1
|
Saha S, Chukwuka AV, Mukherjee D, Dhara K, Saha NC, Faggio C. Behavioral and physiological toxicity thresholds of a freshwater vertebrate (Heteropneustes fossilis) and invertebrate (Branchiura sowerbyi), exposed to zinc oxide nanoparticles (nZnO): A General Unified Threshold model of Survival (GUTS). Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109450. [PMID: 36058464 DOI: 10.1016/j.cbpc.2022.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
Abstract
The toxic effects of Zinc oxide nanoparticles (nZnO) on Branchiura sowerbyi and Heteropneustes fossilis, was assessed in a 96-hour acute exposure regime using behavioral (including loss-of balance and clumping tendencies) and physiological (mucus secretion and oxygen consumption) endpoints. While the relationship between behavioral, physiological biomarkers, and exposure concentrations was assessed using correlation analysis, nZnO toxicity was further predicted using the General Unified Threshold model for Survival (GUTS). The time-dependent lethal limits for acute nZnO toxicity (LC50) on B. sowerbyi were estimated to be 0.668, 0.588, 0.448, and 0.400 mg/l, respectively, at 24, 48, 72, and 96 h whereas for H. fossilis the LC50 values are 0.954, 0.905, 0.874 and 0.838 mg/l. Threshold effect values i.e., LOEC (Lowest Observed Effect Concentration), NOEC (No Observed Effect Concentration), and MATC (Maximum Acceptable Toxicant Concentration) threshold effect values at 96 h were higher for fish compared to the oligochaete. For B. sowerbyi, the GUTS-SD (stochastic death) model is a better predictor of nanoparticle exposure effects compared to the GUTS-IT (individual tolerance) model, however in the case of H. fossilis, the reverse pattern was observed. Oxygen consumption rate was negatively correlated to mortality under acute exposure duration. The strong negative correlation between mortality and oxygen consumption strongly suggests a metabolic-toxicity pathway for nZnO exposure effects. The higher toxicity threshold values i.e., LOEC, NOEC, and MATC for fish compared to the oligochaete invertebrate indicates greater risks for invertebrates compared to vertebrates, with resultant implications for local habitat trophic relationships.
Collapse
Affiliation(s)
- Shubhajit Saha
- Department of Zoology, Sundarban Hazi Desarat College, South 24, Parganas 743 611, West Bengal, India. https://twitter.com/@DrShubhajitS
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Nigeria
| | - Dip Mukherjee
- Department of Zoology, S.B.S. Government College, Hili, Dakshin Dinajpur 733126, India
| | - Kishore Dhara
- Freshwater Fisheries Research & Training Centre, Directorate of Fisheries, Kalyani, Nadia 741 251, India
| | - Nimai Chandra Saha
- Department of Zoology, University of Burdwan, Purba Barddhaman 713 104, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
2
|
Exposure to the Insecticide Sulfoxaflor Affects Behaviour and Biomarkers Responses of Carcinus maenas (Crustacea: Decapoda). BIOLOGY 2021; 10:biology10121234. [PMID: 34943149 PMCID: PMC8698531 DOI: 10.3390/biology10121234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary Sulfoxaflor is an insecticide for which there are few studies regarding its toxicity to non-target organisms. The present study aimed to investigate the acute and sub-lethal effects of sulfoxaflor on Carcinus maenas by addressing survival, behaviour, and biomarkers. Sulfoxaflor affected feed intake and motricity of C. maenas. From the integrated analysis of endpoints, with the increase in concentrations of sulfoxaflor, after seven days, one can notice a lower detoxification capacity, higher lipid peroxidation, and higher motricity effects and lower feed intake. This study aims to contribute to the understanding of the negative impacts of sulfoxaflor on green crabs and increase knowledge of this pesticide toxicity to non-target coastal invertebrates. Abstract Sulfoxaflor is an insecticide belonging to the recent sulfoximine class, acting as a nicotinic acetylcholine receptor (nAChRs) agonist. There are few studies regarding sulfoxaflor’s toxicity to non-target organisms. The present study aimed to investigate the acute and sub-lethal effects of sulfoxaflor on Carcinus maenas by addressing survival, behaviour (feed intake and motricity), and neuromuscular, detoxification and oxidative stress, and energy metabolism biomarkers. Adult male green crabs were exposed to sulfoxaflor for 96 h and an LC50 of 2.88 mg L−1 was estimated. All biomarker endpoints were sampled after three (T3) and seven (T7) days of exposure and behavioural endpoints were addressed at T3 and day six (T6). Sulfoxaflor affected the feed intake and motricity of C. maenas at T6. From the integrated analysis of endpoints, with the increase in concentrations of sulfoxaflor, after seven days, one can notice a lower detoxification capacity (lower GST), higher LPO levels and effects on behaviour (higher motricity effects and lower feed intake). This integrated approach proved to be valuable in understanding the negative impacts of sulfoxaflor on green crabs, while contributing to the knowledge of this pesticide toxicity to non-target coastal invertebrates.
Collapse
|
3
|
Gomes SIL, Neves AB, Scott-Fordsmand JJ, Amorim MJB. Reactive Oxygen Species Detection Using Fluorescence in Enchytraeus crypticus-Method Implementation through Ag NM300K Case Study. TOXICS 2021; 9:232. [PMID: 34678928 PMCID: PMC8541345 DOI: 10.3390/toxics9100232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
An imbalance between reactive oxygen species (ROS) and antioxidants in a living organism results in oxidative stress. Measures of such imbalance can be used as a biomarker of stress in ecotoxicology. In this study, we implemented the ROS detection method based on the oxidant-sensing probe dichloro-dihydro-fluorescein diacetate (DCFH-DA), detected by fluorescence microscopy, in Enchytraeus crypticus adults and cocoons, i.e., also covering the embryo stage. Hydrogen peroxide (H2O2), a well-known ROS inducer, was used both to optimize the method and as positive control. Implementation was successful, and the method was used to assess ROS formation in E. crypticus cocoons and adults when exposed to the reference silver nanomaterial Ag NM300K, at two effect concentrations (EC20 and EC50) for both hatching and reproduction over 3 and 7 days. The measured ROS levels varied with time, concentration, and developmental stage, with higher levels detected in adults compared with cocoons. In cocoons, ROS levels were higher at the EC20 than the EC50, which could be explained by non-monotonic concentration-response curve for hatching and reproduction, as previously observed. The increase in ROS levels at day 3 preceded the oxidative damage, as reported to occur later (day 7) in adults. The DCFH-DA method was successfully implemented here and can be further used as a new tool to detect ROS formation in E. crypticus, especially after short-term exposure to chemicals, including nanomaterials. We recommend the use of 3 and 7 days in the exposure design for this assessment.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana B Neves
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, P.O. Box 314, DK-8600 Silkeborg, Denmark
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Silva MS, De Souza DV, Alpire MES, Malinverni ACDM, Da Silva RCB, Viana MDB, Oshima CTF, Ribeiro DA. Dimethoate induces genotoxicity as a result of oxidative stress: in vivo and in vitro studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43274-43286. [PMID: 34189686 DOI: 10.1007/s11356-021-15090-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Dimethoate ([O,O-dimethyl S-(N-methylcarbamoylmethyl) phosphorodithioate]) is an organophosphate insecticide and acaricide widely used for agricultural purposes. Genotoxicity refers to the ability of a chemical agent interact directly to DNA or act indirectly leading to DNA damage by affecting spindle apparatus or enzymes involved in DNA replication, thereby causing mutations. Taking into consideration the importance of genotoxicity induced by dimethoate, the purpose of this manuscript was to provide a mini review regarding genotoxicity induced by dimethoate as a result of oxidative stress. The present study was conducted on studies available in MEDLINE, PUBMED, EMBASE, and Google scholar for all kind of articles (all publications published until May, 2020) using the following key words: dimethoate, omethoate, DNA damage, genetic damage, oxidative stress, genotoxicity, mutation, and mutagenicity. The results showed that many studies were published in the scientific literature; the approach was clearly demonstrated in multiple tissues and organs, but few papers were designed in humans. In summary, new studies within the field are important for better understanding the pathobiological events of genotoxicity on human cells, particularly to explain what cells and/or tissues are more sensitive to genotoxic insult induced by dimethoate.
Collapse
Affiliation(s)
- Marcelo Souza Silva
- Institute of Heath and Society, Department of Biosciences, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Daniel Vitor De Souza
- Institute of Heath and Society, Department of Biosciences, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Maria Esther Suarez Alpire
- Institute of Heath and Society, Department of Biosciences, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Andrea Cristina De Moraes Malinverni
- Institute of Heath and Society, Department of Biosciences, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Regina Claudia Barbosa Da Silva
- Institute of Heath and Society, Department of Biosciences, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Milena De Barros Viana
- Institute of Heath and Society, Department of Biosciences, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Celina Tizuko Fujiyama Oshima
- Institute of Heath and Society, Department of Biosciences, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Daniel Araki Ribeiro
- Institute of Heath and Society, Department of Biosciences, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil.
| |
Collapse
|
5
|
Evaluation of Multivariate Biomarker Indexes Application in Ecotoxicity Tests with Marine Diatoms Exposed to Emerging Contaminants. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Worldwide anthropogenic activities result in the production and release of potentially damaging toxic pollutants into ecosystems, thereby jeopardizing their health and continuity. Research studies and biomonitoring programs attend to this emerging problematic by applying and developing statistically relevant indexes that integrate complex biomarker response data to provide a holistic approach, reflecting toxically induced alterations at the organism or population level. Ultimately, indexes allow simple result communications, enhancing policy makers understanding, and contributing to better resource and environmental managing policies. In this study three indexes, the integrated biomarker response index (IBR), the bioeffects assessment index (BAI) and principal components analysis (PCA), were evaluated for their sensitivity in revealing toxically induced stress patterns in cells of the diatom Phaeodactylum tricornutum under contaminant exposure. The set of biomarkers selected for index construction comprised the anti-oxidant enzymes APX, CAT and SOD, and the lipid peroxidation marker TBARS. Several significant correlations with the applied concentration gradients were noticed for all indexes, although IBR excelled for its reliability in delivering statistically significant dose-response patterns for four out of the five tested compounds.
Collapse
|
6
|
Hackenberger DK, Stjepanović N, Lončarić Ž, Hackenberger BK. Effects of single and combined exposure to nano and bulk zinc-oxide and propiconazole on Enchytraeus albidus. CHEMOSPHERE 2019; 224:572-579. [PMID: 30836252 DOI: 10.1016/j.chemosphere.2019.02.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Organisms in soil are often exposed to different mixtures of contaminants. These contaminants may interact with each other and, consequently, may have a different effect on organisms than each of them alone. We wanted to investigate possible effects of ZnO mixtures in bulk and nano form and fungicide propiconazole (PCZ) on biochemical parameters and reproduction in Enchytreus albidus. These compounds were applied separately and in binary mixture. In the single exposure experiment the EC50 values for the number of juveniles were calculated: nano ZnO (641.21 ± 88.82 mg kg-1), bulk ZnO (445.78 ± 148.4 mg kg-1) and PCZ (3.63 ± 1.68 mg kg-1), respectively. These concentrations were subsequently used in the binary exposure experiment. Calculated combination indices (CI), that allow quantitative determination of chemical interactions at different concentration and effect level, indicated additive or antagonistic interactions (CI ≥ 1) of applied mixture ratios. The only ratio that showed synergistic interaction (CI < 1) was 75% EC50 nZnO/25% EC50 PCZ. Both ZnO forms caused acetylcholinesterase (AChE) activity increase of up to 40% of control level, as well as increased catalase (CAT) and glutathione S-transferase (GST) activities and malondialdehyde (MDA) level. PCZ did not affect AChE and CAT activities, yet it increased GST activity and MDA level. Induced levels of measured biomarkers indicate an oxidative stress after binary exposure, as well. These effects were not enhanced after binary exposure but reflected the effects on biomarkers that corresponding concentrations of these compounds generated in a single exposure experiment.
Collapse
Affiliation(s)
- Davorka K Hackenberger
- University of Osijek, Department of Biology, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | - Nikolina Stjepanović
- University of Osijek, Department of Biology, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | - Željka Lončarić
- University of Osijek, Department of Biology, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | | |
Collapse
|
7
|
Monteiro HR, Lemos MFL, Novais SC, Soares AMVM, Pestana JLT. Amitraz toxicity to the midge Chironomus riparius: Life-history and biochemical responses. CHEMOSPHERE 2019; 221:324-332. [PMID: 30641373 DOI: 10.1016/j.chemosphere.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 05/21/2023]
Abstract
Acute and chronic toxicity of the formamidine pesticide amitraz to the midge Chironomus riparius was assessed using conventional ecotoxicological tests and biochemical approaches (biomarkers). Amitraz is mainly used as an ectoparasiticide in veterinary medicine, but also in agriculture and apiculture. However, information of amitraz toxicity to non-target invertebrates is limited. Besides the impairment of developmental and emergence rates (reduced larval growth, emergence, and delayed development time) caused by chronic exposure to amitraz, acute exposures induced alterations in the antioxidant enzymes glutathione peroxidase (GPx) and catalase (CAT), and in energetic metabolism biomarkers, lactate dehydrogenase (LDH) and electron transport system (ETS) activities. Moreover, lipid peroxidation (LPO) increased by amitraz exposure. Our results reveal potential secondary effects of amitraz to invertebrates and biomarkers that may aid in the interpretation of sub-lethal toxic responses to amitraz. These results add information concerning the potential outcomes of amitraz exposure to freshwater invertebrates underlining the importance of risk assessment studies of formamidine pesticides.
Collapse
Affiliation(s)
- Hugo R Monteiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641, Peniche, Portugal; Department of Biochemistry and Microbiology, Laboratory for Microbiology, Ghent University, B-9000, Gent, Belgium.
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
8
|
Duarte IA, Reis-Santos P, França S, Cabral H, Fonseca VF. Biomarker responses to environmental contamination in estuaries: A comparative multi-taxa approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:31-41. [PMID: 28578214 DOI: 10.1016/j.aquatox.2017.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 05/27/2023]
Abstract
Estuaries are highly productive ecosystems subjected to numerous anthropogenic pressures with consequent environmental quality degradation. In this study, multiple biomarker responses [superoxide dismutase (SOD), catalase (CAT), ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) activities, as well as lipid peroxidation (LPO) and DNA damage (DNAd)] were determined in two fish (Dicentrarchus labrax and Pomatoschistus microps) and four macroinvertebrate species (Carcinus maenas, Crangon crangon, Hediste diversicolor and Scrobicularia plana) from the Ria de Aveiro and Tejo estuaries over distinct months. Two sites per estuarine system were selected based on anthropogenic pressures and magnitude of environmental contamination. Antioxidant enzyme activities in fish species suggested a ubiquitous response to oxidative stress, while biotransformation and effect biomarkers exhibited higher spatial and temporal variation. In invertebrate species, biotransformation enzyme activity was clearly less variable than in fish evidencing lower xenobiotic transformation capability. Overall, largest biomarker responses were found in the most contaminated sites (Tejo), yet species-specific patterns were evident. These should be factored in multi-taxa approaches, considering that the differential functional traits of species, such as habitat use, life-stage, feeding or physiology can influence exposure routes and biomarker responses. The Integrated Biomarker Response index highlighted patterns in biomarker responses which were not immediately evident when analyzing biomarkers individually. Overall, results provided insights into the complexity of species responses to contamination in naturally varying estuarine environments. Ultimately, multi-taxa and multi-biomarker approaches provide a comprehensive and complementary view of ecosystem health, encompassing diverse forms of biological integration and exposure routes, and allow the validation of results among markers and species.
Collapse
Affiliation(s)
- Irina A Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Patrick Reis-Santos
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia 5005, Australia
| | - Susana França
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Henrique Cabral
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
9
|
Silva CSE, Novais SC, Lemos MFL, Mendes S, Oliveira AP, Gonçalves EJ, Faria AM. Effects of ocean acidification on the swimming ability, development and biochemical responses of sand smelt larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:89-98. [PMID: 27135570 DOI: 10.1016/j.scitotenv.2016.04.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Ocean acidification, recognized as a major threat to marine ecosystems, has developed into one of the fastest growing fields of research in marine sciences. Several studies on fish larval stages point to abnormal behaviours, malformations and increased mortality rates as a result of exposure to increased levels of CO2. However, other studies fail to recognize any consequence, suggesting species-specific sensitivity to increased levels of CO2, highlighting the need of further research. In this study we investigated the effects of exposure to elevated pCO2 on behaviour, development, oxidative stress and energy metabolism of sand smelt larvae, Atherina presbyter. Larvae were caught at Arrábida Marine Park (Portugal) and exposed to different pCO2 levels (control: ~600μatm, pH=8.03; medium: ~1000μatm, pH=7.85; high: ~1800μatm, pH=7.64) up to 15days, after which critical swimming speed (Ucrit), morphometric traits and biochemical biomarkers were determined. Measured biomarkers were related with: 1) oxidative stress - superoxide dismutase and catalase enzyme activities, levels of lipid peroxidation and DNA damage, and levels of superoxide anion production; 2) energy metabolism - total carbohydrate levels, electron transport system activity, lactate dehydrogenase and isocitrate dehydrogenase enzyme activities. Swimming speed was not affected by treatment, but exposure to increasing levels of pCO2 leads to higher energetic costs and morphometric changes, with larger larvae in high pCO2 treatment and smaller larvae in medium pCO2 treatment. The efficient antioxidant response capacity and increase in energetic metabolism only registered at the medium pCO2 treatment may indicate that at higher pCO2 levels the capacity of larvae to restore their internal balance can be impaired. Our findings illustrate the need of using multiple approaches to explore the consequences of future pCO2 levels on organisms.
Collapse
Affiliation(s)
- Cátia S E Silva
- MARE - Marine and Environmental Sciences Centre, ISPA- Instituto Universitário, Portugal; MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Portugal
| | - Susana Mendes
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Portugal
| | - Ana P Oliveira
- IPMA - Instituto Português do Mar e da Atmosfera, Algés, Portugal
| | - Emanuel J Gonçalves
- MARE - Marine and Environmental Sciences Centre, ISPA- Instituto Universitário, Portugal
| | - Ana M Faria
- MARE - Marine and Environmental Sciences Centre, ISPA- Instituto Universitário, Portugal.
| |
Collapse
|
10
|
Liu Z, Wang Y, Zhu Z, Yang E, Feng X, Fu Z, Jin Y. Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio). CHEMOSPHERE 2016; 148:163-170. [PMID: 26803580 DOI: 10.1016/j.chemosphere.2016.01.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Atrazine (ATZ) and its main chlorometabolites, i.e., diaminochlorotriazine (DACT), deisopropylatrazine (DIP), and deethylatrazine (DE), have been widely detected in aquatic systems near agricultural fields. However, their possible effects on aquatic animals are still not fully understood. In this study, it was observed that several developmental endpoints such as the heart beat, hatchability, and morphological abnormalities were influenced by ATZ and its metabolites in different developmental stages. In addition, after 5 days of exposure to 30, 100, 300 μg L(-1) ATZ and its main chlorometabolites, the swimming behaviors of larval zebrafish were significantly disturbed, and the acetylcholinesterase (AChE) activities were consistently inhibited. Our results also demonstrate that ATZ and its main chlorometabolites are neuroendocrine disruptors that impact the expression of neurotoxicity-related genes such as Ache, Gap43, Gfap, Syn2a, Shha, Mbp, Elavl3, Nestin and Ngn1 in early developmental stages of zebrafish. According to our results, it is possible that not only ATZ but also its metabolites (DACT, DIP and DE) have the same or even more toxic effects on different endpoints of the early developmental stages of zebrafish.
Collapse
Affiliation(s)
- Zhenzhen Liu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yueyi Wang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhihong Zhu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Enlu Yang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiayan Feng
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
11
|
Jiang J, Wu S, Wang Y, An X, Cai L, Zhao X, Wu C. Carbendazim has the potential to induce oxidative stress, apoptosis, immunotoxicity and endocrine disruption during zebrafish larvae development. Toxicol In Vitro 2015; 29:1473-81. [DOI: 10.1016/j.tiv.2015.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 04/16/2015] [Accepted: 06/04/2015] [Indexed: 12/26/2022]
|
12
|
Feng L, Zhang L, Zhang Y, Zhang P, Jiang H. Inhibition and recovery of biomarkers of earthworm Eisenia fetida after exposure to thiacloprid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9475-82. [PMID: 25613803 DOI: 10.1007/s11356-015-4122-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/11/2015] [Indexed: 05/14/2023]
Abstract
Thiacloprid, a neonicotinoid insecticide, has been used widely in agriculture worldwide. In recent years, the adverse effects of neonicotinoid insecticides on non-target organisms have attracted more and more attention. In the present study, effects of thiacloprid on molecular biomarkers (GST, CarE, CAT, SOD, POD, and DNA damage) of earthworm Eisenia fetida were investigated using the artificial OECD soil for the first time. Earthworms were exposed to thiacloprid (1 and 3 mg/kg) for 7, 14, and 28 days and then transferred to the clean OECD soil for 35, 42, and 56 days. Results showed that activities of GST, CarE, CAT, SOD, and POD are inhibited following the exposure to thiacloprid at one or more sample times and then increased during the recovery course compared with the control. Significant DNA damage to E. fetida was also observed by olive tail moments in comet assay. These results suggested that thiacloprid could have harmful effect on earthworms, and these studied biomarkers might be used in the assessment of the risk of thiacloprid to the soil ecosystem environment.
Collapse
Affiliation(s)
- Lei Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | | | | | | | | |
Collapse
|