1
|
Goodarzi B, Azimi Mohammadabadi M, Jafari AJ, Gholami M, Kermani M, Assarehzadegan MA, Shahsavani A. Investigating PM 2.5 toxicity in highly polluted urban and industrial areas in the Middle East: human health risk assessment and spatial distribution. Sci Rep 2023; 13:17858. [PMID: 37857811 PMCID: PMC10587072 DOI: 10.1038/s41598-023-45052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023] Open
Abstract
Exposure to particulate matter (PM) can be considered as a factor affecting human health. The aim of this study was to investigate the concentration of PM2.5 and heavy metals and their influence on survival of A549 human lung cells in exposure to PM2.5 breathing air of Ahvaz city. In order to assess the levels of PM2.5 and heavy metals, air samples were collected from 14 sampling stations positioned across Ahvaz city during both winter and summer seasons. The concentration of heavy metals was determined using ICP OES. Next, the MTT assay [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] was employed to ascertain the survival rate of A549 cells. The findings from this research demonstrated that average PM2.5 of the study period was (149.5 μg/m3). Also, the average concentration of PM2.5 in the urban area in winter and summer was (153.3- and 106.9 μg/m3) and in the industrial area this parameter was (191.6 and 158.3 μg/m3). The average concentration of metals (ng/m3) of urban areas against industrial, Al (493 vs. 485), Fe (536 vs. 612), Cu (198 vs. 212), Ni (128 vs. 129), Cr (48.5 vs. 54), Cd (118 vs. 124), Mn (120 vs. 119), As (51 vs. 67), Hg (37 vs. 50), Zn (302 vs. 332) and Pb (266 vs. 351) were obtained. The results of the MTT assay showed that the highest percentage of cell survival according to the exposure concentration was 25 > 50 > 100 > 200. Also, the lowest percentage of survival (58.8%) was observed in the winter season and in industrial areas with a concentration of 200 μg/ml. The carcinogenic risk assessment of heavy metals indicated that except for Cr, whose carcinogenicity was 1.32E-03, other metals were in the safe range (10-4-10-6) for human health. The high concentration of PM2.5 and heavy metals can increase respiratory and cardiovascular diseases and reduce the public health level of Ahvaz citizens.
Collapse
Affiliation(s)
- Babak Goodarzi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Maryam Azimi Mohammadabadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Ali Assarehzadegan
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Abbas Shahsavani
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Goyal I, Agarwal M, Bamola S, Goswami G, Lakhani A. The role of chemical fractionation in risk assessment of toxic metals: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1098. [PMID: 37626242 DOI: 10.1007/s10661-023-11728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The identification of highly toxic metals like Cd, Ni, Pb, Cr, Co or Cu in ambient particulate matter (PM) has garnered a lot of interest recently. Exposure to toxic metals, including carcinogenic ones, at levels above recommended limits, can significantly affect human health. Prolonged exposure to even trace amounts of toxic or essential metals can also have negative health impacts. In order to assess significant risks, it is crucial to govern the concentrations of bioavailable/bio-accessible metals that are available in PM. Estimating the total metal concentrations in PM is only an approximation of metal toxicity. This review provides an overview of various procedures for extracting soluble toxic metals from PM and the importance of chemical fractionation in risk assessment. It is observed that the environmental risk indices such as bioavailability index (BI), contamination factor (CF) and risk assessment code (RAC) are specifically influenced by the concentration of these metals in a particular fraction. Additionally, there is compelling evidence that health risks assessed using total metal concentrations may be overestimated, therefore, the metal toxicity assessment is more accurate and more sensitive to the concentration of the bioavailable/bio-accessible fraction than the total metal concentrations. Hence, chemical fractionation of toxic metals can serve as an effective tool for developing environmental protection laws and improving air quality monitoring programs for public health.
Collapse
Affiliation(s)
- Isha Goyal
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Muskan Agarwal
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Simran Bamola
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Gunjan Goswami
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Anita Lakhani
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India.
| |
Collapse
|
3
|
Rehman A, Liu G, Yousaf B, Ijaz S, Irshad S, Cheema AI, Riaz MU, Ashraf A. Spectroscopic fingerprinting, pollution characterization, and health risk assessment of potentially toxic metals from urban particulate matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92842-92858. [PMID: 37495807 DOI: 10.1007/s11356-023-28834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
The unprecedented stride of urbanization and industrialization has given rise to anthropogenic input of tiny particulates into the air. Urban particulate matter (PM) armored with potentially toxic metals (PTMs) could be lethal to the environment and human health. Therefore, the present study was planned to investigate the spectroscopic fingerprinting, pollution status and health risk of PM-associated PTMs collected from ten functional areas of Lahore, Pakistan. The diverged results of studied qualitative and quantitative analyses showed distinct compositional and pollution characteristics of PTMs in urban PM with respect to selected functional areas. The XRD results evident the fractional presence of metal-containing minerals, i.e., pyrite (FeS2), calcite (CaCO3), zinc sulfate (ZnSO4), and chalcostibite (CuSbS2). Several chemical species of Zn, Pb, and As were found in PM of various functional areas. However, morphologies of PM showed anthropogenic influence with slight quantitative support of PTMs presence. The cumulative representation of PTMs pollution of all selected areas depicted that Cd was heavily polluted (Igeo=3.21) while Cr (Igeo=1.82) and Ni (Igeo=2.11) were moderately polluted PTMs. The industrial area having high pollution status of Cd (Igeo=5.54 and EF=18.07), Cu (Igeo=6.4 and EF=32.61), Cr (Igeo=4.03 and EF=6.53), Ni (Igeo=5.7 and EF=20.17), and Zn (Igeo=4.87 and EF=11.27) was prominent among other studied areas. The PTMs were likely to pose a high non-cancerous risk in IndAr (HI = 7.48E+00) and HTV (HI = 1.22E +00) areas predominantly due to Zn with HQ > 1. However, Cr was prominent to cause cancerous risks with values beyond the tolerable range (1.00E-04 to 1.00E-06).
Collapse
Affiliation(s)
- Abdul Rehman
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, People's Republic of China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Samra Ijaz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Samina Irshad
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Ayesha Imtiyaz Cheema
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Muhammad Umair Riaz
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Punjab, 38000, Pakistan
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| |
Collapse
|
4
|
Górka-Kostrubiec B, Świetlik R, Szumiata T, Dytłow S, Trojanowska M. Integration of chemical fractionation, Mössbauer spectrometry, and magnetic methods for identification of Fe phases bonding heavy metals in street dust. J Environ Sci (China) 2023; 124:875-891. [PMID: 36182190 DOI: 10.1016/j.jes.2022.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/16/2023]
Abstract
Street dust is one of the most important carriers of heavy metals (HMs) originating from natural and anthropogenic sources. The main purpose of the work was to identify which of Fe-bearing phases bind HMs in street dust. Magnetic parameters of the Fe-bearing components, mainly magnetically strong iron oxides, are used to assess the level of HM pollution. Chemical sequential extraction combined with magnetic methods (magnetic susceptibility, magnetization, remanent magnetization) allowed determining the metal-bearing fractions and identifying the iron forms that are mostly associated with traffic-related HMs. The use of Mössbauer spectrometry (MS) supplemented by magnetic methods (thermomagnetic curves and psarameters of hysteresis loops) enabled precise identification and characterization of iron-containing minerals. The classification of HMs into five chemical fractions differing in mobility and bioaccessibility revealed that iron is most abundant (over 95%) in the residual fraction followed by the reducible fraction. HMs were present in reducible fraction in the following order: Pb>Zn>Mn>Cr>Ni>Fe>Cu, while they bound to the residual fraction in the following order: Fe>Ni>Cr>Mn>Pb>Cu>Zn. The signature of the anthropogenic origin of street dust is the presence of strongly nonstoichiometric and defected grains of magnetite and their porous surface. Magnetite also occurs as an admixture with maghemite, and with a significant proportion of hematite. A distinctive feature of street dust is the presence of metallic iron and iron carbides. Magnetic methods are efficient in the screening test to determine the level of HM pollution, while MS helps to identify the iron-bearing minerals through the detection of iron.
Collapse
Affiliation(s)
- Beata Górka-Kostrubiec
- Institute of Geophysics, Polish Academy of Sciences, ks. Janusza 64, 01-452 Warsaw, Poland
| | - Ryszard Świetlik
- Department of Environmental Chemistry and Engineering, University of Technology and Humanities in Radom, 27 Bolesława Chrobrego Str., 26-600 Radom, Poland
| | - Tadeusz Szumiata
- Department of Physics, Faculty of Mechanical Engineering, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland
| | - Sylwia Dytłow
- Institute of Geophysics, Polish Academy of Sciences, ks. Janusza 64, 01-452 Warsaw, Poland.
| | - Marzena Trojanowska
- Department of Environmental Chemistry and Engineering, University of Technology and Humanities in Radom, 27 Bolesława Chrobrego Str., 26-600 Radom, Poland
| |
Collapse
|
5
|
Mishra A, Pervez S, Verma M, Candeias C, Pervez YF, Dugga P, Verma SR, Karbhal I, Ghosh KK, Deb MK, Satnami ML, Shrivas K, Tamrakar A. Chemical fractionation of particulate-bound metal(loid)s to evaluate their bioavailability, sources and associated cancer risk in India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159516. [PMID: 36270356 DOI: 10.1016/j.scitotenv.2022.159516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Eleven potentially toxic metal(loid)s (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), proven source markers of mineral based coal-fired industrial emissions and vehicular exhausts, were analysed using the four steps sequential extraction method to evaluate metal(loid)s concentration, in total and fractions of bioavailable and non-bioavailable for fine (PM2.5) and coarse (PM10-2.5) particulate modes. A total of 26-day-wise samples with three replications (total number of samples = 78) were collected in January-December 2019 for each PM10 and PM2.5 at an urban-residential site in India. In both the coarse and fine particulate modes, Pb and Cr have respectively shown the highest and lowest total concentrations of the measured metal(loid)s, indicating the presence of coal-fired power plants and heavy vehicular activities near to study area. In addition, Mn has shown highest bioavailable fraction for both coarse and fine particulate modes. More than 50 % of metal(loid)s concentration, in total to a bioavailable fraction (BAF) were observed in case of As, Cd, Cr, Co, Mn, Ni, and Pb of PM2.5. Mn and Zn have shown similar behaviour in the case of coarse particulate mode. Source apportionment of metal(loid)s bioavailable fractions using positive matrix factorization (PMF 5.0) has found three significant sources: crustal and natural dust (30.04 and 39 %), road traffic (49.57 and 20 %), and industrial emission (20.39 and 41 %) for coarse and fine particulate mode, respectively. Cancer risk through the inhalation pathway was high in total concentration but lower in BAF concentration in both age groups (children and adults).
Collapse
Affiliation(s)
- Archi Mishra
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Shamsh Pervez
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India.
| | - Madhuri Verma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Carla Candeias
- GeoBioTec Research Centre, Department of Geosciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Princy Dugga
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Sushant Ranjan Verma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Indrapal Karbhal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Manas Kanti Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Manmohan L Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Aishwaryashri Tamrakar
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
6
|
Liu M, Wang W, Li J, Wang T, Xu Z, Song Y, Zhang W, Zhou L, Lian C, Yang J, Li Y, Sun Y, Tong S, Guo Y, Ge M. High fraction of soluble trace metals in fine particles under heavy haze in central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156771. [PMID: 35724777 DOI: 10.1016/j.scitotenv.2022.156771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 05/17/2023]
Abstract
Atmospheric trace metals are a key component of particulate matter and significantly influence the atmospheric process and human health. The dissolved fraction of trace metals represents their bioavailability and exhibits high chemical activity. However, the optimum measurement method for detecting the soluble fraction of trace metals is still undetermined. The impact of variations in pollution on the soluble fraction is largely unrevealed. Therefore, in this work, a one-month field observation was conducted in Central China and different extraction solvents were used to determine the proper measurement method for the soluble fraction of trace metals and investigate the variation pattern under different pollution conditions. The findings show that solvents with acidity near that of aerosol water can better reflect the actual soluble fraction of trace metals in fine particulate matter. The soluble fraction of trace metals tends to increase with pollution level increased, demonstrating unexpectedly high health risks and chemical activity under heavy haze conditions. Our results indicate that remediation and trace metal pollution control are urgently needed.
Collapse
Affiliation(s)
- Mingyuan Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Department of Ambient Air Quality Monitoring, China National Environmental Monitoring Centre, Beijing 100012, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Tiantian Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing 100871, China
| | - Zhenying Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing 100871, China
| | - Yu Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing 100871, China
| | - Wenyu Zhang
- Department of Clinical Research, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Li Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Chaofan Lian
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinxing Yang
- Sanmenxia Environmental Monitoring Station, Sanmenxia 472400, China
| | - Yanyu Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Shengrui Tong
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yucong Guo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Luo W, Deng Z, Zhong S, Deng M. Trends, Issues and Future Directions of Urban Health Impact Assessment Research: A Systematic Review and Bibliometric Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105957. [PMID: 35627492 PMCID: PMC9141375 DOI: 10.3390/ijerph19105957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
Health impact assessment (HIA) has been regarded as an important means and tool for urban planning to promote public health and further promote the integration of health concept. This paper aimed to help scientifically to understand the current situation of urban HIA research, analyze its discipline co-occurrence, publication characteristics, partnership, influence, keyword co-occurrence, co-citation, and structural variation. Based on the ISI Web database, this paper used a bibliometric method to analyze 2215 articles related to urban HIA published from 2012 to 2021. We found that the main research directions in the field were Environmental Sciences and Public Environmental Occupational Health; China contributed most articles, the Tehran University of Medical Sciences was the most influential institution, Science of the Total Environment was the most influential journal, Yousefi M was the most influential author. The main hotspots include health risk assessment, source appointment, contamination, exposure, particulate matter, heavy metals and urban soils in 2012–2021; road dust, source apposition, polycyclic aromatic hydrocarbons, air pollution, urban topsoil and the north China plain were always hot research topics in 2012–2021, drinking water and water quality became research topics of great concern in 2017–2021. There were 25 articles with strong transformation potential during 2020–2021, but most papers carried out research on the health risk assessment of toxic elements in soil and dust. Finally, we also discussed the limitations of this paper and the direction of bibliometric analysis of urban HIA in the future.
Collapse
Affiliation(s)
- Wenbing Luo
- School of Business, Hunan University of Science and Technology, Xiangtan 411201, China; (W.L.); (Z.D.)
- School of Accounting, Hunan University of Technology and Business, Changsha 410205, China
| | - Zhongping Deng
- School of Business, Hunan University of Science and Technology, Xiangtan 411201, China; (W.L.); (Z.D.)
| | - Shihu Zhong
- Shanghai National Accounting Institute, Shanghai 201702, China
- Correspondence:
| | - Mingjun Deng
- Big Data and Intelligent Decision Research Center, Hunan University of Science and Technology, Xiangtan 411201, China;
| |
Collapse
|
8
|
Huang R, Yuan W, Wang T, Cao W, Wang Y, Lin C, Yang L, Guo J, Ni H, Wu F. Chemical signature and fractionation of trace elements in fine particles from anthropogenic and natural sources. J Environ Sci (China) 2022; 114:365-375. [PMID: 35459499 DOI: 10.1016/j.jes.2021.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
The health effects of trace metal elements in atmospheric fine particulate matter (PM2.5) are widely recognized, however, the emission factor profiles and chemical fractionation of metal elements in different sources were poorly understand. In this study, sixteen metal elements, including Cd, Pb, V, Zn, Ba, Sb, As, Fe, Sr, Cr, Rb, Co, Mn, Cu, Ni and Sn from biomass burning, bituminite and anthracite combustion, as well as dust, were quantified. The results show different emission sources were associated with distinct emission profiles, holding important implications for source apportionment of ambient particulate metals. Specifically, Fe was the dominant metal species (28-1922 mg/kg) for all samples, and was followed by different metals for different samples. For dust, Mn (39.9 mg/kgdust) had the second-highest emission factor, while for biomass burning, it was Cr and Ba (7.5 and 7.4 mg/kgbiomass, respectively). For bituminous coal combustion, the emission factor of Zn and Ba was 6.2 and 6.0 mg/kgbituminous, respectively, while for anthracite combustion the corresponding emission factor was 5.6 and 4.3 mg/kganthracite, respectively. Moreover, chemical fractionation (i.e., the exchangeable, reducible fraction, oxidizable, and residual fraction) and the bioavailability index (BI) values of the metal elements from different sources were further investigated to reveal the link between different emission sources and the potential health risk. The findings from this study hold important implications for source apportionment and source-specific particulate metal-associated health effects.
Collapse
Affiliation(s)
- Rujin Huang
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Wei Yuan
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ting Wang
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wenjuan Cao
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ying Wang
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Chunshui Lin
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Lu Yang
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jie Guo
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Haiyan Ni
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Feng Wu
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
9
|
Świetlik R, Trojanowska M. Chemical Fractionation in Environmental Studies of Potentially Toxic Particulate-Bound Elements in Urban Air: A Critical Review. TOXICS 2022; 10:toxics10030124. [PMID: 35324749 PMCID: PMC8948661 DOI: 10.3390/toxics10030124] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023]
Abstract
In recent years, studies of heavy metal air pollution have increasingly gone beyond determining total concentrations of individual toxic metals. Chemical fractionation of potentially toxic elements in airborne particles is becoming an important part of these studies. This review covers the articles that have been published over the last three decades. Attention was paid to the issue of atmospheric aerosol sampling, sample pretreatment, sequential extraction schemes and conditions of individual extractions. Geochemical forms of metals occurring in the air in urban areas were considered in detail. Based on the data sets from chemical fractionation of particulate matter samples by three sequential extraction procedures (SEPs)—Fernández Espinosa, BCR and Chester’s—the compilation of the chemical distribution patterns of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn was prepared. The human health risk posed by these toxic and/or carcinogenic elements via inhalation of atmospheric particles was estimated for two categories of polluted urban areas: the commonly encountered pollution level and the high pollution level.
Collapse
|
10
|
Rajput JS, Trivedi MK. Determination and assessment of elemental concentration in the atmospheric particulate matter: a comprehensive review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:243. [PMID: 35243563 DOI: 10.1007/s10661-022-09833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
The elemental concentrations of atmospheric particulate matter (PM) have a detrimental effect on human health in which some elemental species have carcinogenic nature. In India, significant variations have found in the practices adapted from sampling to analysis for the determination and assessment of the elemental concentration in PM. Therefore, Indian studies (2011-2020) on the related domain are summarized to impart consistency in the field and laboratory practices. Further, a comparative analysis with other countries has also been mentioned in the relevant sections to evaluate its likeness with Indian studies. To prepare this study, literature has been procured from reputed journals. Subsequently, each step from sampling to analysis has thoroughly discussed with quality assurance and control (QA/QC) compliance. In addition, a framework has been proposed that showed field and laboratory analysis in an organized manner. Consequently, this study will provide benefit to novice researcher and improve their understanding about the related subject. Also, it will assist other peoples/bodies in framing the necessary decisions to carry out this study.
Collapse
|
11
|
Kováts N, Hubai K, Sainnokhoi TA, Hoffer A, Teke G. Ecotoxicity testing of airborne particulate matter-comparison of sample preparation techniques for the Vibrio fischeri assay. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4367-4378. [PMID: 33864174 PMCID: PMC8528798 DOI: 10.1007/s10653-021-00927-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The bioassay based on the bioluminescence inhibition of the marine bacterium Vibrio fischeri has been the most widely used test for the assessment of airborne particulate matter ecotoxicity. Most studies available use an extract of the solid sample, either made with water or organic solvents. As an alternative, a whole-aerosol test is also available where test bacteria are in actual contact with contaminated particles. In our study, different extraction procedures were compared to this direct contact test based on the V. fischeri assay and analytical measurements. The lowest PAH content and the highest EC50 were determined in water extract, while the highest PAH amount and lowest EC50 were measured in dichloromethane, hexane, and dimethyl-sulphoxide extracts. EC50 of the direct contact test was comparable to that of the methanol extract. Our results suggest that the sensitivity of the direct contact test equals to that of extraction procedures using organic solvents, moreover, it is mimicking an environmentally realistic exposure route.
Collapse
Affiliation(s)
- Nora Kováts
- Institute of Environmental Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary.
| | - Katalin Hubai
- Institute of Environmental Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
| | - Tsend-Ayush Sainnokhoi
- Institute of Environmental Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
- School of Veterinary Medicine, Mongolian University of Life Sciences, Khan-Uul District, Zaisan, Ulaanbaatar, 17042, Mongolia
| | - András Hoffer
- MTA-PE Air Chemistry Research Group, Egyetem str. 10, Veszprém, 8200, Hungary
| | - Gábor Teke
- ELGOSCAR-2000 Environmental Technology and Water Management Ltd., Balatonfuzfo, 8184, Hungary
| |
Collapse
|
12
|
Mishra A, Pervez S, Candeias C, Verma M, Bano S, Dugga P, Verma SR, Tamrakar A, Shafi S, Pervez YF, Gupta V. Bioaccessiblity features of particulate bound toxic elements: Review of extraction approaches, concentrations and health risks. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Integrated Assessment of Affinity to Chemical Fractions and Environmental Pollution with Heavy Metals: A New Approach Based on Sequential Extraction Results. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168458. [PMID: 34444207 PMCID: PMC8391145 DOI: 10.3390/ijerph18168458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022]
Abstract
To assess the affinity degree of heavy metals (HMs) to geochemical phases, many indices with several limitations are used. Thus, this study aims to develop a new complex index for assessing contamination level and affinity to chemical fractions in various solid environmental media. For this, a new integrated approach using the chemical affinity index (CAF) is proposed. Comparison of CAF with %F on the literature examples on fractionation of HMs from soils, bottom sediments, atmospheric PM10, and various particle size fractions of road dust proved a less significant role of the residual HMs fraction and a greater contribution of the rest of the chemical fractions in the pollution of all studied environments. This fact is due to the normalization relative to the global geochemical reference standard, calculations of contribution of an individual element to the total pollution by all studied HMs, and contribution of the particular chemical fraction to the total HMs content taken into account in CAF. The CAF index also shows a more significant role in pollution and chemical affinity of mobile and potentially mobile forms of HMs. The strong point of CAF is the stability of the obtained HM series according to the degree of chemical affinity and contamination. Future empirical studies are necessary for the more precise assessment of CAF taking into account the spatial distribution of HMs content, geographic conditions, geochemical factors, the intensity of anthropogenic impact, environmental parameters (temperature, humidity, precipitation, pH value, the content of organic matter, electrical conductivity, particle size distribution, etc.). The combined use of CAF along with other indices allows a more detailed assessment of the strength of HMs binding to chemical phases, which is crucial for understanding the HMs’ fate in the environment.
Collapse
|
14
|
Kermani M, Asadgol Z, Gholami M, Jafari AJ, Shahsavani A, Goodarzi B, Arfaeinia H. Occurrence, spatial distribution, seasonal variations, potential sources, and inhalation-based health risk assessment of organic/inorganic pollutants in ambient air of Tehran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1983-2006. [PMID: 33216310 DOI: 10.1007/s10653-020-00779-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
The present study evaluated the concentrations, spatial distribution, seasonal variations, potential sources, and risk assessment of organic/inorganic pollutants in ambient air of Tehran city. Totally, 180 air samples were taken from 9 sampling stations from March 2018 to March 2019 and were analyzed to determine the concentrations of organic pollutants (BTEX compounds and PM2.5-bound PAHs) plus inorganic pollutants (PM2.5-bound metals and asbestos fibers). The results revealed that the mean concentrations of ∑ PAHs, BTEX, ∑ heavy metals, and asbestos fibers were 5.34 ng/m3, 60.55 µg/m3, 8585.12 ng/m3, and 4.13 fiber/ml in the cold season, respectively, and 3.88 ng/m3, 33.86 µg/m3, 5682.61 ng/m3, and 3.21 fiber/ml in the warm season, respectively. Source apportionment of emission of the air pollutants showed that PAHs are emitted from diesel vehicles and industrial activities. BTEX and asbestos are also released mainly by vehicles. The results of the inhalation-based risk assessment indicated that the carcinogenic risk of PAHs, BTEX, and asbestos exceeded the recommended limit by The US environmental protection agency (US EPA) and WHO (1 × 10-4). The risk of carcinogenesis of heavy metal of lead and chromium also exceeded the recommended limit. Thus, proper management strategies are required to control the concentration of these pollutants in Tehran's ambient air in order to maintain the health of Tehran's citizens.
Collapse
Affiliation(s)
- Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Asadgol
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Goodarzi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Hormozgan University of Medical Sciences, Hormozgan, Iran.
| | - Hossein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Environmental Health Engineering, School of Public Health, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
15
|
Edlund KK, Killman F, Molnár P, Boman J, Stockfelt L, Wichmann J. Health Risk Assessment of PM 2.5 and PM 2.5-Bound Trace Elements in Thohoyandou, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031359. [PMID: 33540914 PMCID: PMC7908426 DOI: 10.3390/ijerph18031359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
Abstract
We assessed the health risks of fine particulate matter (PM2.5) ambient air pollution and its trace elemental components in a rural South African community. Air pollution is the largest environmental cause of disease and disproportionately affects low- and middle-income countries. PM2.5 samples were previously collected, April 2017 to April 2018, and PM2.5 mass determined. The filters were analyzed for chemical composition. The United States Environmental Protection Agency’s (US EPA) health risk assessment method was applied. Reference doses were calculated from the World Health Organization (WHO) guidelines, South African National Ambient Air Quality Standards (NAAQS), and US EPA reference concentrations. Despite relatively moderate levels of PM2.5 the health risks were substantial, especially for infants and children. The average annual PM2.5 concentration was 11 µg/m3, which is above WHO guidelines, but below South African NAAQS. Adults were exposed to health risks from PM2.5 during May to October, whereas infants and children were exposed to risk throughout the year. Particle-bound nickel posed both non-cancer and cancer risks. We conclude that PM2.5 poses health risks in Thohoyandou, despite levels being compliant with yearly South African NAAQS. The results indicate that air quality standards need to be tightened and PM2.5 levels lowered in South Africa.
Collapse
Affiliation(s)
- Karl Kilbo Edlund
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden; (F.K.); (P.M.); (L.S.)
- Correspondence:
| | - Felicia Killman
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden; (F.K.); (P.M.); (L.S.)
| | - Peter Molnár
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden; (F.K.); (P.M.); (L.S.)
| | - Johan Boman
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Göteborg, Sweden;
| | - Leo Stockfelt
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden; (F.K.); (P.M.); (L.S.)
| | - Janine Wichmann
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Gezina 0031, South Africa;
| |
Collapse
|
16
|
Mitra S, Das R. Health risk assessment of construction workers from trace metals in PM 2.5 from Kolkata, India. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2020; 77:125-140. [PMID: 33337288 DOI: 10.1080/19338244.2020.1860877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Construction activities have long been recognized as a pertinent source of PM2.5 though limited information exists regarding chemical characteristics of aerosols generated during building demolition/construction. A comprehensive investigation was carried out to assess the physical (SEM analysis) and chemical (ICP MS analysis) properties of PM2.5 in a building demolition and construction site and compared with background. Average concentrations of PM2.5 at both the sites exceeded the National Ambient Air Quality Standards (NAAQS). Overall trend of the total metal concentrations of PM2.5 followed the order of (Na, Ca, Al, Mg, Fe, Zn) > (Ti, Sr, Cd, Ba, Pb, V, Cr, Mn, Co, Ni, Cu) in both the sites. Sr, Ba, Mg, Zn, Ti, Cd, Al, Cr, Fe, Co, Mn, V, Ni, Ca, and Zn showed a ∼1.3-3.0 fold increase, and Pb showed the highest increase of almost >3.5 times when compared to the background concentrations. Health risk estimates based on the bio-available concentration of metals indicated that hazard quotient (HQ) values for non-carcinogenic metals were within the prescribed limit (HQ ≤ 1). However, the excess lifetime cancer risk (ELCR) for the carcinogenic metals Pb, Ni, Cd, and Cr(VI) were higher than the guideline limits of USEPA.
Collapse
Affiliation(s)
- Shoumick Mitra
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | - Reshmi Das
- School of Environmental Studies, Jadavpur University, Kolkata, India
- Earth Observatory of Singapore, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
17
|
Pang Y, Huang W, Luo XS, Chen Q, Zhao Z, Tang M, Hong Y, Chen J, Li H. In-vitro human lung cell injuries induced by urban PM 2.5 during a severe air pollution episode: Variations associated with particle components. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111406. [PMID: 33007542 DOI: 10.1016/j.ecoenv.2020.111406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 05/20/2023]
Abstract
Environmental air pollutants pose significant threats to public health, especially the toxicity and diseases caused by the atmospheric fine particulate matters (PM2.5). Since the health risks vary with both the concentrations and compositions of PM2.5 which are determined by aerosol sources, how are their toxic effects relevant to the pollution level becomes an important issue, such as the haze episodes covering clean and polluted days. With the transition from non-pollution to pollution stage, daily PM2.5 samples were collected from both the urban and industrial areas of Nanjing city, eastern China, covering a typical haze event in autumn-winter. Their unpropitious effects on human lung epithelial cells (A549) were compared by in vitro toxicity assays and chemical component analysis. Both air levels and cytotoxic effects of PM2.5 varied with the transition of haze event. Although the concentration of PM2.5 in air is of course the highest in pollution stage driven by local stable meteorological condition, unit mass of them posed higher toxicity (lower cell viability and higher IL-6) but induced lower cell oxidative (evidences of ROS and NQO1 mRNA expression) and inflammatory cytokine TNF-α responses than those particles during non-pollution stage. These patterns were explained by the metals and water-soluble components decreased with the haze development. Non-soluble particulate carbonaceous aerosol compositions might play a significant role in inducing cytotoxicity. Moreover, the regional pattern of episode pollution weakened the spatial variation within a city scale. Since the haze development intensified both the quantity and toxicity of PM2.5 in air, the health risks of overall aerosol exposure were synthetically amplified during haze weather, so the increased air particles with higher toxic components from fuel combustion sources should be key targets of pollution control.
Collapse
Affiliation(s)
- Yuting Pang
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Weijie Huang
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao-San Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Qi Chen
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhen Zhao
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mingwei Tang
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Youwei Hong
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| |
Collapse
|
18
|
Jan R, Roy R, Bhor R, Pai K, Satsangi PG. Toxicological screening of airborne particulate matter in atmosphere of Pune: Reactive oxygen species and cellular toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:113724. [PMID: 32078875 DOI: 10.1016/j.envpol.2019.113724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Present study screened the toxicological assessment of airborne particulate matter (PM), mechanistic investigation, relationship between the physicochemical characteristics and its associated toxic response. The average concentration of both PM10 and PM2.5 exceeded the Indian National Ambient Air Quality Standards. In present study, PM bound metals; Fe, Cu, Cr, Ni, Mn, Pb, Cd, Zn, Sr and Co have been taken into account with total metal concentration of 0.83 and 0.44 μg m-3 of PM10 and PM2.5 mass concentrations, respectively. The contribution of redox active metals (Fe, Cu, Cr, Ni and Mn) in PM was more as compared to non-redox metals (Pb, Cd and Co) indicating significant risk to the exposed population as these metals possess the ability to produce reactive oxygen species (ROS) which are responsible for various diseases. The cytotoxicity profiles of PM samples determined by MTT assay on two different cell lines (A549 and PBMC) exhibited dose-dependent effects after 24 h exposure, but the consequences differ with respect to particle size and sampling periods. A significant decrease in cell viability with varying PM concentrations (20, 40, 60, 80 and 100 μg ml-1) with respect to control was found in both cell lines. Incubation of RBC suspension with PM samples caused pronounced disruption of RBC and thus exhibited substantial hemolytic behavior. PM samples showed a range of potency to produce reactive oxygen species (ROS). Almost all PM samples increased the level of pro-inflammatory mediator (Nitric oxide) when compared to corresponding unexposed controls suggesting the important role of reactive nitrogen species in induction of cellular toxicity.
Collapse
Affiliation(s)
- Rohi Jan
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Ritwika Roy
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Renuka Bhor
- Department of Zoology, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Kalpana Pai
- Department of Zoology, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - P Gursumeeran Satsangi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India.
| |
Collapse
|
19
|
Xu P, Chen Y, He S, Chen W, Wu L, Xu D, Chen Z, Wang X, Lou X. A follow-up study on the characterization and health risk assessment of heavy metals in ambient air particles emitted from a municipal waste incinerator in Zhejiang, China. CHEMOSPHERE 2020; 246:125777. [PMID: 31901657 DOI: 10.1016/j.chemosphere.2019.125777] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
To confirm our hypothesis that inhalation might be the primary exposure route of heavy metals for children living in proximity to a municipal waste incinerator (MWI), we conducted a one-year follow up study to characterize the distributions of heavy metals featured in different types of ambient air particles, including PM1, PM2.5 and PM10, at two exposure sites near the MWI (E1 and E2) and one control site (C) in Zhejiang, China. Particle samples were collected by a mid-volume sampler and heavy metals were determined by the inductively coupled plasma mass spectrometry method. The mass concentrations of PM1, PM2.5 and PM10 were 52.0, 85.8 and 100.3 μg/m3 at E1 site, while the concentrations were 40.2, 92.1 and 106.6 μg/m3 at E2 site and 33.4, 55.6 and 66.1 μg/m3 at C site, respectively. Both E1 and E2 had higher PM1, PM2.5 and PM10 levels than C site. The levels of pollution were season dependent, with autumn having the highest levels of PM1, PM2.5 and PM10 across all three sampling sites. Regarding the distributions of heavy metals, Pb accounted for the majority of the seven metals in all groups, ranging from 43.2% to 51.3%, followed by Mn that ranged from 22.0% to 32.0%. The Pb levels of PM1, PM2.5 and PM10 in the MWI area were 22.6, 34.2 and 36.2 ng/m3, respectively, while Mn levels were 10.1, 20.0 and 23.5 ng/m3, respectively. The health risk assessment results suggested that residents were suffering high non-carcinogenic risk posed by MWI-emitted particle-bound toxic metals, as well as the high lifetime carcinogenic risk. This study revealed that ambient air, no matter whether near or far away from an MWI, bore more PM1, PM2.5 and PM10 particles than general, non-polluted ambient air, especially in autumn.
Collapse
Affiliation(s)
- Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Yuan Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Shengliang He
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Weizhong Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Dandan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China.
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China.
| |
Collapse
|
20
|
Xie JJ, Yuan CG, Xie J, Niu XD, He AE. PM 2.5-bound potentially toxic elements (PTEs) fractions, bioavailability and health risks before and after coal limiting. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110249. [PMID: 32044603 DOI: 10.1016/j.ecoenv.2020.110249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/10/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Fractions, bioavailability, health risks of fine particulate maters (PM2.5)-bound potentially toxic elements (PTEs) (Pb, Cd, Cr, Cu and Zn) were investigated before and after coal limiting in Baoding city. The winter PM2.5 samples were collected at different functional areas such as residential area (RA), industrial area (IA), suburb (SB), street (ST) and Botanical Garden Park (BG) in 2016 (coal dominated year) and 2017 (gas dominated year). The fractions and bioavailability of PTEs were determined and evaluated based on BCR sequential extraction. Health risks through inhalation exposure were evaluated by US EPA health risk assessment model. The results from different years and functional areas were compared and discussed. The fractions and bioavailability of PM2.5-bound PTEs varied with functional areas. The percentages of cadmium (Cd) and zinc (Zn) in acid-soluble fraction (F1-Cd and F1-Zn) to the total amount of Cd and Zn were low in BG samples (p < 0.05). Bioavailability of Cd were high in SB samples (p < 0.05). Total contents of PM-bound PTEs in 2017 generally decreased compared with 2016. The differences of fraction and bioavailability between 2016 and 2017 depended on the elements and areas. Higher proportions of copper (Cu) in acid-soluble fraction (F1-Cu) and bioavailability of Cu (p < 0.05) were found in 2017 samples. Significant differences were found just at IA and RA for Pb, Cd and Zn. Our results indicated that the health risks from inhalation exposure for PTEs in PM2.5 declined about 11%-52% after the coal limiting in this city.
Collapse
Affiliation(s)
- Jiao-Jiao Xie
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Chun-Gang Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Jin Xie
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Xiao-Dong Niu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - An-En He
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| |
Collapse
|
21
|
Jena S, Perwez A, Singh G. Trace element characterization of fine particulate matter and assessment of associated health risk in mining area, transportation routes and institutional area of Dhanbad, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2731-2747. [PMID: 31161408 DOI: 10.1007/s10653-019-00329-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Samples of PM2.5 were collected on PTFE filters at 11 monitoring stations in Dhanbad, India, from March, 2014, to February, 2015, for the quantification of 10 PM2.5-bound trace elements by using ICP-OES, source apportionment by using principal component analysis and health risks posed by PM2.5-bound trace elements by using health risk assessment model developed by US EPA. The average annual PM2.5 concentration (149 ± 66 µg/m3) exceeded the national ambient air quality standards by factor of 3.7, US EPA national ambient air quality standards by factor of 10 and WHO air quality guidelines by factor of 15. The sum total of average annual concentration of all PM2.5-bound trace elements was found to be 3.206 µg/m3 with maximum concentrations of Fe (61%), Zn (21%) and Pb (11%). Coal mining, coal combustion, vehicular emission, tyre and brake wear and re-suspension of road dust were identified as dominant sources of PM2.5-bound trace elements from the results of correlation and chemometric analysis. The significantly high HQ values posed by PM2.5-bound Co and Ni and intensification of HI values (15.7, 10.8 and 8.54 in mining area, transportation routes and institutional area, respectively) for multielemental exposure indicate high potential of non-carcinogenic health risk associated with inhalation exposure. The carcinogenic health risk due to multielemental exposure in mining area (2.27 × 10-4) and transportation routes (1.57 × 10-4) for adults were significantly higher than threshold value indicating the vulnerability of adults toward inhalation-induced carcinogenic risk posed by PM2.5-bound trace elements.
Collapse
Affiliation(s)
- Sridevi Jena
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad, 826004, India.
| | - Atahar Perwez
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad, 826004, India
| | - Gurdeep Singh
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad, 826004, India
| |
Collapse
|
22
|
Sah D, Verma PK, Kandikonda MK, Lakhani A. Chemical fractionation, bioavailability, and health risks of heavy metals in fine particulate matter at a site in the Indo-Gangetic Plain, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19749-19762. [PMID: 31089995 DOI: 10.1007/s11356-019-05144-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
In the present study, the distribution and chemical fractionation of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in PM2.5 collected at Sikandarpur in Agra from September 2015 to February 2016 were carried out to evaluate their mobility potential, environmental, and human health risk through inhalation. Sequential extraction procedure was applied to partition the heavy metals into four fractions (soluble and exchangeable fraction (F1); carbonates, oxides, and reducible fraction (F2); bound to organic matter, oxidizable, and sulphidic fraction (F3); and residual fraction (F4)) in PM2.5 samples. The metals in each fraction were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Daily PM2.5 concentration ranged between 13 and 238 μg m-3 during the study period. For more than 92% of the days, the mass concentrations were greater than the National Ambient Air Quality Standard (NAAQS) set at 60 μg m-3. The total mass concentration of the eight metals was 3.3 μg m-3 that accounted for 2.5% of the PM2.5 mass concentration and followed the order Fe > Zn > Cu > Mn > Pb > Ni > Cd > Cr in dominance. The carcinogenic metals (Cd, Cr, Ni, and Pb) comprised 10% of the total metal determined. Almost all the metals had the highest proportion in the residual fraction (F4) except Ni, which had the highest proportion in the reducible fraction (F2). Chemical fractionation and contamination factor (CF) showed that Pb and Ni are readily mobilized and more bioavailable. Risk assessment code (RAC) showed that Cd, Cu, Mn, Ni, Pb, and Zn had medium environmental risk, while Cr and Fe had low risk. When the bioavailable (F1 + F2) concentrations were applied to calculate non-carcinogenic and carcinogenic risk, the results showed that the value of hazard index (HI) for toxic metals was 1.7 for both children and adults through inhalation. The integrated carcinogenic risk was 1.8 × 10-6 for children and 7.3 × 10-6 for adults, with both values being higher than the precautionary criterion (1 × 10-6). Enrichment factor (EF) calculations showed that Cd, Pb, Zn, and Ni were enriched being contributed by anthropogenic activities carried out in the industrial sectors of the city.
Collapse
Affiliation(s)
- Dinesh Sah
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra (UP), Agra, India
| | - Puneet Kumar Verma
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra (UP), Agra, India
| | - Maharaj Kumari Kandikonda
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra (UP), Agra, India
| | - Anita Lakhani
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra (UP), Agra, India.
| |
Collapse
|
23
|
Motesaddi Zarandi S, Shahsavani A, Khodagholi F, Fakhri Y. Concentration, sources and human health risk of heavy metals and polycyclic aromatic hydrocarbons bound PM 2.5 ambient air, Tehran, Iran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1473-1487. [PMID: 30552597 DOI: 10.1007/s10653-018-0229-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The exposure to heavy metals and polycyclic aromatic hydrocarbons (PAHs) bound to particulate matter 2.5 (PM2.5) ambient air can result in some adverse health effect. In the current study, PM2.5 ambient air of Tehran metropolitan, Iran, was characterized by the aid of scanning electron microscope and energy-dispersive X-ray techniques. Also, the human health risk of heavy metals and PAHs bound PM2.5 for adults and children was assessed using the Monte Carlo simulation method. According to our findings, a size range of 0.97-2.46 μm with an average diameter of 1.56 μm for PM2.5 was noted. The average concentration of PM2.5 in ambient air (8.29E+04 ± 2.94E+04 ng m-3) significantly (p < 0.05) was suppressed the national (2.50E+04 ng m-3), World Health Organization (2.50E+04 ng m-3) and Environmental Protection Agency (3.50E+04 ng m-3) standard limits. The rank order of heavy metals bound PM2.5 was determined as Al > Cu > Cd > Cr > Pb > Ni > Fe > Mn. The maximum concentration among 16 PAHs compounds investigated was correlated with Phenanthrene. Considering the principal component analysis, the main source of heavy metals (Ni, Pb and Cr) is vehicle combustion. Moreover, the rank order of exposure pathways based on their health risk was ingestion > inhalation > dermal contact. Moreover, the significant health risks for Tehran residents due to heavy metals bound PM2.5 [target hazard quotient > 1; carcinogenic risk > 1.00E-06)] were noted based on the health risk assessment. Excessive carcinogenic risk (ECR) of PAHs bound PM2.5 was 4.16E-07 that demonstrated that there is no considerable risk (ECR < 1.00E-06).
Collapse
Affiliation(s)
- Saeed Motesaddi Zarandi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadolah Fakhri
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Sah D, Verma PK, Kumari KM, Lakhani A. Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1445-1458. [PMID: 30539333 DOI: 10.1007/s10653-018-0223-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Samples of PM2.5 were collected from an urban area close to a national highway in Agra, India and sequentially extracted into four different fractions: water soluble (F1), reducible (F2), oxidizable (F3) and residual fraction (F4) for chemical fractionation of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), nickel (Ni) and lead (Pb). The metals were analyzed by inductively coupled plasma optical emission spectroscopy in each fraction. The average mass concentration of PM2.5 was 93 ± 24 μg m-3.The total concentrations of Cr, Pb, Ni, Co, As and Cd in fine particle were 192 ± 54, 128 ± 25, 108 ± 34, 36 ± 6, 35 ± 5 and 8 ± 2 ng m-3, respectively. Results indicated that Cd and Co had the most bioavailability indexes. Risk Assessment Code and contamination factors were calculated to assess the environmental risk. The present study evaluated the potential Pb hazard to young children using the Integrated Exposure Uptake Biokinetic Model. From the model, the probability density of PbB (blood lead level) revealed that at the prevailing atmospheric concentration, 0.302 children are expected to have PbB concentrations exceeding 10 μg dL-1 and an estimated IQ (intelligence quotient) loss of 1.8 points. The predicted blood Pb levels belong to Group 3 (PbB < 5 μg dL-1). Based on the bioavailable fractions, carcinogenic and non-carcinogenic risks via inhalation exposure were assessed for infants, toddlers, children, males and females. The hazard index for potential toxic metals was 2.50, which was higher than the safe limit (1). However, the combined carcinogenic risk for infants, toddlers, children, males and females was marginally higher than the precautionary criterion (10-6).
Collapse
Affiliation(s)
- Dinesh Sah
- Department of Chemistry, Dayalbagh Educational Institute, Agra, U.P., 282005, India
| | - Puneet Kumar Verma
- Department of Chemistry, Dayalbagh Educational Institute, Agra, U.P., 282005, India
| | - K Maharaj Kumari
- Department of Chemistry, Dayalbagh Educational Institute, Agra, U.P., 282005, India
| | - Anita Lakhani
- Department of Chemistry, Dayalbagh Educational Institute, Agra, U.P., 282005, India.
| |
Collapse
|
25
|
Xie JJ, Yuan CG, Shen YW, Xie J, He KQ, Zhu HT, Zhang KG. Bioavailability/speciation of arsenic in atmospheric PM 2.5 and their seasonal variation: A case study in Baoding city, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:487-495. [PMID: 30472473 DOI: 10.1016/j.ecoenv.2018.11.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Arsenic (As) can be easily enriched in atmospheric particulate matters (PMs), especially in fine particulate matters (PM2.5). In this study, thirty two PM2.5 samples were collected in four seasons in Baoding, China, where the haze pollution was very serious in recent years. The total contents, species and bioavailability of arsenic in PM2.5 samples were investigated. Species of arsenic in the PM2.5 samples were discriminated as five fractions using a sequential extraction method: non-specifically sorbed fraction (F1), specifically-sorbed fraction (F2), amorphous and poorly-crystalline hydrous oxides of Fe and Al fraction (F3), well-crystallized hydrous oxides of Fe and Al fraction (F4) and residual fraction (F5). Bioavailabilities of arsenic in the PM2.5 samples were evaluated by in vitro tests using both solubility bioavailability research consortium (SBRC) and Gamble's solution extraction methods. The total volume concentrations of As in PM2.5 were significantly higher in winter than the other seasons. However, the highest mass concentration of As was found in spring. Scanning electron microscopy (SEM) characterization indicated that the physical morphology of the particles varied in different seasons. Significant differences of fraction distribution and BFs were found between different seasons. Arsenic in PM2.5 samples mainly presented in F1 with high bioavailability factor (BF), especially for the samples in summer. In vitro tests indicated that arsenic in PM2.5 could be dissolved more easily in gastric phase rather than intestinal and lung phases. There was a significant correlation between species and in vitro tests. Interestingly, a synergy effect was found between F2 and F3. Health risk assessment indicated that arsenic in PM2.5via inhalation exposure for both children and adults could cause adverse effects. Principal component analysis suggested that the arsenic in PM2.5 was from the similar sources between summer and autumn, winter and spring, respectively.
Collapse
Affiliation(s)
- Jiao-Jiao Xie
- Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, Hebei, China
| | - Chun-Gang Yuan
- Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, Hebei, China.
| | - Yi-Wen Shen
- Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, Hebei, China
| | - Jin Xie
- Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, Hebei, China
| | - Kai-Qiang He
- Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, Hebei, China
| | - Hong-Tao Zhu
- Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, Hebei, China
| | - Ke-Gang Zhang
- Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, Hebei, China
| |
Collapse
|
26
|
Huang RJ, Cheng R, Jing M, Yang L, Li Y, Chen Q, Chen Y, Yan J, Lin C, Wu Y, Zhang R, El Haddad I, Prevot ASH, O'Dowd CD, Cao J. Source-Specific Health Risk Analysis on Particulate Trace Elements: Coal Combustion and Traffic Emission As Major Contributors in Wintertime Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10967-10974. [PMID: 30185022 DOI: 10.1021/acs.est.8b02091] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Source apportionment studies of particulate matter (PM) link chemical composition to emission sources, while health risk analyses link health outcomes and chemical composition. There are limited studies to link emission sources and health risks from ambient measurements. We show such an attempt for particulate trace elements. Elements in PM2.5 were measured in wintertime Beijing, and the total concentrations of 14 trace elements were 1.3-7.3 times higher during severe pollution days than during low pollution days. Fe, Zn, and Pb were the most abundant elements independent of the PM pollution levels. Chemical fractionation shows that Pb, Mn, Cd, As, Sr, Co, V, Cu, and Ni were present mainly in the bioavailable fraction. Positive matrix factorization was used to resolve the sources of particulate trace elements into dust, oil combustion, coal combustion, and traffic-related emissions. Traffic-related emission contributed 65% of total mass of the measured elements during low pollution days. However, coal combustion dominated (58%) during severe pollution days. By combining element-specific health risk analyses and source apportionment results, we conclude that traffic-related emission dominates the health risks by particulate trace elements during low pollution days, while coal combustion becomes equally or even more important during moderate and severe pollution days.
Collapse
Affiliation(s)
- Ru-Jin Huang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth and Environment , Chinese Academy of Sciences , Xi'an 710061 , P. R. China
| | - Rui Cheng
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth and Environment , Chinese Academy of Sciences , Xi'an 710061 , P. R. China
| | - Miao Jing
- COE Lab of Thermofisher Scientific Technology , Shanghai 201206 , P. R. China
| | - Lu Yang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth and Environment , Chinese Academy of Sciences , Xi'an 710061 , P. R. China
| | - Yongjie Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology , University of Macau , Taipa 999078 , Macau
| | - Qi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , P. R. China
| | - Yang Chen
- Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing 400714 , P. R. China
| | - Jin Yan
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth and Environment , Chinese Academy of Sciences , Xi'an 710061 , P. R. China
| | - Chunshui Lin
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth and Environment , Chinese Academy of Sciences , Xi'an 710061 , P. R. China
- School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute , National University of Ireland Galway, University Road , Galway H91CF50 , Ireland
| | - Yunfei Wu
- RCE-TEA, Institute of Atmospheric Physics , Chinese Academy of Sciences , Beijing 100029 , P. R. China
| | - Renjian Zhang
- RCE-TEA, Institute of Atmospheric Physics , Chinese Academy of Sciences , Beijing 100029 , P. R. China
| | - Imad El Haddad
- Laboratory of Atmospheric Chemistry , Paul Scherrer Institute (PSI) , 5232 Villigen , Switzerland
| | - Andre S H Prevot
- Laboratory of Atmospheric Chemistry , Paul Scherrer Institute (PSI) , 5232 Villigen , Switzerland
| | - Colin D O'Dowd
- School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute , National University of Ireland Galway, University Road , Galway H91CF50 , Ireland
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth and Environment , Chinese Academy of Sciences , Xi'an 710061 , P. R. China
| |
Collapse
|
27
|
Sah D, Verma PK, Kumari KM, Lakhani A. Chemical partitioning of fine particle-bound As, Cd, Cr, Ni, Co, Pb and assessment of associated cancer risk due to inhalation, ingestion and dermal exposure. Inhal Toxicol 2017; 29:483-493. [PMID: 29192522 DOI: 10.1080/08958378.2017.1406563] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The bioavailability and human health risks of As, Pb, Ni, Co, Cr and Cd in fine particulate matter (PM2.5) at an urban site on a National highway in Agra, India were investigated. Inductively coupled plasma-optical emission spectrometer was used for metal analysis in sequentially extracted samples to ascertain the highly mobile, reducible, bioavailable and immobile fractions of the metals. Cancer risk resulting from inhalation, dermal and ingestion exposure to each metal in these fractions was calculated according to US EPA models. The average mass concentration of PM2.5 was 87.16 ± 62.51 μg/m3. Cr, Ni and Pb were the most abundant metals. The results showed that Pb and Cr were higher in the mobile fraction. Cd and Co had high bioavailability. Ingestion is the major exposure pathway for all heavy metals except Cr to infants, children and adults followed by inhalation and dermal contact. The cumulative risk for Cr(VI) due to dermal and inhalation routes exceed the maximum acceptable limit for children of age 1-7 years, 8-15 years and adults when total concentration is considered, but the estimated risks are within the acceptable limit when the bioavailable, water soluble and mobile fraction are taken into account. Hence the study shows that children and adults living in the vicinity of this site are more susceptible, hence more attention should be paid to protect them from pollution hazards. The study indicates the importance of metal speciation in assessing associated human health risks.
Collapse
Affiliation(s)
- Dinesh Sah
- a Department of Chemistry , Dayalbagh Educational Institute , Agra , India
| | - Puneet Kumar Verma
- a Department of Chemistry , Dayalbagh Educational Institute , Agra , India
| | - K Maharaj Kumari
- a Department of Chemistry , Dayalbagh Educational Institute , Agra , India
| | - Anita Lakhani
- a Department of Chemistry , Dayalbagh Educational Institute , Agra , India
| |
Collapse
|