1
|
Chen Q, Ou Z, Lv H. Cadmium toxicity in blueberry cultivation and the role of arbuscular mycorrhizal fungi. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117364. [PMID: 39577053 DOI: 10.1016/j.ecoenv.2024.117364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/31/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal that interferes with essential metabolic pathways crucial for plant growth, often resulting in toxicity and plant death. Blueberry plants exhibit metabolic adaptations to mitigate the stress caused by elevated Cd levels. In this review, we highlighted the effects of Cd-induced stress on blueberry plants and explored the potential alleviating effects of arbuscular mycorrhizal fungi (AMF). Cd uptake disrupts plant metabolism and impacts primary and secondary metabolites, including anthocyanins, which play a role in defense mechanisms against pathogens. Hence, Cd-induced stress alters anthocyanin levels in blueberry leaves, negatively affecting antioxidant defense mechanisms and hindering growth. Conversely, AMF establishes a symbiotic relationship with blueberry plants, promoting nutrient absorption and enhancing stress tolerance. Understanding the association between Cd stress, anthocyanin responses in blueberries, and AMF-mediated mitigation is crucial for developing integrated strategies to enhance blueberry plant health and improve quality. Employing AMF to remediate metal-related stress represents a significant breakthrough for sustainable crop production in a Cd-contaminated environment.
Collapse
Affiliation(s)
- Qianying Chen
- College of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230001, China.
| | - Zulan Ou
- College of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230001, China.
| | - Huifang Lv
- College of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230001, China.
| |
Collapse
|
2
|
Chengatt AP, Sarath NG, A M S, Sebastian DP, George S. 6-Benzylaminopurine mediated augmentation of cadmium phytostabilization potential in Strobilanthes alternata. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1893-1913. [PMID: 38836518 DOI: 10.1080/15226514.2024.2360573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This study unveiled the cadmium phytoremediation potential and its augmentation using 6-Benzylaminopurine in Strobilanthes alternata. Cadmium stress was provided by applying 250 mg/kg cadmium chloride in soil and 25 ppm of 6-BAP (25 ml) was administered to the plants as foliar spray. The results revealed high bioconcentration factor (BCF) (18.82 ± 0.54) and low translocation factor (TF) values (0.055 ± 0.002) for the plant based on which we strongly recommend S. alternata as a promising candidate for Cd phytoremediation. The phytostabilization potential of the plant was further enhanced by applying 6-BAP, which augmented its BCF to 22.09 ± 0.64 and reduced the TF to 0.038 ± 0.001. Cd toxicity caused a reduction of plant growth parameters, root volume, adaxial-abaxial stomatal indices, relative water content, tolerance index, moisture content, membrane stability index, and xylem vessel diameter in S. alternata. However, Cd + 6-BAP treated plants exhibited an increase of the same compared to Cd-treated plants. FTIR analysis of Cd + 6-BAP treated plants revealed increased deposition of hemicellulose, causing enhanced retention of Cd in the root xylem walls, which is largely responsible for increased phytostabilization of Cd. Therefore, 6-BAP application in S. alternata can be exploited to restore Cd-contaminated areas effectively.
Collapse
Affiliation(s)
- Akshaya Prakash Chengatt
- Department of Botany, St. Joseph's College (Autonomous) Devagiri, Kozhikode, Affiliated to University of Calicut, Kerala, India
| | - Nair G Sarath
- Department of Botany, Mar Athanasius College (Autonomous), Kothamangalam, Kerala, India
| | - Shackira A M
- Department of Botany, Sir Syed College, Kannur University, Kannur, Kerala, India
| | - Delse Parekkattil Sebastian
- Department of Botany, St. Joseph's College (Autonomous) Devagiri, Kozhikode, Affiliated to University of Calicut, Kerala, India
| | - Satheesh George
- Department of Botany, St. Joseph's College (Autonomous) Devagiri, Kozhikode, Affiliated to University of Calicut, Kerala, India
| |
Collapse
|
3
|
Anjitha KS, Sarath NG, Sameena PP, Janeeshma E, Shackira AM, Puthur JT. Plant response to heavy metal stress toxicity: the role of metabolomics and other omics tools. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:965-982. [PMID: 37995340 DOI: 10.1071/fp23145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Metabolomic investigations offers a significant foundation for improved comprehension of the adaptability of plants to reconfigure the key metabolic pathways and their response to changing climatic conditions. Their application to ecophysiology and ecotoxicology help to assess potential risks caused by the contaminants, their modes of action and the elucidation of metabolic pathways associated with stress responses. Heavy metal stress is one of the most significant environmental hazards affecting the physiological and biochemical processes in plants. Metabolomic tools have been widely utilised in the massive characterisation of the molecular structure of plants at various stages for understanding the diverse aspects of the cellular functioning underlying heavy metal stress-responsive mechanisms. This review emphasises on the recent progressions in metabolomics in plants subjected to heavy metal stresses. Also, it discusses the possibility of facilitating effective management strategies concerning metabolites for mitigating the negative impacts of heavy metal contaminants on the growth and productivity of plants.
Collapse
Affiliation(s)
- K S Anjitha
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O., Malappuram, Kerala 673635, India
| | - Nair G Sarath
- Department of Botany, Mar Athanasius College, Kothamangalam, Ernakulam, Kerala 686666, India
| | - P P Sameena
- Department of Botany, PSMO College, Tirurangadi, Malappuram, Kerala 676306, India
| | - Edappayil Janeeshma
- Department of Botany, MES KEVEEYAM College, Valanchery, Malappuram, Kerala 676552, India
| | - A M Shackira
- Department of Botany, Sir Syed College, Kannur University, Kannur, Kerala 670142, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O., Malappuram, Kerala 673635, India
| |
Collapse
|
4
|
Zhang C, Jia X, Zhao Y, Wang L, Wang Y. Adaptive response of flavonoids in Robinia pseudoacacia L. affected by the contamination of cadmium and elevated CO 2 to arbuscular mycorrhizal symbiosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115379. [PMID: 37597290 DOI: 10.1016/j.ecoenv.2023.115379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 07/06/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
As a key component in non-enzyme resistance system, flavonoids play a crucial role in the plant growth and defenses, which are significantly affected by biotic and abiotic factors such as fungi, bacteria, viruses, heavy metals, and atmospheric CO2. Arbuscular mycorrhizal fungi (AMF) play an important role in enhancing plant tolerance to adverse environments, which can significantly affect the synthesis of flavonoids by forming mycorrhizal symbionts with plant roots. However, few studies explored the combined effects of AMF, elevated CO2, and heavy metals on flavonoids in plants. Here, we investigated the adaptive response of flavonoids accumulation in Robinia pseudoacacia L. seedlings affected by the contamination of cadmium (Cd) and elevated CO2 to arbuscular mycorrhizal symbiosis. The results showed that G. mosseae decreased (p < 0.05) Cd content in leaves by 62.2% under elevated CO2. Moreover, G. mosseae colonization led to significant decreases in robinin, quercetin, kaempferol and acacetin by 17.4%, 11.1%, 15.5% and 23.1% under elevated CO2 + Cd, respectively. Additionally, G. mosseae down-regulated (p < 0.05) expression levels of phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) genes under elevated CO2 + Cd, and CHS and uridine diphosphate flavonoid glucosyltransferase (UFGT) activities decreased (p < 0.05). Quercetin, kaempferol and acacetin showed positive (p < 0.05) correlation with PAL and CHS genes expression and PAL, CHS, and UFGT activities. Cadmium, C/N ratio, carotenoids, leaf biomass, total chlorophyll, P, and starch in leaves and G. mosseae colonization rate in roots influenced (p < 0.05) flavonoids content. Overall, G. mosseae reduced flavonoids synthesis by down-regulating gene expression levels and activities of key enzymes under elevated CO2 + Cd. The results improved our understanding of the regulation of AMF on non-enzymatic resistance of plants grown in heavy metal-contaminated soils under increasing atmospheric CO2 scenarios.
Collapse
Affiliation(s)
- Chunyan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Xia Jia
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China.
| | - Yonghua Zhao
- School of Land Engineering, Chang'an University, Xi'an 710054, PR China
| | - Lu Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Yunjie Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| |
Collapse
|
5
|
Janeeshma E, Puthur JT. Physiological and metabolic dynamism in mycorrhizal and non-mycorrhizal Oryza sativa (var. Varsha) subjected to Zn and Cd toxicity: a comparative study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3668-3687. [PMID: 35953749 DOI: 10.1007/s11356-022-22478-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Arable lands getting contaminated with heavy metals have a very high negative impact on crop plants. The establishment of the mycorrhizal association with crop plants is a sustainable strategy to overcome metal toxicity. The major aim of this study was to analyze mycorrhizae-mediated alterations on the physiology and metabolism of Oryza sativa, as well as the impact of these alterations in the metal tolerance potential of the host on exposure to cadmium (Cd) and zinc (Zn) stresses. For this, 45 d old O. sativa (var. Varsha) plants inoculated with Claroideoglomus claroideum were exposed to 1.95 g Zn kg-1 soil and 0.45 g Cd kg-1 soil. Mycorrhization significantly increased shoot weight, root weight, moisture content, and chlorophyll biosynthesis under Cd and Zn stresses. Mycorrhization mitigated the oxidative stress elicited in O. sativa by the elevated Cd and Zn content, and it aided in maintaining the metabolite's level and rate of photosynthesis as compared to non-mycorrhizal plants. The circular-shaped unique structures seen as opening on the leaf surface of non-mycorrhizal plants under Zn stress, possibly for the emission of volatile compounds synthesized as a result of Zn stress, have a great chance of leaf tissue destruction. This structural modification was characterized in the case of Zn stress and not in Cd stress and can lead to the reduction of photosynthesis in O. sativa exposed to Zn stress. The reduction in oxidative stress could be correlated to the reduced uptake and transport of Cd and Zn ions in mycorrhizal plants. The exudation of tributyl acetyl citrate, 3-beta-acetoxystigmasta-4,6,22-triene, and linoleic acid from the mycorrhizal roots of rice plants has a crucial role in the stabilization of metal ions. This study proposes mycorrhization as a strategy to strengthen the Cd and Zn stress tolerance level of rice plants by regulating the physiology and metabolomics of the host plant.
Collapse
Affiliation(s)
- Edappayil Janeeshma
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kerala, 673635, India
- Department of Botany, MES KEVEEYAM College, Kerala, 676552, Valanchery, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kerala, 673635, India.
| |
Collapse
|