1
|
Segbefia W, Singh V, Fuller MG, Yue Z, de Souza FR, Tseng TM. Assessment of Allelopathic Potential of Cotton Chromosome Substitution Lines. PLANTS (BASEL, SWITZERLAND) 2024; 13:1102. [PMID: 38674510 PMCID: PMC11054950 DOI: 10.3390/plants13081102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Weed interference consistently poses a significant agronomic challenge in cotton production, leading to unfavorable direct and indirect consequences. Consequently, the predominant strategy employed to manage weeds is the application of synthetic herbicides. However, this extensive reliance has resulted in the development of herbicide-resistant weed populations due to the prolonged use of a single herbicide and the lack of rotation. This project focused on identifying weed-suppressive cotton chromosome substitution (CS) lines. These CS lines closely resemble the parent TM-1, an upland cotton derivative (Gossypium hirsutum). Each CS line carries a single chromosome or chromosome arm exchanged from G. barbadense, G. tomentosum, or G. mustelinum within the TM-1 background. In a greenhouse experiment utilizing a stepwise approach, five CS lines, along with two conventional varieties (Enlist and UA48) and the parent line (TM1), were assessed to determine their potential for suppressing Palmer amaranth growth. The plant height was measured 7, 14, and 21 days after establishment, and the chlorophyll content was measured 21 days after establishment. The results revealed varying levels of chlorophyll reduction in Palmer amaranth, with the Enlist variety displaying the lowest reduction (32%) and TM-1 exhibiting the highest (78%). Within 14 days of establishment, the CS lines T26lo, BNTN 1-15, and T11sh demonstrated substantial suppression of Palmer amaranth height, with reductions of 79, 70, and 71%, respectively. Conversely, Enlist displayed the least effective performance among the CS lines. Moreover, CS22, CS49, CS50, CS34, UA48, and CS23 displayed a decreasing trend in reducing Palmer amaranth height from 14 to 21 days after establishment. This research demonstrates the inherent herbicidal attributes within cotton CS lines against Palmer amaranth. In light of the versatile applications of cotton fibers and the unique characteristics of the G. hirsutum genome, this study investigates the potential of specific cotton lines in enhancing weed management practices. By elucidating the implications of our findings, we aim to contribute to promoting sustainability and developing alternatives to synthetic herbicides in agricultural systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Te Ming Tseng
- Department of Plant and Soil Sciences, Mississippi State University, 32 Creelman St., Starkville, MS 39762, USA; (W.S.); (V.S.); (M.G.F.); (Z.Y.); (F.R.d.S.)
| |
Collapse
|
2
|
Moh SM, Tojo S, Teruya T, Kato-Noguchi H. Allelopathic Activity of a Novel Compound, Two Known Sesquiterpenes, and a C 13Nor-Isopenoid from the Leave of Croton oblongifolius Roxb. for Weed Control. PLANTS (BASEL, SWITZERLAND) 2023; 12:3384. [PMID: 37836124 PMCID: PMC10574435 DOI: 10.3390/plants12193384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Investigation of allelopathic substances from herbal plants may lead to the development of allelochemical-based natural herbicides. Croton oblongifolius (Roxb.) is a well-known herbal plant with a long history of being used for traditional medicines and for being the source of a diverse range of bioactive compounds. This plant has been reported to have allelopathic potential; however, its allelopathic-related substances have not yet been described. Therefore, we conducted this investigation to explore the allelopathic substances from the leaves of C. oblongifolius. Aqueous methanol extracts of C. oblongifolius leaves exhibited significant growth inhibitory potential against four test plants (monocot barnyard grass and timothy, and dicot cress and lettuce). The leaf extracts were purified in various chromatographic steps and yielded four active compounds identified as (3R,6R,7E)-3-hydroxy-4-7-megastigmadien-9-one (I), 2-hydroxy alpinolide (a novel compound) (II), alpinolide (III), and epialpinolide (IV) via an analysis of the spectral data. These identified compounds significantly restricted the seedling growth of cress. The concentration necessary for 50% growth reduction of the cress seedlings varied from 0.15 to 0.24 mM for (3R,6R,7E)-3-hydroxy-4-7-megastigmadien-9-one, 0.04 to 0.11 mM for 2-hydroxy alpinolide, 0.07 to 0.12 mM for alpinolide, and 0.09 to 0.16 mM for epialpinolide. Therefore, the leaf extracts of C. oblongifolius and the characterized compounds have the potential to be used as weed-suppressive resources for natural weed control.
Collapse
Affiliation(s)
- Seinn Moh Moh
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan;
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama 790-8566, Ehime, Japan
| | - Shunya Tojo
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan;
| | - Toshiaki Teruya
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan;
| | - Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan;
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama 790-8566, Ehime, Japan
| |
Collapse
|
3
|
Ain Q, Mushtaq W, Shadab M, Siddiqui MB. Allelopathy: an alternative tool for sustainable agriculture. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:495-511. [PMID: 37187777 PMCID: PMC10172429 DOI: 10.1007/s12298-023-01305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
Population increase, poverty, environmental degradation, and the use of synthetic herbicides are interdependent and closely linked and hence influence global food safety and stability of world agriculture. On the one hand, varied weeds, insects, and other pests have caused a tremendous loss in agricultural crop productivity annually. On the other hand, the use of synthetic insecticides, herbicides, fungicides, and other pesticides significantly disturbed the ecology of biotic communities in agricultural and natural ecosystems. Eventually, it destroyed the ecological balance in food chains. Interestingly, natural products released by the plants (allelochemicals) are secondary metabolites involved in ecological interactions and could be an important source of alternative agrochemicals. Mainly released by the plants as an outcome of acquaintances with other plants in their vicinity, these allelochemicals can also be used as eco-friendly substitutes for synthetic herbicides and other pesticides. Despite these facts, agrochemicals are either preferred over allelochemicals or the latter are not known in the direction of their use in achieving sustainability in agriculture. Given this, considering recent reports, this paper aims to: (1) emphasize allelochemicals; (2) overview the major biochemistry of allelochemicals; (3) critically discuss the role of allelopathy (and underlying major mechanisms) in the management of noxious weeds, insect pests, and major plant pathogens; and (4) enlighten the significant aspects so far not or least explored in the current context.
Collapse
Affiliation(s)
- Quratul Ain
- Allelopathy Laboratory, Botany Department, Aligarh Muslin University, Aligarh, 202002 India
| | - Waseem Mushtaq
- Laboratory of Chemistry of Natural Molecules, Agrobiotech Gembloux, Liege University, 5030 Gembloux, Belgium
| | - Mo Shadab
- Allelopathy Laboratory, Botany Department, Aligarh Muslin University, Aligarh, 202002 India
| | - M. B. Siddiqui
- Allelopathy Laboratory, Botany Department, Aligarh Muslin University, Aligarh, 202002 India
| |
Collapse
|
4
|
Anwar S, Naseem S, Ali Z. Biochemical analysis, photosynthetic gene (psbA) down–regulation, and in silico receptor prediction in weeds in response to exogenous application of phenolic acids and their analogs. PLoS One 2023; 18:e0277146. [PMID: 36952510 PMCID: PMC10035924 DOI: 10.1371/journal.pone.0277146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/04/2023] [Indexed: 03/25/2023] Open
Abstract
Chemical herbicides are the primary weed management tool, although several incidences of herbicide resistance have emerged, causing serious threat to agricultural sustainability. Plant derived phenolic acids with herbicidal potential provide organic and eco-friendly substitute to such harmful chemicals. In present study, phytotoxicity of two phenolic compounds, ferulic acid (FA) and gallic acid (GA), was evaluated in vitro and in vivo against three prevalent herbicide-resistant weed species (Sinapis arvensis, Lolium multiflorum and Parthenium hysterophorus). FA and GA not only suppressed the weed germination (80 to 60% respectively), but also negatively affected biochemical and photosynthetic pathway of weeds. In addition to significantly lowering the total protein and chlorophyll contents of the targeted weed species, the application of FA and GA treatments increased levels of antioxidant enzymes and lipid peroxidation. Photosynthetic gene (psbA) expression was downregulated (10 to 30 folds) post 48 h of phenolic application. In silico analysis for receptor identification of FA and GA in psbA protein (D1) showed histidine (his-198) and threonine (thr-286) as novel receptors of FA and GA. These two receptors differ from the D1 amino acid receptors which have previously been identified (serine-264 and histidine-215) in response to PSII inhibitor herbicides. Based on its toxicity responses, structural analogs of FA were also designed. Four out of twelve analogs (0.25 mM) significantly inhibited weed germination (30 to 40%) while enhancing their oxidative stress. These results are unique which provide fundamental evidence of phytotoxicity of FA and GA and their analogs to develop cutting-edge plant based bio-herbicides formulation in future.
Collapse
Affiliation(s)
- Sobia Anwar
- Department of Biosciences, Plant Biotechnology and Molecular Pharming Laboratory, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Saadia Naseem
- Department of Biosciences, Plant Biotechnology and Molecular Pharming Laboratory, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Zahid Ali
- Department of Biosciences, Plant Biotechnology and Molecular Pharming Laboratory, COMSATS University Islamabad (CUI), Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
5
|
Hussain MI, Khan ZI, Farooq TH, Al Farraj DA, Elshikh MS. Comparative Plasticity Responses of Stable Isotopes of Carbon (δ 13C) and Nitrogen (δ 15N), Ion Homeostasis and Yield Attributes in Barley Exposed to Saline Environment. PLANTS (BASEL, SWITZERLAND) 2022; 11:1516. [PMID: 35684289 PMCID: PMC9182859 DOI: 10.3390/plants11111516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 05/02/2023]
Abstract
Salinity is a major threat to agricultural productivity worldwide. The selection and evaluation of crop varieties that can tolerate salt stress are the main components for the rehabilitation of salt-degraded marginal soils. A field experiment was conducted to evaluate salinity tolerance potential, growth performance, carbon (δ13C) and nitrogen isotope composition (δ15N), intrinsic water use efficiency (iWUE), harvest index, and yield stability attributes in six barley genotypes (113/1B, 59/3A, N1-10, N1-29, Barjouj, Alanda01) at three salinity levels (0, 7, and 14 dS m-1). The number of spikes m-2 was highest in Alanda01 (620.8) while the lowest (556.2) was exhibited by Barjouj. Alanda01 produced the highest grain yield (3.96 t ha-1), while the lowest yield was obtained in 59/3A (2.31 t ha-1). Genotypes 113/1B, Barjouj, and Alanda01 demonstrate the highest negative δ13C values (-27.10‱, -26.49‱, -26.45‱), while the lowest values were obtained in N1-29 (-21.63‱) under salt stress. The δ15N was increased (4.93‱ and 4.59‱) after 7 and 14 dS m-1 as compared to control (3.12‱). The iWUE was higher in N1-29 (144.5) and N1-10 (131.8), while lowest in Barjouj (81.4). Grain protein contents were higher in 113/1B and Barjouj than other genotypes. We concluded that salt tolerant barley genotypes can be cultivated in saline marginal soils for food and nutrition security and can help in the rehabilitation of marginal lands.
Collapse
Affiliation(s)
- Muhammad Iftikhar Hussain
- Department of Plant Biology & Soil Science, Universidade de Vigo, Campus As Lagoas Marcosende, 36310 Vigo, Spain
- Research Institute of Science and Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Zafar Iqbal Khan
- Department of Botany, University of Sargodha, Sargodha 40100, Pakistan;
| | - Taimoor Hassan Farooq
- Bangor College China, A Joint Unit of Bangor University and Central South University of Forestry and Technology, Changsha 410004, China;
| | - Dunia A. Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (D.A.A.F.); (M.S.E.)
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (D.A.A.F.); (M.S.E.)
| |
Collapse
|
6
|
Hussain MI, Vieites-Álvarez Y, Otero P, Prieto MA, Simal-Gandara J, Reigosa MJ, Sánchez-Moreiras AM. Weed pressure determines the chemical profile of wheat (Triticum aestivum L.) and its allelochemicals potential. PEST MANAGEMENT SCIENCE 2022; 78:1605-1619. [PMID: 34994056 DOI: 10.1002/ps.6779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Common purslane (Portulaca oleracea) and annual ryegrass (Lolium rigidum) are important infesting weeds of field crops. Herbicides are mostly used for weed suppression, while their environmental toxicity and resistance in weeds against them demand considering alternative options, such as the use of allelopathic crops for weed management. Wheat is an important allelopathic crop and present research focused on the identification and quantification of benzoxazinoids (BXZs) and polyphenols (phenolic acids and flavonoids) of the wheat accession 'Ursita' and to screen its allelopathic impact on P. oleracea and Lolium rigidum through equal-compartment-agar (ECA) method. RESULTS Weed germination, radicle length, biomass and photosynthetic pigments were altered following co-growth of weeds with Ursita for 10-day. Root exudates from Ursita reduced (29-60%) the seedling growth and photosynthetic pigments of Lolium rigidum depending on co-culture conditions of planting density. Weed pressure caused significant increase in the production of phenolic acids (vanillic, ferulic, syringic and p-coumaric acids) and root exudation of BXZs, in particular benzoxazolin-2-one (BOA), 2-hydroxy-7-methoxy-1,4-benzoxazin-3-one (HMBOA), 2-hydroxy-1,4-benzoxazin3-one (HBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) in wheat tissues (shoots, roots) and exudate in root rhizosphere agar medium in response to co-cultivation with Lolium rigidum and P. oleracea, depending on weed/crop density. CONCLUSION The work revealed that Ursita is allelopathic in nature and can be used in breeding programs to enhance its allelopathic activity. Meanwhile, there are opportunities to explore allelopathic effect of wheat cultivars to control P. oleracea and Lolium rigidum under field conditions. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- M Iftikhar Hussain
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Yedra Vieites-Álvarez
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo-Ourense Campus, Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo-Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo-Ourense Campus, Ourense, Spain
| | - Manuel J Reigosa
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Adela M Sánchez-Moreiras
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
7
|
Naeem M, Farooq S, Hussain M. The Impact of Different Weed Management Systems on Weed Flora and Dry Biomass Production of Barley Grown under Various Barley-Based Cropping Systems. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060718. [PMID: 35336601 PMCID: PMC8950799 DOI: 10.3390/plants11060718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 05/07/2023]
Abstract
Weeds are among the major issues responsible for reduction in yield and profit in any crop production system. Herbicides are the easiest and quickest solution of weeds; however, their frequent use exert negative consequences on environment, human health, and results in the evolution of herbicide-resistant weed species. Due to these reasons, alternative weed management methods that are less harmful to environment and human health are needed. This two-year study evaluated the impact of different weed management options, i.e., false seedbed (FS), allelopathic water extracts (AWE), chemical control (CC), weed-free (WF) weedy-check (WC) on weed spectrum in various barley-based cropping systems, i.e., fallow-barley (FB), maize-barley (MB), cotton-barley (CB), mungbean-barley (M*B), and sorghum-barley (SB). Data relating to density, diversity, and biomass production of weed species prevailing in the studied cropping systems were recorded. Interactive effect of weed management methods and barley-based cropping systems significantly altered weed diversity, and densities of individual, broadleaved, and grassy weeds. A total 13 weed species (ten broadleaved and three grass) were recorded during both years of study. The highest dry biomass, diversity, and density of individual, broadleaved, and grassy weeds were noted in WC treatment, whereas WF treatment resulted in the lowest values of these traits. Chemical control resulted in the highest suppression of weed flora and improved dry biomass production of barley followed by AWE. The SB cropping system with CC or AWE resulted in the least weed flora. The M*B cropping system with CC or AWE produced the highest dry biomass of barley. It is concluded that including sorghum crop in rotation and applying AWE could suppress weeds comparable to herbicides. Similarly, including mungbean in rotation and applying AWE could increase dry biomass production of barley. In conclusion, herbicides can be replaced with an eco-friendly approach, i.e., allelopathy and inclusion of sorghum crop could be helpful in suppressing weed flora.
Collapse
Affiliation(s)
- Muhammad Naeem
- Department of Agronomy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Shahid Farooq
- Department of Plant Protection, Faculty of Agriculture, Harran University, Şanlıurfa 63250, Turkey;
| | - Mubshar Hussain
- Department of Agronomy, Bahauddin Zakariya University, Multan 60800, Pakistan;
- School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Correspondence: ; Tel.: +92-301-7164879
| |
Collapse
|
8
|
Unraveling Sorghum Allelopathy in Agriculture: Concepts and Implications. PLANTS 2021; 10:plants10091795. [PMID: 34579328 PMCID: PMC8470078 DOI: 10.3390/plants10091795] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/30/2023]
Abstract
Allelopathy is an ecological phenomenon that involves the production and release of biomolecules from different crops, cultivated plants, and bacteria or fungi into the soil rhizosphere and impacts other organisms in the vicinity. Sorghum possesses vital allelopathic characteristics due to which it produces and releases different biomolecules from its root hairs, stems, and grains. Several studies have reported that sorghum acts as an allelopathic crop, decreasing the growth and eco-physiological attributes of surrounding plants and weeds growing simultaneously or subsequently in the field. Sorghum allelopathy has been exploited in the context of green manure, crop rotations, cover crops, and intercropping or mulching, whereas plant aqueous extracts or powder might be an alternate method of weed control. A diverse group of allelochemicals, including benzoic acid, p-hydroxybenzoic acid, vanillic acid, ferulic acid, chlorogenic acid, m-coumaric acid, p-coumaric acid, gallic acid, caffeic acid, p-hydroxibenzaldehyde, dhurrin, sorgoleone, m-hydroxybenzoic acid and protocatechuic acid, have been isolated and identified from different plant tissues of sorghum and root exudates. These allelochemicals, especially sorgoleone, have been investigated in terms of their mode(s) of action, specific activity and selectivity, release in the rhizosphere and uptake and translocation in sensitive species. The present review describes the importance of sorghum allelopathy as an ecological tool in managing weeds, highlighting the most recent advances in the allelochemicals present in sorghum, their modes of action, and their fate in the ecosystem. Further research should focus on the evaluation and selection of sorghum cultivars with high allelopathic potential, so that sorghum allelopathy can be better utilized for weed control and yield enhancement.
Collapse
|
9
|
Hussain MI, Reigosa MJ. Secondary Metabolites, Ferulic Acid and p-Hydroxybenzoic Acid Induced Toxic Effects on Photosynthetic Process in Rumex acetosa L. Biomolecules 2021; 11:biom11020233. [PMID: 33562880 PMCID: PMC7915730 DOI: 10.3390/biom11020233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/26/2022] Open
Abstract
The elimination of broadleaf weeds from agricultural fields has become an urgent task in plant and environment protection. Allelopathic control is considered a potential approach because of its exclusive and ecological safety measures. Plant secondary metabolites also called allelochemicals are released from plant leaves, roots, stem, bark, flowers and play significant roles in soil rhizosphere signaling, chemical ecology, and plant defense. The present study was carried out to evaluate the impact of two allelochemicals; ferulic acid (FA) and p-hydroxybenzoic acid (pHBA) on photosynthetic characteristics; Fv/Fm: efficiency of photosystem II photochemistry in the dark-adapted state; ΦPSII: photosynthetic quantum yield; NPQ, non-photochemical quenching; qP, photochemical quenching, and photon energy dissipation (1−qP)/NPQ in Rumex acetosa following 6 days exposure. R. acetosa seedlings were grown in perlite culture, irrigated with Hoagland solution and treated with allelopathic compounds FA and pHBA and were evaluated against the photosynthetic attributes. Both compounds behaved as potent inhibitors of photosynthetic traits such as Fv/Fm, ΦPSII, qP, and NPQ in R. acetosa. Photon energy dissipation (1−qP)/NPQ increased significantly from days 3 to 6. Higher dissipation of absorbed energy indicates the inactivation state of reaction centers and their inability to effectively use the absorbed energy in photosynthesis. These results indicated the potential allelopathic application of FA and pHBA for control of broadleaf weed, Rumex acetosa.
Collapse
Affiliation(s)
- M. Iftikhar Hussain
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain;
- CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, University of Vigo, 32004 Ourense, Spain
- Correspondence:
| | - Manuel J. Reigosa
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain;
| |
Collapse
|
10
|
Surface Canopy Position Determines the Photosystem II Photochemistry in Invasive and Native Prosopis Congeners at Sharjah Desert, UAE. FORESTS 2020. [DOI: 10.3390/f11070740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Plants have evolved photoprotective mechanisms in order to counteract the damaging effects of excess light in hyper-arid desert environments. We evaluated the impact of surface canopy positions on the photosynthetic adjustments and chlorophyll fluorescence attributes (photosystem II photochemistry, quantum yield, fluorescence quenching, and photon energy dissipation), leaf biomass and nutrient content of sun-exposed leaves at the south east (SE canopy position) and shaded-leaves at the north west (NW canopy position) in the invasive Prosopis juliflora and native Prosopis cineraria in the extreme environment (hyper-arid desert area, United Arab Emirates (UAE)). The main aim of this research was to study the photoprotection mechanism in invasive and native Prosopis congeners via the safe removal—as thermal energy—of excess solar energy absorbed by the light collecting system, which counteracts the formation of reactive oxygen species. Maximum photosynthetic efficiency (Fv/Fm) from dark-adapted leaves in P. juliflora and P. cineraria was higher on NW than SE canopy position while insignificant difference was observed within the two Prosopis congeners. Greater quantum yield was observed in P. juliflora than P. cineraria on the NW canopy position than SE. With the change of canopy positions from NW to SE, the reduction of the PSII reaction center activity in the leaves of both Prosopis congeners was accelerated. On the SE canopy position, a significant decline in the electron transport rate (ETR) of in the leaves of both Prosopis congeners occurred, which might be due to the blockage of electron transfer from QA to QB on the PSII acceptor side. On the SE canopy position; Prosopis leaves dissipated excess light energy by increasing non-photochemical quenching (NPQ). However, in P. cineraria, the protective ability of NPQ decreased, which led to the accumulation of excess excitation energy (1 − qP)/NPQ and the aggravation of photoinhibition. The results also explain the role of different physiological attributes contributing to invasiveness of P. juliflora and to evaluate its liaison between plasticity of these characters and invasiveness.
Collapse
|
11
|
Hussain MI, Reigosa MJ, Muscolo A. Carbon (δ 13C) and Nitrogen (δ 15N) Stable Isotope Composition Provide New Insights into Phenotypic Plasticity in Broad Leaf Weed Rumex acetosa under Allelochemical Stress. Molecules 2018; 23:molecules23102449. [PMID: 30257436 PMCID: PMC6222457 DOI: 10.3390/molecules23102449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 11/29/2022] Open
Abstract
Phenolic compounds, hydroquinone and cinnamic acid derivatives have been identified as major allelochemicals with known phytotoxicity from allelopathic plant Acacia melanoxylon R. Br. Several phenolic compounds such as ferulic acid (FA), p-hydroxybenzoic acid (pHBA) and flavonoid (rutin, quercetin) constituents occur in the phyllodes and flowers of A. melanoxylon and have demonstrated inhibitory effects on germination and physiological characteristics of lettuce and perennial grasses. However, to date, little is known about the mechanisms of action of these secondary metabolites in broad-leaved weeds at ecophysiological level. The objective of this study was to determine the response of Rumex acetosa carbon isotope composition and other physiological parameters to the interaction of plant secondary metabolites (PSM) (FA and pHBA) stress and the usefulness of carbon isotope discrimination (Δ13C) as indicative of the functional performance of intrinsic water use efficiency (iWUE) at level of plant leaf. R. acetosa plant were grown under greenhouse condition and subjected to PSM stress (0, 0.1, 0.5, 1.0, and 1.5 mM) for six days. Here, we show that FA and pHBA are potent inhibitors of Δ13C that varied from 21.0‰ to 22.9‰. Higher pHBA and FA supply enhanced/retard the Nleaf and increased the Cleaf while ratio of intercellular CO2 concentration from leaf to air (Ci/Ca) was significantly decreased as compared to control. Leaf water content and leaf osmotic potential were decreased following treatment with both PSM. The Ci/Ca decreased rapidly with higher concentration of FA and pHBA. However, iWUE increased at all allelochemical concentrations. At the whole plant level, both PSM showed pronounced growth-inhibitory effects on PBM and C and N concentration, root fresh/dry weight, leaf fresh/dry weight, and root, shoot length of C3 broad leaf weed R. acetosa. Carbon isotope discrimination (Δ) was correlated with the dry matter to transpiration ratio (transpiration efficiency) in this C3 species, but its heritability and relationship to R. acetosa growth are less clear. Our FA and pHBA compounds are the potent and selective carbon isotope composition (δ13C) inhibitors known to date. These results confirm the phytotoxicity of FA and pHBA on R. acetosa seedlings, the reduction of relative water content and the induction of carbon isotope discrimination (Δ) with lower plant biomass.
Collapse
Affiliation(s)
- M Iftikhar Hussain
- Department of Plant Biology and Soil Science, University of Vigo, Campus Lagoas-Marcosende, E-36310 Vigo, Spain.
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, P.O. Box 27272 Sharjah, UAE.
| | - Manuel J Reigosa
- Department of Plant Biology and Soil Science, University of Vigo, Campus Lagoas-Marcosende, E-36310 Vigo, Spain.
| | - Adele Muscolo
- Department of Agriculture, Mediterranean University, Feo di Vito, 89122 Reggio Calabria, Italy.
| |
Collapse
|
12
|
Hussain MI, Al-Dakheel AJ, Reigosa MJ. Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants: Prospects for salinity tolerance and yield stability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:411-420. [PMID: 30691637 DOI: 10.1016/j.plaphy.2018.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 05/18/2023]
Abstract
Quinoa is an important nutritive crop that can play a strategic role in the development of marginal and degraded lands. Genotypic variations in carbon isotope composition (δ13C), carbon isotope discrimination (Δ13C), ratio of intercellular to atmospheric CO2 concentration (Ci/Ca), intrinsic water use efficiency (iWUE), seed yield and grain protein contents were analyzed in 6 quinoa cultivars grown in the field under saline conditions (0, 10, 20 dS m-1). Significant variations occurred in dry biomass, seed yield, plant height, number of branches, number of panicles, panicle weight, harvest index, N and C content. Some genotypes produced yields with values significantly higher than 2.04 t ha-1 (Q12), with an average increased to 2.58 t ha-1 (AMES22157). The present study indicates a large variation in Δ13C for salinity treatments (3.43‰) and small magnitude of variations among genotypes (0.95‰). Results showed that Δ might be used as an important index for screening, and selection of the salt tolerant quinoa genotypes with high iWUE. Quinoa genotypes differs in foliar 13C and 15N isotope composition, which reflected complex interactions of salinity and plant carbon and nitrogen metabolisms. Grain protein contents were found higher in Q19 and Q31 and lowest in Q26. The study demonstrates that AMES22157 and Q12, were salt tolerant and high yielder while the AMES22157 was more productive. This study provides a reliable measure of morpho-physiological, biochemical and isotopic responses of quinoa cultivars to salinity in hyper arid UAE climate and it may be valuable in the future breeding programs. The development of genotypes having both higher water use efficiency and yield potential would be a very useful contribution for producers in the dry region of Arabian Peninsula.
Collapse
Affiliation(s)
- M Iftikhar Hussain
- Research Institute of Science and Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; International Center for Biosaline Agriculture (ICBA), P.O. Box 14660, Dubai, United Arab Emirates; Department of Plant Biology and Soil Science, University of Vigo, Campus Lagoas Marcosende, 36310, Vigo, Spain.
| | - Abdullah J Al-Dakheel
- International Center for Biosaline Agriculture (ICBA), P.O. Box 14660, Dubai, United Arab Emirates
| | - Manuel J Reigosa
- Department of Plant Biology and Soil Science, University of Vigo, Campus Lagoas Marcosende, 36310, Vigo, Spain
| |
Collapse
|
13
|
Hussain MI, Al-Dakheel AJ. Effect of salinity stress on phenotypic plasticity, yield stability, and signature of stable isotopes of carbon and nitrogen in safflower. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23685-23694. [PMID: 29872985 DOI: 10.1007/s11356-018-2442-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 05/29/2018] [Indexed: 05/15/2023]
Abstract
Salinity is one of the major factors contributing in land degradation, disturbance of soil biology, a structure that leads to unproductive land with low crop yield potential especially in arid and semiarid regions of the world. Appropriate crops with sufficient stress tolerance capacity and non-conventional water resources should have to be managed in a sustainable way to bring these marginal lands under cultivation for future food security. The goal of the present study was to evaluate salinity tolerant potential (0, 7, and 14 dS m-1) of six safflower genotypes that can be adapted to the hyper arid climate of UAE and its marginal soil. Several agro-morphological and physiological traits such as plant dry biomass (PDM), number of branches (BN), number of capitula (CN), seed yield (SY), stable isotope composition of nitrogen (δ15N) and carbon (δ13C), intercellular CO2 concentration from inside to ambient air (Ci/Ca), intrinsic water use efficiency (iWUE), carbon (C%) and nitrogen (N %), and harvest index (HI) were evaluated as indicative of the functional performance of safflower genotypes under salt stress. Results indicated that salinity significantly affected the seed yield at all levels and varied significantly among genotypes. The BN, PDM, CN, and δ13C attributes showed clear differentiation between tolerant and susceptible genotypes. The δ13C results indicate that the tolerant genotypes suffer less from stress, may be due to better rooting. Tolerant genotypes showed lower iWUE values but possess higher yield. Safflower genotypes (PI248836 and PI167390) proved to be salt tolerant, stable, and higher seed and biomass yielder. There was no G × E interaction but the genotypes that produce higher yield under control were still best even under salt stress conditions. Although salinity reduced crop yield, some tolerant genotypes demonstrate adaptation and good yield potential under saline marginal environment.
Collapse
Affiliation(s)
- Muhammad Iftikhar Hussain
- Research Institute of Sciences & Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
- Crop Diversification and Genetic Improvement Section, International Center for Biosaline Agriculture (ICBA), P.O. Box 14660, Dubai, United Arab Emirates.
| | - Abdullah J Al-Dakheel
- Crop Diversification and Genetic Improvement Section, International Center for Biosaline Agriculture (ICBA), P.O. Box 14660, Dubai, United Arab Emirates
| |
Collapse
|
14
|
Qian H, Xu J, Lu T, Zhang Q, Qu Q, Yang Z, Pan X. Responses of unicellular alga Chlorella pyrenoidosa to allelochemical linoleic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1415-1422. [PMID: 29996438 DOI: 10.1016/j.scitotenv.2018.01.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 06/08/2023]
Abstract
Linoleic acid (LA), is the product of secondary metabolism secreted from Microcystis aeruginosa, and it exhibits allelopathic activity against eukaryotic algae. However, information about on the mechanisms associated with the inhibition of algal activity by LA is limited. In this study, Chlorella pyrenoidosa was treated with LA (20-120 μg L-1) for 4 days, and its growth inhibition and physiological responses were examined for potential toxic mechanisms. The photosynthetic efficiency of C. pyrenoidosa was inhibited by LA treatments, and the Fv/Fm parameter decreased significantly compared to that of controls; however, the photosynthetic pigment content did not change significantly. Peroxidase activity was enhanced, relieving oxidative damage in algae after LA treatments. However, superoxide dismutase and catalase were suppressed, ultimately leading to the aggravation of lipid peroxidation. Transcriptome-based gene expression analysis revealed that the 120 μg L-1 LA treatment significantly inhibited the transcription of genes related to photosynthesis, carbon metabolism, and amino acid metabolism in C. pyrenoidosa, suggesting that these genes might be key LA targets in C. pyrenoidosa. Moreover, the expression of genes involved in vitamin, lipid, nitrogen cycling, terpenoid, and ascorbate metabolism was also affected, suggesting that LA inhibits algal cell growth through multiple pathways. The identification of LA-responsive genes in C. pyrenoidosa provides new insight into LA stress responses in eukaryotic algae.
Collapse
Affiliation(s)
- Haifeng Qian
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| | - Jiahui Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhaopeng Yang
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| |
Collapse
|