1
|
Marchand E, Petit F, Alliot F, Blanchoud H, Costantini D, Guigon E, Martin N, Traore S, Goutte A. Contrasted Antibiotics and Pesticides Occurrence in Fish Exposed In Situ to Urban Effluents: A 20-Day Caging Experiment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38116996 DOI: 10.1002/etc.5810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/14/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Urban freshwater ecosystems receive a wide array of organic pollutants through wastewater-treatment plant (WWTP) discharges and agricultural runoff. Evaluating the fate and effects of antibiotics and pesticides can be a challenging task, especially the effects on freshwater vertebrates because of their abilities to metabolize and excrete these chemicals and because of their high mobility and escape behavior when exposed to stressful environmental conditions. In the present study, 37 wild gudgeons (Gobio gobio) were caged for a period of up to 20 days, upstream and downstream of a WWTP effluent discharge in the Orge River (a tributary of the Seine River, France). Levels of pesticides and antibiotics in fish muscles were monitored weekly and compared with environmental contamination (water and sediments). Our results highlighted a slight bioaccumulation of pesticides in the gudgeon muscles at the downstream site after 20 days of exposure. Concerning antibiotics, ofloxacin was the most detected compound in fish muscles (85% of occurrence) and ranged from undetectable to 8 ng g-1 dry weight. Antibiotic levels in fish muscle were not higher at the downstream site and did not increase with exposure duration, despite high levels in the water (up to 29 times greater than upstream). Potential ecotoxicological effects were also evaluated: Body condition did not differ between the caging location and exposure time. Three oxidative status markers in the fish livers showed significant shifts after 14 days of caging. Our results suggest a high clearance rate of antibiotics and, to a lesser extent, of pesticides in wild gudgeons, which could be explained by changes in xenobiotic metabolism with pollutant exposure. Environ Toxicol Chem 2024;00:1-11. © 2023 SETAC.
Collapse
Affiliation(s)
- Etienne Marchand
- UNIROUEN, UNICAEN, Normandie Université, Rouen, France
- CNRS, EPHE, Sorbonne Université, Paris, France
| | - Fabienne Petit
- UNIROUEN, UNICAEN, Normandie Université, Rouen, France
- CNRS, EPHE, Sorbonne Université, Paris, France
| | - Fabrice Alliot
- CNRS, EPHE, Sorbonne Université, Paris, France
- EPHE, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Hélène Blanchoud
- CNRS, EPHE, Sorbonne Université, Paris, France
- EPHE, PSL University, Sorbonne Université, CNRS, Paris, France
| | - David Costantini
- UPMA, Muséum National d'Histoire Naturelle, CNRS, Paris, France
- Department of Ecological and Biological Sciences, Tuscia University, Viterbo, Italy
| | - Elodie Guigon
- CNRS, EPHE, Sorbonne Université, Paris, France
- EPHE, PSL University, Sorbonne Université, CNRS, Paris, France
| | | | - Sira Traore
- CNRS, EPHE, Sorbonne Université, Paris, France
- EPHE, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Aurélie Goutte
- CNRS, EPHE, Sorbonne Université, Paris, France
- EPHE, PSL University, Sorbonne Université, CNRS, Paris, France
| |
Collapse
|
2
|
Sanchez-Cid C, Ghaly TM, Gillings MR, Vogel TM. Sub-inhibitory gentamicin pollution induces gentamicin resistance gene integration in class 1 integrons in the environment. Sci Rep 2023; 13:8612. [PMID: 37244902 PMCID: PMC10224954 DOI: 10.1038/s41598-023-35074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023] Open
Abstract
Antibiotics at sub-inhibitory concentrations are often found in the environment. Here they could impose selective pressure on bacteria, leading to the selection and dissemination of antibiotic resistance, despite being under the inhibitory threshold. The goal of this study was to evaluate the effects of sub-inhibitory concentrations of gentamicin on environmental class 1 integron cassettes in natural river microbial communities. Gentamicin at sub-inhibitory concentrations promoted the integration and selection of gentamicin resistance genes (GmRG) in class 1 integrons after only a one-day exposure. Therefore, sub-inhibitory concentrations of gentamicin induced integron rearrangements, increasing the mobilization potential of gentamicin resistance genes and potentially increasing their dissemination in the environment. This study demonstrates the effects of antibiotics at sub-inhibitory concentrations in the environment and supports concerns about antibiotics as emerging pollutants.
Collapse
Affiliation(s)
- Concepcion Sanchez-Cid
- Environmental Microbial Genomics, UMR 5005 Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, Écully, France.
| | - Timothy M Ghaly
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, NSW, 2109, Australia
| | - Timothy M Vogel
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAe 1418, VetAgro Sup, Ecologie Microbienne, F-69622, Villeurbanne, France
| |
Collapse
|
3
|
Wang Y, Li J, Ji L, Chen L. Simultaneous Determination of Sulfonamides Antibiotics in Environmental Water and Seafood Samples Using Ultrasonic-Assisted Dispersive Liquid-Liquid Microextraction Coupled with High Performance Liquid Chromatography. Molecules 2022; 27:2160. [PMID: 35408558 PMCID: PMC9000397 DOI: 10.3390/molecules27072160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
The residues and abuse of antibiotics have seriously endangered ecological balance and human health; meanwhile, antibiotics determination is very difficult because of their low levels and multiple categories in complicated matrices. Appropriate sample pretreatment is usually imperative to enrich (ultra)trace antibiotics and eliminate matrix interference prior to chromatographic analysis. Dispersive liquid-liquid microextraction (DLLME) has become an ideal pretreatment technique owing to its simplicity, effectiveness, low-consumption, etc. In this work, an ultrasonic-assisted DLLME (UA-DLLME) was developed for the simultaneous extraction of seven sulfonamides (SAs) antibiotics in environmental water and seafood samples coupled with HPLC-DAD determination. Several parameters affecting UA-DLLME efficiency were systematically optimized, and consequently the SAs were separated and detected within 14.5 min. The obtained limits of detection (LODs) and limits of quantification (LOQs) ranged from 0.7-7.8 μg/L and 2.4-26.0 μg/L for three water samples (seawater, aquaculture wastewater and lake water) and two seafood samples (pomfrets and shrimps). High recoveries (80.0-116.0%) with low relative standard deviations (0.1-8.1%) were achieved for all the tested samples at three spiked levels. Notably, sulfadimethoxine was found at 24.49 μg/L in one seawater sample. The facile, robust and benign DLLME-HPLC method demonstrated promising perspectives for multiresidue analysis of antibiotics.
Collapse
Affiliation(s)
- Yixiao Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.W.); (L.C.)
- School of Source and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.W.); (L.C.)
- School of Source and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ling Ji
- Yantai Oceanic Environmental Monitoring Central Station, State Oceanic Administration, Yantai 264006, China;
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.W.); (L.C.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|