1
|
Zhu M, Yu M, Meng Y, Yang J, Wang X, Li L, Liang Y, Kong F. HER3 receptor and its role in the therapeutic management of metastatic breast cancer. J Transl Med 2024; 22:665. [PMID: 39020378 PMCID: PMC11253420 DOI: 10.1186/s12967-024-05445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Metastatic breast cancer (mBC) poses a significant threat to women's health and is a major cause of malignant neoplasms in women. Human epidermal growth factor receptor (HER)3, an integral member of the ErbB/HER receptor tyrosine kinase family, is a crucial activator of the phosphoinositide-3 kinase/protein kinase B signaling pathway. HER3 overexpression significantly contributes to the development of resistance to drugs targeting other HER receptors, such as HER2 and epidermal growth factor receptors, and plays a crucial role in the onset and progression of mBC. Recently, numerous HER3-targeted therapeutic agents, such as monoclonal antibodies (mAbs), bispecific antibodies (bAbs), and antibody-drug conjugates (ADCs), have emerged. However, the efficacy of HER3-targeted mAbs and bAbs is limited when used individually, and their combination may result in toxic adverse effects. On the other hand, ADCs are cytotoxic to cancer cells and can bind to target cells through antibodies, which highlights their use in targeted HER3 therapy for mBC. This review provides an overview of recent advancements in HER3 research, historical initiatives, and innovative approaches in targeted HER3 therapy for metastatic breast cancer. Evaluating the advantages and disadvantages of current methods may yield valuable insights and lessons.
Collapse
Affiliation(s)
- Meiying Zhu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Minghui Yu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuan Meng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jie Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuerui Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Longhui Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yangyueying Liang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
2
|
Li H, Xu L, Cao H, Wang T, Yang S, Tong Y, Wang L, Liu Q. Analysis on the pathogenesis and treatment progress of NRG1 fusion-positive non-small cell lung cancer. Front Oncol 2024; 14:1405380. [PMID: 38957319 PMCID: PMC11217482 DOI: 10.3389/fonc.2024.1405380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
Lung cancer persistently leads as the primary cause of morbidity and mortality among malignancies. A notable increase in the prevalence of lung adenocarcinoma has become evident in recent years. Although targeted therapies have shown in treating certain subsets of non-small cell lung cancers (NSCLC), a significant proportion of patients still face suboptimal therapeutic outcomes. Neuregulin-1 (NRG1), a critical member of the NRG gene family, initially drew interest due to its distribution within the nascent ventricular endocardium, showcasing an exclusive presence in the endocardium and myocardial microvessels. Recent research has highlighted NRG1's pivotal role in the genesis and progression across a spectrum of tumors, influencing molecular perturbations across various tumor-associated signaling pathways. This review provides a concise overview of NRG1, including its expression patterns, configuration, and fusion partners. Additionally, we explore the unique features and potential therapeutic strategies for NRG1 fusion-positive occurrences within the context of NSCLC.
Collapse
Affiliation(s)
- Hongyan Li
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Lina Xu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Hongshun Cao
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Tianyi Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Siwen Yang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Yixin Tong
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Linlin Wang
- Department of Thoracic Surgery, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Qiang Liu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Zeng H, Wang W, Zhang L, Lin Z. HER3-targeted therapy: the mechanism of drug resistance and the development of anticancer drugs. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:14. [PMID: 38835349 PMCID: PMC11149107 DOI: 10.20517/cdr.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024]
Abstract
Human epidermal growth factor receptor 3 (HER3), which is part of the HER family, is aberrantly expressed in various human cancers. Since HER3 only has weak tyrosine kinase activity, when HER3 ligand neuregulin 1 (NRG1) or neuregulin 2 (NRG2) appears, activated HER3 contributes to cancer development and drug resistance by forming heterodimers with other receptors, mainly including epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Inhibition of HER3 and its downstream signaling, including PI3K/AKT, MEK/MAPK, JAK/STAT, and Src kinase, is believed to be necessary to conquer drug resistance and improve treatment efficiency. Until now, despite multiple anti-HER3 antibodies undergoing preclinical and clinical studies, none of the HER3-targeted therapies are licensed for utilization in clinical cancer treatment because of their safety and efficacy. Therefore, the development of HER3-targeted drugs possessing safety, tolerability, and sensitivity is crucial for clinical cancer treatment. This review summarizes the progress of the mechanism of HER3 in drug resistance, the HER3-targeted therapies that are conducted in preclinical and clinical trials, and some emerging molecules that could be used as future designed drugs for HER3, aiming to provide insights for future research and development of anticancer drugs targeting HER3.
Collapse
Affiliation(s)
- Huilan Zeng
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Wei Wang
- Department of Cancer Center, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Lin Zhang
- Department of Gastroenterology, Chongqing University Jiangjin Hospital, Chongqing 402260, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
4
|
Chen Q, Jia G, Zhang X, Ma W. Targeting HER3 to overcome EGFR TKI resistance in NSCLC. Front Immunol 2024; 14:1332057. [PMID: 38239350 PMCID: PMC10794487 DOI: 10.3389/fimmu.2023.1332057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) play a crucial role in cellular signaling and oncogenic progression. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) have become the standard treatment for advanced non-small cell lung cancer (NSCLC) patients with EGFR-sensitizing mutations, but resistance frequently emerges between 10 to 14 months. A significant factor in this resistance is the role of human EGFR 3 (HER3), an EGFR family member. Despite its significance, effective targeting of HER3 is still developing. This review aims to bridge this gap by deeply examining HER3's pivotal contribution to EGFR TKI resistance and spotlighting emerging HER3-centered therapeutic avenues, including monoclonal antibodies (mAbs), TKIs, and antibody-drug conjugates (ADCs). Preliminary results indicate combining HER3-specific treatments with EGFR TKIs enhances antitumor effects, leading to an increased objective response rate (ORR) and prolonged overall survival (OS) in resistant cases. Embracing HER3-targeting therapies represents a transformative approach against EGFR TKI resistance and emphasizes the importance of further research to optimize patient stratification and understand resistance mechanisms.
Collapse
Affiliation(s)
- Qiuqiang Chen
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Gang Jia
- Department of Medical Oncology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xilin Zhang
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, and Sanford Stem Cell Institute, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Majumder A. HER3: Toward the Prognostic Significance, Therapeutic Potential, Current Challenges, and Future Therapeutics in Different Types of Cancer. Cells 2023; 12:2517. [PMID: 37947595 PMCID: PMC10648638 DOI: 10.3390/cells12212517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Human epidermal growth factor receptor 3 (HER3) is the only family member of the EGRF/HER family of receptor tyrosine kinases that lacks an active kinase domain (KD), which makes it an obligate binding partner with other receptors for its oncogenic role. When HER3 is activated in a ligand-dependent (NRG1/HRG) or independent manner, it can bind to other receptors (the most potent binding partner is HER2) to regulate many biological functions (growth, survival, nutrient sensing, metabolic regulation, etc.) through the PI3K-AKT-mTOR pathway. HER3 has been found to promote tumorigenesis, tumor growth, and drug resistance in different cancer types, especially breast and non-small cell lung cancer. Given its ubiquitous expression across different solid tumors and role in oncogenesis and drug resistance, there has been a long effort to target HER3. As HER3 cannot be targeted through its KD with small-molecule kinase inhibitors via the conventional method, pharmaceutical companies have used various other approaches, including blocking either the ligand-binding domain or extracellular domain for dimerization with other receptors. The development of treatment options with anti-HER3 monoclonal antibodies, bispecific antibodies, and different combination therapies showed limited clinical efficiency for various reasons. Recent reports showed that the extracellular domain of HER3 is not required for its binding with other receptors, which raises doubt about the efforts and applicability of the development of the HER3-antibodies for treatment. Whereas HER3-directed antibody-drug conjugates showed potentiality for treatment, these drugs are still under clinical trial. The currently understood model for dimerization-induced signaling remains incomplete due to the absence of the crystal structure of HER3 signaling complexes, and many lines of evidence suggest that HER family signaling involves more than the interaction of two members. This review article will significantly expand our knowledge of HER3 signaling and shed light on developing a new generation of drugs that have fewer side effects than the current treatment regimen for these patients.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
6
|
Kardynska M, Kogut D, Pacholczyk M, Smieja J. Mathematical modeling of regulatory networks of intracellular processes - Aims and selected methods. Comput Struct Biotechnol J 2023; 21:1523-1532. [PMID: 36851915 PMCID: PMC9958294 DOI: 10.1016/j.csbj.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Regulatory networks structure and signaling pathways dynamics are uncovered in time- and resource consuming experimental work. However, it is increasingly supported by modeling, analytical and computational techniques as well as discrete mathematics and artificial intelligence applied to to extract knowledge from existing databases. This review is focused on mathematical modeling used to analyze dynamics and robustness of these networks. This paper presents a review of selected modeling methods that facilitate advances in molecular biology.
Collapse
Affiliation(s)
- Malgorzata Kardynska
- Dept. of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Gliwice, Poland
| | - Daria Kogut
- Dept. of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Gliwice, Poland.,Dept. of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Marcin Pacholczyk
- Dept. of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Gliwice, Poland.,Dept. of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Jaroslaw Smieja
- Dept. of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Gliwice, Poland.,Dept. of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
7
|
Kojima Y, Sudo K, Yoshida H, Yazaki S, Tokura M, Mizoguchi C, Okuma HS, Kita S, Yamamoto K, Nishikawa T, Noguchi E, Shimoi T, Tanase Y, Uno M, Ishikawa M, Kato T, Koyama K, Kobayashi M, Kakegawa T, Fujiwara Y, Yonemori K. Changes in HER3 expression profiles between primary and recurrent gynecological cancers. Cancer Cell Int 2023; 23:18. [PMID: 36737733 PMCID: PMC9898949 DOI: 10.1186/s12935-022-02844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/30/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Human epidermal growth factor receptor-3 (HER3) is a member of the epidermal growth factor receptor family of receptor tyrosine kinases, and its overexpression is associated with inferior prognosis in several cancers. However, it is unclear whether HER3 expression status changes in tumor tissue at recurrence. Therefore, this study aimed to evaluate the changes in HER3 expression between primary and recurrent status in gynecological cancers. METHODS This retrospective study used matched-pair tissues of gynecological cancer patients at initial diagnosis and at recurrence. Immunohistochemical (IHC) scores of 3 + or 2 + were termed "HER3-high", while IHC scores of 1 + or 0 were designated as "HER3-low/zero". RESULTS A total of 86 patients (40 with ovarian cancers, 32 with endometrial cancers, and 14 with cervical cancers) were included in this study. In ovarian cancer, 67.5% and 80.0% of the patients received a HER3-high at initial and recurrent diagnosis, respectively. The H-score was significantly increased at recurrence (p = 0.004). The proportion of HER3-high endometrial cancer patients increased from 46.9% at initial diagnosis to 68.8% at recurrence, and the H-score tended to increase at recurrence (p = 0.08). The fraction of HER3-high-rated cervical cancer patients remained unchanged at 85.7% both at initial and recurrent diagnosis. The discordance rate of HER3 expression detection in initial and recurrent diagnosis samples was 27.5%, 53.1%, and 14.3% for ovarian, endometrial, and cervical cancers, respectively. Ovarian and endometrial cancers with a HER3-high recurrent score tended to show shorter median survival time than those with a HER3-low/zero recurrent rating. CONCLUSION Our findings suggest that, in main types of gynecological cancers, the proportion of patients having a HER3-high score increased from initial to recurrent diagnosis.
Collapse
Affiliation(s)
- Yuki Kojima
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Kazuki Sudo
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Hiroshi Yoshida
- grid.272242.30000 0001 2168 5385Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Shu Yazaki
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Momoko Tokura
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Chiharu Mizoguchi
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Hitomi S. Okuma
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Shosuke Kita
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Kasumi Yamamoto
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Tadaaki Nishikawa
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Emi Noguchi
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Tatsunori Shimoi
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Yasuhito Tanase
- grid.272242.30000 0001 2168 5385Department of Gynecology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Masaya Uno
- grid.272242.30000 0001 2168 5385Department of Gynecology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Mitsuya Ishikawa
- grid.272242.30000 0001 2168 5385Department of Gynecology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Tomoyasu Kato
- grid.272242.30000 0001 2168 5385Department of Gynecology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Kumiko Koyama
- grid.410844.d0000 0004 4911 4738Translational Science Department I, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-Ku, Tokyo, 140-8710 Japan
| | - Maki Kobayashi
- grid.410844.d0000 0004 4911 4738Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-Ku, Tokyo, 134-8630 Japan
| | - Tomoya Kakegawa
- grid.410844.d0000 0004 4911 4738Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-Ku, Tokyo, 134-8630 Japan
| | - Yasuhiro Fujiwara
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Kan Yonemori
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| |
Collapse
|
8
|
Uliano J, Corvaja C, Curigliano G, Tarantino P. Targeting HER3 for cancer treatment: a new horizon for an old target. ESMO Open 2023; 8:100790. [PMID: 36764093 PMCID: PMC9929675 DOI: 10.1016/j.esmoop.2023.100790] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
Human epidermal growth factor receptor 3 (HER3) is a member of the human epidermal growth factor receptors family, having as its main ligands neuregulins 1 and 2. Although its poor tyrosine kinase activity entails a weak oncogenic power on its own, HER3 can heterodimerize with HER2 and/or epidermal growth factor receptor (EGFR), leading to a drastic enhancement of transphosphorylation and activation of downstream signaling pathways, ultimately promoting oncogenesis, metastatic dissemination, and drug resistance. Given its ubiquitous expression across solid tumors, multiple efforts have been done to therapeutically target HER3 by blocking either the ligand binding domain or its dimerization with other receptors. Treatment with anti-HER3 monoclonal antibodies or bispecific antibodies, both as single agents and in combination with other compounds, unfortunately led to unsatisfactory results across several tumor types. The HER3-directed delivery of cytotoxic payloads through antibody-drug conjugates has recently demonstrated encouraging activity in several tumor types, however, suggesting a potential role for the therapeutic targeting of HER3 in cancer treatment.
Collapse
Affiliation(s)
- J Uliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan; Department of Oncology and Hemato-Oncology, University of Milan, Milan. https://twitter.com/jacopo_uli
| | - C Corvaja
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan; Department of Oncology and Hemato-Oncology, University of Milan, Milan; Department of Medicine, University of Udine, Udine, Italy. https://twitter.com/carlacorvaja
| | - G Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan; Department of Oncology and Hemato-Oncology, University of Milan, Milan. https://twitter.com/curijoey
| | - P Tarantino
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan; Department of Oncology and Hemato-Oncology, University of Milan, Milan; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston; Harvard Medical School, Boston, USA.
| |
Collapse
|
9
|
Thavaneswaran S, Chan WY, Asghari R, Grady JP, Deegan M, Jansen VM, Thomas DM. Clinical Response to Seribantumab, an Anti-Human Epidermal Growth Factor Receptor-3 Immunoglobulin 2 Monoclonal Antibody, in a Patient With Metastatic Pancreatic Ductal Adenocarcinoma Harboring an NRG1 Fusion. JCO Precis Oncol 2022; 6:e2200263. [PMID: 36455193 PMCID: PMC9812631 DOI: 10.1200/po.22.00263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Subotheni Thavaneswaran
- The Kinghorn Cancer Centre, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia,Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, Australia,NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia,Subotheni Thavaneswaran, MBBS, MMed, PhD, Medical Oncology, The Kinghorn Cancer Centre & Garvan Institute Medical Research, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, 370 Victoria St, Darlinghurst, NSW 2010, Australia; e-mail:
| | - Wei Yen Chan
- The Kinghorn Cancer Centre, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia
| | - Ray Asghari
- Cancer Therapy Centre, Bankstown-Lidcombe Hospital, Bankstown, NSW, Australia
| | - John P. Grady
- Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, Australia
| | | | | | - David M. Thomas
- The Kinghorn Cancer Centre, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia,Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, Australia
| |
Collapse
|
10
|
Chen Y, Li Z, Cao Q, Guan H, Mao L, Zhao M. Ferroptosis-related gene signatures in neuroblastoma associated with prognosis. Front Cell Dev Biol 2022; 10:871512. [PMID: 36147739 PMCID: PMC9486025 DOI: 10.3389/fcell.2022.871512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Ferroptosis, a form of regulatory cell death, has been linked to the development of various tumors. Peripheral neuroblastoma (NB) is one of the most common extracranial solid tumors in children, and it has been proposed that regulating tumor cell ferroptosis may be a future treatment for NB. However, it is unclear how ferroptosis contributes to NB development. Methods: Expression data were collected from two independent cohorts (GEO and Arrayexpress databases). Univariate Cox analysis, multivariate Cox analysis, and the least absolute shrinkage and selection operator (Lasso) algorithm were applied to create a prognostic signature, whose performance was quantified using the area under the receiver operating characteristic curve (AUC) and Kaplan–Meier curves. A prognostic meta-analysis was used to test the suitability and stability of the FRG signature. Drug sensitivity analyses were performed using the data collected from Cell Miner™. Results:PROM2, AURKA, STEAP3, CD44, ULK2, MAP1LC3A, ATP6V1G2, and STAT3 are among the eight genes in the FRG prognostic signature, all of which were highly expressed in stage 1 NB, except AURKA. Furthermore, the high-risk group, which was stratified by signature, had a lower overall survival rate than the low-risk group. GSEA revealed that high-risk groups have more biological processes related to ferroptosis. Conclusion: Ferroptosis-related genes are expressed differently between stages 1 and 4 NB. The FRG signature successfully stratified NB patients into two risk groups and can accurately predict the overall survival in NB. In addition, we found that the gene AURKA might have the potential to be a prognostic marker in NB.
Collapse
Affiliation(s)
- Yiru Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zihao Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacy, College of Biology, Hunan University, Changsha, China
| | - Qingtai Cao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Haoyu Guan
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Longfei Mao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacy, College of Biology, Hunan University, Changsha, China
- *Correspondence: Longfei Mao, ; Mingyi Zhao,
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Longfei Mao, ; Mingyi Zhao,
| |
Collapse
|
11
|
Weickhardt AJ, Lau DK, Hodgson-Garms M, Lavis A, Jenkins LJ, Vukelic N, Ioannidis P, Luk IY, Mariadason JM. Dual targeting of FGFR3 and ERBB3 enhances the efficacy of FGFR inhibitors in FGFR3 fusion-driven bladder cancer. BMC Cancer 2022; 22:478. [PMID: 35501832 PMCID: PMC9063072 DOI: 10.1186/s12885-022-09478-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Mutations and fusions in Fibroblast Growth Factor Receptor 3 (FGFR3) occur in 10-20% of metastatic urothelial carcinomas and confer sensitivity to FGFR inhibitors. However, responses to these agents are often short-lived due to the development of acquired resistance. The objective of this study was to identify mechanisms of resistance to FGFR inhibitors in two previously uncharacterised bladder cancer cell lines harbouring FGFR3 fusions and assess rational combination therapies to enhance sensitivity to these agents. METHODS Acquired resistance to FGFR inhibitors was generated in two FGFR3 fusion harbouring cell lines, SW780 (FGFR3-BAIAP2L1 fusion) and RT4 (FGFR3-TACC3 fusion), by long-term exposure to the FGFR inhibitor BGJ398. Changes in levels of receptor tyrosine kinases were assessed by phospho-RTK arrays and immunoblotting. Changes in cell viability and proliferation were assessed by the Cell-Titre Glo assay and by propidium iodide staining and FACS analysis. RESULTS Long term treatment of FGFR3-fusion harbouring SW780 and RT4 bladder cancer cell lines with the FGFR inhibitor BGJ398 resulted in the establishment of resistant clones. These clones were cross-resistant to the clinically approved FGFR inhibitor erdafitinib and the covalently binding irreversible FGFR inhibitor TAS-120, but remained sensitive to the MEK inhibitor trametinib, indicating resistance is mediated by alternate activation of MAPK signalling. The FGFR inhibitor-resistant SW780 and RT4 lines displayed increased expression of pERBB3, and strikingly, combination treatment with an FGFR inhibitor and the ATP-competitive pan-ERBB inhibitor AZD8931 overcame this resistance. Notably, rapid induction of pERBB3 and reactivation of pERK also occurred in parental FGFR3 fusion-driven lines within 24 h of FGFR inhibitor treatment, and combination treatment with an FGFR inhibitor and AZD8931 delayed the reactivation of pERBB3 and pERK and synergistically inhibited cell proliferation. CONCLUSIONS We demonstrate that increased expression of pERBB3 is a key mechanism of adaptive resistance to FGFR inhibitors in FGFR3-fusion driven bladder cancers, and that this also occurs rapidly following FGFR inhibitor treatment. Our findings demonstrate that resistance can be overcome by combination treatment with a pan-ERBB inhibitor and suggest that upfront combination treatment with FGFR and pan-ERBB inhibitors warrants further investigation for FGFR3-fusion harbouring bladder cancers.
Collapse
Affiliation(s)
- Andrew J Weickhardt
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia.
- Department of Medical Oncology, Austin Health, Olivia Newton-John Cancer Wellness and Research Centre, Melbourne, VIC, Australia.
| | - David K Lau
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Margeaux Hodgson-Garms
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Austen Lavis
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Laura J Jenkins
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Natalia Vukelic
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Paul Ioannidis
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
| | - Ian Y Luk
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia.
- Department of Medical Oncology, Austin Health, Olivia Newton-John Cancer Wellness and Research Centre, Melbourne, VIC, Australia.
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
The HER family as therapeutic targets in colorectal cancer. Crit Rev Oncol Hematol 2022; 174:103681. [PMID: 35462030 DOI: 10.1016/j.critrevonc.2022.103681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
The human epidermal growth factor receptor (HER, ErbB) family has four members, epidermal growth factor receptor (EGFR), HER2, HER3, and HER4. Although distinct in ligands and functions, all of the HER family members are receptor tyrosine kinases playing important roles in the pathogenesis of cancers. In the era of precision medicine, the HER family is one of the most important and successful cancer therapeutic targets, hallmarked by the approval of anti-EGFR therapies for the treatment of colorectal cancer and non-small cell lung cancer, and anti-HER2 therapies for the treatment of breast cancer and gastric cancer. This review briefly discusses how HER family members were discovered, their functions and roles in cancer, and most importantly, the developmental history and recent updates of therapies targeting HER family members, with colorectal cancer as a focus. We also discussed the patient selection and drug resistance to anti-EGFR therapies in the treatment of colorectal cancer.
Collapse
|
13
|
Rathore M, Zhang W, Wright M, Bhattacharya R, Fan F, Vaziri-Gohar A, Winter J, Wang Z, Markowitz SD, Willis J, Ellis LM, Wang R. Liver Endothelium Promotes HER3-mediated Cell Survival in Colorectal Cancer with Wild-type and Mutant KRAS. Mol Cancer Res 2022; 20:996-1008. [PMID: 35276002 PMCID: PMC9177644 DOI: 10.1158/1541-7786.mcr-21-0633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/01/2021] [Accepted: 03/04/2022] [Indexed: 11/16/2022]
Abstract
We previously identified that human epidermal growth factor receptor 3 (HER3, also known as ERBB3) is a key mediator in liver endothelial cell (EC) promoting colorectal cancer (CRC) growth and chemoresistance, and suggested HER3-targeted therapy as a strategy for treating patients with metastatic CRC (mCRC) in the liver. Meanwhile, KRAS mutations occur in 40-50% of mCRC and render CRC resistant to therapies targeting the other HER family protein epidermal growth factor receptor (EGFR). It is necessary to elucidate the roles of KRAS mutation status in HER3-mediated cell survival and CRC response to HER3 inhibition. In the present study, we used primary ECs isolated from non-neoplastic liver tissues to recapitulate the liver EC microenvironment. We demonstrated that liver EC-secreted factors activated CRC-associated HER3, and increased CRC cell survival in vitro and promoted CRC patient-derived xenograft tumor growth in vivo. Moreover, we determined that blocking HER3, either by siRNA knockdown or the humanized antibody seribantumab, blocked EC-induced CRC survival in vitro in both KRAS wild-type and mutant CRC cells, and the HER3 antibody seribantumab significantly decreased CRC tumor growth and sensitized tumors to chemotherapy in an orthotopic xenograft model with CRC tumors developed in the liver. In summary, our findings demonstrated that blocking HER3 had significant effects on attenuating liver EC-induced CRC cell survival independent of the KRAS mutation status. Implications: This body of work highlighted a potential strategy of using HER3 antibodies in combination with standard chemotherapy agents for treating patients with either KRAS wild-type or KRAS mutant mCRC.
Collapse
Affiliation(s)
- Moeez Rathore
- Case Western Reserve University, cleveland, ohio, United States
| | - Wei Zhang
- Case Western Reserve University, United States
| | | | - Rajat Bhattacharya
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fan Fan
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ali Vaziri-Gohar
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Jordan Winter
- University Hospitals, Cleveland Medical Center, Cleveland, OH, United States
| | - Zhenghe Wang
- Case Western Reserve University, Cleveland, OH, United States
| | | | - Joseph Willis
- Case Western Reserve University, Cleveland, OH, United States
| | - Lee M Ellis
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rui Wang
- Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
14
|
Zhang C, Mei W, Zeng C. Oncogenic Neuregulin 1 gene (NRG1) fusions in cancer: A potential new therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2022; 1877:188707. [PMID: 35247506 DOI: 10.1016/j.bbcan.2022.188707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
Abstract
It is widely established that chromosomal rearrangements induce oncogenesis in solid tumors. However, discovering chromosomal rearrangements that are targetable and actionable remains a difficulty. Targeting gene fusion or chromosomal rearrangement seems to be a powerful strategy to address malignancies characterized by gene rearrangement. Oncogenic NRG1 fusions are relatively rare drivers that infrequently occur across most tumor types. NRG1 fusions exhibit unique biological properties and are difficult to identify owing to their large intronic regions. NRG1 fusions can be detected using a variety of techniques, including fluorescence in situ hybridization, immunohistochemistry, or next-generation sequencing (NGS), with NGS-based RNA sequencing being the most sensitive. Previous studies have shown that NRG1 fusion protein induces tumorigenesis, and numerous therapies targeting the ErbB signaling pathway, such as ErbB kinase inhibitors and monoclonal antibodies, have initially demonstrated encouraging anticancer efficacy in malignant tumors carrying NRG1 fusions. In this review, we present the characteristics and prevalence of NRG1 fusions in solid tumors. Additionally, we discuss the laboratory approaches for diagnosing NRG1 gene fusions. More importantly, we outline promising strategies for treating malignancies with NRG1 fusion.
Collapse
Affiliation(s)
- Congwang Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen 518110, China
| | - Wuxuan Mei
- Clinical Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen 518110, China.
| |
Collapse
|