1
|
Ma T, An X, Wu P, He X, Luo Y. Effects of Insecticide and Herbicides on Thyroid Disturbances in Zebrafish. TOXICS 2024; 12:570. [PMID: 39195672 PMCID: PMC11358992 DOI: 10.3390/toxics12080570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024]
Abstract
Thyroid cancer usually begins with thyroid dysfunction and nodules and has become the most common cancer globally, especially in women. Although the causes of thyroid dysfunction are complex, the presence of environmental pollutants, especially certain pesticides as established mutagens, has been widely accepted. Zebrafish (Danio rerio) have similar toxic reactions and signal transduction pathways to humans and are very similar to humans in physiology, development, and metabolic function. Here, the direct toxicity effects and mechanisms of different insecticides and herbicides on zebrafish thyroid functions and indirect toxicity effects originating from thyroid dysfunction were summarized and compared. The overall toxicity of insecticides on the zebrafish thyroid was greater than that of herbicides based on effective concentrations. Penpropathrin and atrazine were more typical thyroid disruptors than other pesticides. Meanwhile, chiral pesticides showed more sophisticated single/combined toxicity effects on both parental and offspring zebrafish. Besides thyroid hormone levels and HPT axis-related gene expression alteration, developmental toxicity, immunotoxicity, and oxidative damage effects were all observed. These data are necessary for understanding the thyroid interference effect of pesticides on humans and for screening for thyroid disruptors in surface water with zebrafish models for the pre-assessment of human health risks and ecological risk control in the future.
Collapse
Affiliation(s)
- Tingting Ma
- College of Resource Environment & Tourism, Hubei University of Arts & Science, Xiangyang 441053, China; (T.M.); (X.A.)
- Key Laboratory of Soil and Sustainable Agriculture, Chinese Academy of Sciences, Nanjing 211135, China;
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials & Devices, Hubei University of Arts & Science, Xiangyang 441053, China
| | - Xiangji An
- College of Resource Environment & Tourism, Hubei University of Arts & Science, Xiangyang 441053, China; (T.M.); (X.A.)
| | - Peng Wu
- Jiangsu Rainfine Environmental Science & Technology Co. Ltd., Nanjing 210009, China;
| | - Xiaoli He
- College of Resource Environment & Tourism, Hubei University of Arts & Science, Xiangyang 441053, China; (T.M.); (X.A.)
| | - Yongming Luo
- Key Laboratory of Soil and Sustainable Agriculture, Chinese Academy of Sciences, Nanjing 211135, China;
| |
Collapse
|
2
|
Magnuson JT, Monticelli G, Schlenk D, Bisesi JH, Pampanin DM. Connecting gut microbiome changes with fish health conditions in juvenile Atlantic cod (Gadus morhua) exposed to dispersed crude oil. ENVIRONMENTAL RESEARCH 2023; 234:116516. [PMID: 37399986 DOI: 10.1016/j.envres.2023.116516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Polycyclic aromatic hydrocarbons found in crude oil can impair fish health following sublethal exposure. However, the dysbiosis of microbial communities within the fish host and influence it has on the toxic response of fish following exposure has been less characterized, particularly in marine species. To better understand the effect of dispersed crude oil (DCO) on juvenile Atlantic cod (Gadus morhua) microbiota composition and potential targets of exposure within the gut, fish were exposed to 0.05 ppm DCO for 1, 3, 7, or 28 days and 16 S metagenomic and metatranscriptomic sequencing on the gut and RNA sequencing on intestinal content were conducted. In addition to assessing species composition, richness, and diversity from microbial gut community analysis and transcriptomic profiling, the functional capacity of the microbiome was determined. Mycoplasma and Aliivibrio were the two most abundant genera after DCO exposure and Photobacterium the most abundant genus in controls, after 28 days. Metagenomic profiles were only significantly different between treatments after a 28-day exposure. The top identified pathways were involved in energy and the biosynthesis of carbohydrates, fatty acids, amino acids, and cellular structure. Biological processes following fish transcriptomic profiling shared common pathways with microbial functional annotations such as energy, translation, amide biosynthetic process, and proteolysis. There were 58 differently expressed genes determined from metatranscriptomic profiling after 7 days of exposure. Predicted pathways that were altered included those involved in translation, signal transduction, and Wnt signaling. EIF2 signaling was consistently dysregulated following exposure to DCO, regardless of exposure duration, with impairments in IL-22 signaling and spermine and spermidine biosynthesis in fish after 28 days. Data were consistent with predictions of a potentially reduced immune response related to gastrointestinal disease. Herein, transcriptomic-level responses helped explain the relevance of differences in gut microbial communities in fish following DCO exposure.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.
| | - Giovanna Monticelli
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Daniela M Pampanin
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| |
Collapse
|
3
|
Ismail RF, Hamed M, Sayed AEDH. Lycopene supplementation: effects on oxidative stress, sex hormones, gonads and thyroid tissue in tilapia Oreochromis niloticus during Harness ® exposure. Front Physiol 2023; 14:1237159. [PMID: 37637141 PMCID: PMC10454902 DOI: 10.3389/fphys.2023.1237159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Harness® is a commercial herbicide that contains acetochlor at a concentration of 84% as an active ingredient. Ubiquitous, persistent, and substantial uses of Harness® in agricultural processes have resulted in the pollution of nearby water sources, posing a threat to various aquatic biotas, including fish. The effects of Harness® toxicity on fish health are little known. So, this study aimed to describe the impact of herbicide Harness® on the oxidative stress and reproductive and thyroid performance of male and female tilapia (Oreochromis niloticus) and also investigate the prospective role of the natural antioxidant lycopene supplementation in dismissing the adverse properties of Harness®. Antioxidant enzyme (catalase, superoxide dismutase, and total antioxidant capacity) and hormone measurements (T, E2, T3, and T4) were carried out, and gonadal and thyroid follicle histological sections were examined as a method to investigate the effects of Harness® toxicity on fish. Male and female tilapia were exposed to 10 μmol/L and 100 μmol/L of Harness® and treated with 10 mg lycopene/kg for 15 days of exposure. Our results demonstrated that the antioxidant enzyme activity was altered by Harness exposure and serum T for both males and females dropped; also, female E2 levels decreased, but male E2 increased. Exposure to higher dose of Harness® induced elevation in both T3 and T4 levels, although the low exposure dose stimulated T4 levels. Harness® exposure prompted histological variations and degenerative changes in testicular, ovarian, and thyroid follicle tissues. Lycopene supplement administration diminished oxidative stress induced by Harness®, alleviating its endocrine disparaging effects by neutralizing T3, T4, T, and E2 and ameliorating the histological structure of gonadal and thyroid tissues. In conclusion, lycopene supplementation was preformed to normalize the alterations and oxidative damage caused by Harness® in Nile tilapia, suggesting that lycopene-supplemented diet functioned as potent antioxidants and had the ability to alleviate oxidative stress and thyroid and reproductive toxicity caused by herbicide Harness®. Moreover, it is crucial to take appropriate care when consuming herbicides to defend the aquatic environment.
Collapse
Affiliation(s)
- Rania F. Ismail
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut, Egypt
| | - Alaa El-Din H. Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
- Molecular Biology Research and Studies Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Magnuson JT, Fuller N, McGruer V, Huff Hartz KE, Acuña S, Whitledge GW, Lydy MJ, Schlenk D. Effect of temperature and dietary pesticide exposure on neuroendocrine and olfactory responses in juvenile Chinook salmon (Oncorhynchus tshawytscha). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120938. [PMID: 36572271 DOI: 10.1016/j.envpol.2022.120938] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Projected water temperature increases based on predicted climate change scenarios and concomitant pesticide exposure raises concern about the responses of aquatic organisms. To better understand the effect of pesticide mixtures and influence of water temperature to fish, juvenile Chinook salmon (Oncorhynchus tshawytscha) were dietarily exposed to a mixture of legacy and current use pesticides (p,p'-DDE, bifenthrin, chlorpyrifos, esfenvalerate, and fipronil) at concentrations detected from field-collected prey items in the Sacramento-San Joaquin Delta, California (Delta) and exposed under current and predicted future water temperature scenarios, 11, 14, or 17 °C, for 14 days. The expression of a subset of genes (deiodinase 2-dio2, gonadotropin releasing hormone 2-gnrh2, and catechol-o-methyltransferase-comt) involved in neuroendocrine, dopaminergic, and olfactory function previously shown to be altered by individual pesticide exposures germane to this study were determined and olfactory function assessed using a Y-maze behavioral assay. When total body burdens of pesticides were measured, a significant decrease in dio2 expression was observed in Chinook salmon exposed at 14 °C compared to fish kept at 11 °C. Increases in gnrh2 expression were also observed in fish exposed to 14 °C. Similarly, increases in comt expression was noted at 14 and 17 °C. Additionally, altered expression of all transcripts was observed, showing interactions between temperature and individual pesticide concentrations. Chinook salmon spent significantly more time actively avoiding the odorant arm at baseline conditions of 11 °C in the Y-maze. At higher temperatures, Chinook spent significantly more time not making a choice between the odorant or clean arm following exposure to the low pesticide mixture, relative to 11 °C. These results suggest that dietary exposure to pesticide mixtures can potentially induce neuroendocrine effects and behavior. Impaired olfactory responses exhibited by Chinook salmon could have implications for predator avoidance in the wild under increased temperature scenarios and impact populations in the future.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States.
| | - Neil Fuller
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Victoria McGruer
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Shawn Acuña
- Metropolitan Water District of Southern California, Sacramento, CA, 95814, United States
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Sex-specific effects of fluoride and lead on thyroid endocrine function in zebrafish (Danio rerio). Chem Biol Interact 2022; 367:110151. [PMID: 36089061 DOI: 10.1016/j.cbi.2022.110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/20/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022]
Abstract
Fluoride (F) and lead (Pb) are widespread pollutants in the environment. F and Pb affect the thyroid endocrine system, but the mechanism of action between F and Pb is still unclear. In this study, in order to evaluate the effects of F or/and Pb on histopathological changes, antioxidant indices, the levels of thyroid hormones (THs), and the expression of endocrine-related genes in zebrafish thyroid. One thousand and two hundred zebrafish (female:male = 1:1) were randomly divided into four groups: control group (C group), 80 mg/L F group (F group), 60 mg/L Pb group (Pb group), and 80 mg/L F + 60 mg/L Pb group (F + Pb group) for 45 d and 90 d. Histopathological sections showed a loss of glia and follicular epithelial hyperplasia in the thyroid gland after exposure to F and Pb. Oxidative stress in the thyroid was induced after F and Pb exposure. And each oxidation index was increased after F + Pb exposure. Combined F and Pb exposure aggravated the downregulation of thyroid hormones T3 and T4 compared to exposure alone. Furthermore, F and Pb exposure altered the expression of thyroid endocrine-related genes in a time-dependent manner. These results indicate that F and Pb can affect the endocrine system of thyroid by changing the tissue structure, antioxidant capacity, thyroid hormone secretion and the levels of endocrine-related genes in thyroid. F and Pb can also produce toxic effects on thyroid, but the degree of poisoning is different in different indicators, mainly for the additive effect between them. Additionally, males are more sensitive than females to F or Pb toxicity. However, the specific molecular mechanism of the effects of F and Pb on thyroid endocrine system needs to be further studied.
Collapse
|
6
|
Liu S, Wang L, Chen K, Yang H, Ling M, Wu L, Zhou X, Ma G, Bai L. Combined effects of S-metolachlor and benoxacor on embryo development in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113565. [PMID: 35512469 DOI: 10.1016/j.ecoenv.2022.113565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
It is necessary to study the combined toxicity of an herbicide and its safener because the two are often used in combination. S-metolachlor and its safener benoxacor have been detected in aquatic environments and can individually damage the oxidative stress system in zebrafish embryos (Danio rerio). However, only their separate toxicity in zebrafish (Danio rerio) embryo development has been reported. This study assessed the combined toxicity of benoxacor and S-metolachlor in zebrafish embryo development, including acute toxicity, developmental toxicity, oxidative damage, and cell apoptosis. The 96-h LC50 values were higher in mixtures of benoxacor and S-metolachlor than in benoxacor alone. The treatments included S-metolachlor, Mix-1 (0.1 mg/L benoxacor + 0.1 mg/L S-metolachlor), Mix-2 (0.1 mg/L benoxacor + 0.3 mg/L S-metolachlor) and benoxacor alone. Embryos exposed to Mix-1 and Mix-2 had lower developmental toxicities, superoxide dismutase (SOD) activity, osx and cat expression levels than those exposed to benoxacor alone. Moreover, glutathione S-transferase (GST), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) activities, and the expressions of tbx16, nrf2, bcl2, and caspase9 were higher in the mixtures than in the benoxacor group. High-throughput RNA sequencing revealed that benoxacor had a greater effect on gene regulation than Mix-1 and Mix-2. The malformation rate, different enrichment gene numbers, and gene expression levels of hatched embryos were higher in Mix-1 than in Mix-2. The results indicate that a mixture of S-metolachlor and benoxacor has antagonistic effects in the early stage of embryo development. The mixtures can break the reactive oxygen species balance, causing abnormal cell apoptosis and developmental malformation in embryos. Besides investigating the combined toxicity of benoxacor and S-metolachlor in zebrafish embryo development, this study provides a risk assessment basis for a herbicide combined with its safener.
Collapse
Affiliation(s)
- Sihong Liu
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha, PR China; Longping Branch, Graduate School of Hunan University, Changsha, PR China
| | - Lifeng Wang
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha, PR China; State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, PR China; Longping Branch, Graduate School of Hunan University, Changsha, PR China.
| | - Ke Chen
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha, PR China; Longping Branch, Graduate School of Hunan University, Changsha, PR China
| | - Haona Yang
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha, PR China
| | - Min Ling
- Hunan Research Academy of Environmental Sciences, Changsha, PR China
| | - Lamei Wu
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha, PR China
| | - Xiaomao Zhou
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha, PR China; Longping Branch, Graduate School of Hunan University, Changsha, PR China
| | - Guolan Ma
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, PR China
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha, PR China; State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, PR China; Longping Branch, Graduate School of Hunan University, Changsha, PR China.
| |
Collapse
|
7
|
Sayed AEDH, Hamed M, Soliman HAM, Authman MMN. The protective role of lycopene against toxic effects induced by the herbicide Harness® and its active ingredient acetochlor on the African catfish Clarias gariepinus (Burchell, 1822). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14561-14574. [PMID: 34617222 DOI: 10.1007/s11356-021-16518-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
The effects of Harness® toxicity on fish health are little known. So, current work aimed to study the impact of sub-lethal doses of Harness® (an acetochlor-based herbicide) on the African catfish, Clarias gariepinus, and also investigated the potential role of lycopene (LYCO) administration in alleviating Harness® negative effects. Fish were divided into five groups in triplicates as follows: group 1 (control) received no treatment, group 2 was exposed to 10 μm Harness®/L, group 3 was orally administered 10 mg LYCO/kg body weight and exposed to 10 μm Harness®/L, group 4 was exposed to 100 μm Harness®/L, and group 5 was orally administered 10 mg LYCO/kg body weight and exposed to 100 μm Harness®/L for 2 weeks. Some hemato-biochemical parameters, genotoxicity, and histopathological changes were assessed at the end of this period. Sub-lethal doses of Harness® altered the shape of erythrocytes in contrast to the control sample. Also, hematological parameters of exposed fish exhibited a significant (P < 0.05) reduction in the values of red blood cell count (RBCs), hemoglobin (Hb), hematocrit (HCT), and platelets (PL), as well as an insignificant (P > 0.05) drop in mean corpuscular volume (MCV). Harness® was also found to cause genotoxicity as well as histopathological alterations. LYCO administration decreased hemato-biochemical changes and returned them to near-normal levels. The findings showed that LYCO administration (10 mg LYCO/kg body weight) decreased Harness® toxicity in C. gariepinus and alleviated its destructive effects.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology Department, Faculty of Sciences, Assiut University, Assiut, 71516, Egypt.
| | - Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| | | |
Collapse
|