30 mg BID (dose level 1 [DL1]) or 45 mg BID (dose level 2 [DL2]) was given with standard doses of carboplatin and pemetrexed using an intermittent dosing schedule. The primary outcome was determination of the recommended phase II dose (RP2D) and safety of binimetinib. Secondary outcomes included efficacy, pharmacokinetics, and an exploratory analysis of response based on mutation subtype. RESULTS Thirteen patients (6 DL1, 7 DL2) were enrolled: 7 KRAS, 5 EGFR, and 1 NRAS mutation. The RP2D was binimetinib 30 mg BID. Eight patients (61.5%) had grade 3/4 adverse events, with dose limiting toxicities in 2 patients at DL2. Twelve patients were evaluated for response, with an investigator-assessed objective response rate (ORR) of 50% (95% CI 21.1%-78.9%; ORR 33.3% by independent-review, IR), and disease control rate 83.3% (95% CI 51.6%-97.9%). Median progression free survival (PFS) was 4.5 months (95% CI 2.6 months-NA), with a 6-month and 12-month PFS rate of 38.5% (95% CI 19.3%-76.5%) and 25.6% (95% CI 8.9%-73.6%), respectively. In an exploratory analysis, KRAS/NRAS-mutated patients had an ORR of 62.5% (ORR 37.5% by IR) vs. 25% in KRAS/NRAS wild-type patients. In MAP2K1-mutated patients, the ORR was 42.8%. CONCLUSION The addition of binimetinib to carboplatin and pemetrexed appears to have manageable toxicity with evidence of activity in advanced non-squamous NSCLC.
Collapse
Affiliation(s)
- A S Fung
- Department of Oncology, Queen's University, Canada; Princess Margaret Cancer Centre, University Health Network, Canada
| | - D M Graham
- Princess Margaret Cancer Centre, University Health Network, Canada; Division of Medical Oncology, University of Toronto, Canada; The Christie NHSFoundation Trust, Manchester, UK
| | - E X Chen
- Princess Margaret Cancer Centre, University Health Network, Canada; Division of Medical Oncology, University of Toronto, Canada
| | - T L Stockley
- Division of Clinical Laboratory Genetics, University Health Network, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Advanced Molecular Diagnostics Laboratory, University Health Network, Canada
| | - T Zhang
- Division of Clinical Laboratory Genetics, University Health Network, Canada; Advanced Molecular Diagnostics Laboratory, University Health Network, Canada
| | - L W Le
- Princess Margaret Cancer Centre, University Health Network, Canada
| | - H Albaba
- Princess Margaret Cancer Centre, University Health Network, Canada
| | - K M Pisters
- Princess Margaret Cancer Centre, University Health Network, Canada; MD Anderson Cancer Centre, Houston, TX, United States
| | - P A Bradbury
- Princess Margaret Cancer Centre, University Health Network, Canada; Division of Medical Oncology, University of Toronto, Canada
| | - M Trinkaus
- Division of Medical Oncology, University of Toronto, Canada; Markham Stouffville Hospital, Markham, Canada
| | - M Chan
- Division of Medical Oncology, University of Toronto, Canada; Trillium Health Partners, Mississauga, Canada
| | - S Arif
- Division of Medical Oncology, University of Toronto, Canada; Trillium Health Partners, Mississauga, Canada
| | - U Zurawska
- Division of Medical Oncology, University of Toronto, Canada; St. Joseph's Health Centre, Toronto, Canada
| | - J Rothenstein
- Division of Medical Oncology, University of Toronto, Canada; RS McLaughlin Durham Cancer Centre, Oshawa, Canada
| | - D Zawisza
- Princess Margaret Cancer Centre, University Health Network, Canada
| | - S Effendi
- Princess Margaret Cancer Centre, University Health Network, Canada
| | - S Gill
- Princess Margaret Cancer Centre, University Health Network, Canada
| | - M Sawczak
- Princess Margaret Cancer Centre, University Health Network, Canada
| | - J H Law
- Princess Margaret Cancer Centre, University Health Network, Canada
| | - N B Leighl
- Princess Margaret Cancer Centre, University Health Network, Canada; Division of Medical Oncology, University of Toronto, Canada.
| |
Collapse
|
7
|
Imyanitov EN, Levchenko EV, Kuligina ES, Orlov SV. Treating non-small cell lung cancer with selumetinib: an up-to-date drug evaluation. Expert Opin Pharmacother 2020; 21:1943-1953. [DOI: 10.1080/14656566.2020.1798930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia
- Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, 191015, Russia
- Department of Oncology, I.P. Pavlov St.-Petersburg State Medical University, St.-Petersburg, 197022, Russia
- Institute of Medical Primatology, Sochi, 354376, Russia
| | - Evgeny V. Levchenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia
- Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, 191015, Russia
| | - Ekatherina S. Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia
| | - Sergey V. Orlov
- Department of Oncology, I.P. Pavlov St.-Petersburg State Medical University, St.-Petersburg, 197022, Russia
- Institute of Medical Primatology, Sochi, 354376, Russia
| |
Collapse
|
8
|
Ma Y, Zhu J, Chen S, Ma J, Zhang X, Huang S, Hu J, Yue T, Zhang J, Wang P, Wang X, Rong L, Guo H, Chen G, Liu Y. Low expression of SPARC in gastric cancer-associated fibroblasts leads to stemness transformation and 5-fluorouracil resistance in gastric cancer. Cancer Cell Int 2019; 19:137. [PMID: 31139014 PMCID: PMC6528188 DOI: 10.1186/s12935-019-0844-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/30/2019] [Indexed: 12/24/2022] Open
Abstract
Background The aim of the present study was to clarify the correlations between SPARC expression in gastric cancer-associated fibroblasts (GCAFs) and the prognosis of patients with gastric cancer and to elucidate the role of GCAF-derived SPARC in stemness transformation and 5-fluorouracil resistance in gastric cancer. Methods One hundred ninety-two patients were enrolled in the present study. SPARC expression levels were evaluated by immunohistochemical staining. Primary GCAFs were obtained and cultured from cancer patients for in vitro study, and a lentivirus infection method was employed to knock down SPARC expression in GCAFs. The stemness phenotype and 5-fluorouracil (5-FU) response of gastric cancer cells were assessed via a 3D co-culture model. The apoptotic status and stemness alterations were monitored by flow cytometry and western blotting. Additionally, label-free quantification proteomics was used to identify the differentially expressed proteins and potential pathways in gastric cancer cells treated with GCAF-derived SPARC. Results Low expression of GCAF-derived SPARC was associated with decreased differentiation and reduced 5-year overall survival and was an independent predictive factor for prognosis in gastric cancer. The 3D tumour growth and 5-FU resistance abilities of gastric cancer cells were elevated after treatment with GCAFs with SPARC knockdown relative to these abilities in negative control cells. Additionally, suppressing SPARC expression in GCAFs facilitated the phenotypic alteration of gastric cancer cells towards CD44+/CD24− cancer stem cell (CSC)-like cells. Quantification proteomics analysis revealed that the differentially expressed proteins in gastric cancer cells were mainly involved in the AKT/mTOR and MEK/ERK signalling pathways. Conclusions SPARC expression in GCAFs is a useful prognostic factor in patients with gastric cancer. Low expression of GCAF-derived SPARC can lead to CSC transformation and 5-FU resistance. Additionally, the AKT/mTOR and MEK/ERK signalling pathways may participate in the malignant process. Electronic supplementary material The online version of this article (10.1186/s12935-019-0844-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongchen Ma
- 1Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Jing Zhu
- 1Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Shanwen Chen
- 1Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Ju Ma
- 1Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Xiaoqian Zhang
- 1Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Sixia Huang
- 2Department of Pathology, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Jianwen Hu
- 1Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Taohua Yue
- 1Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Junling Zhang
- 1Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Pengyuan Wang
- 1Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Xin Wang
- 1Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Long Rong
- 3Department of Endoscopic Center, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Hongjie Guo
- 4Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Guowei Chen
- 1Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Yucun Liu
- 1Department of General Surgery, Peking University First Hospital, Beijing, 100034 People's Republic of China
| |
Collapse
|