1
|
Gao Y, Sun X, Zhou Y, Pan S. Differences in the accumulation of pentachloronitrobenzene and cadmium in vegetables grown in contaminated soils. ENVIRONMENTAL RESEARCH 2024; 263:120119. [PMID: 39389200 DOI: 10.1016/j.envres.2024.120119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
The capability of different vegetable species to accumulate Pentachloronitrobenzene (PCNB) and cadmium (Cd) in soils varies significantly. Investigating these characteristics can guide the rational use of farmland contaminated with PCNB and Cd. The growth of five common vegetables (three vegetable species and three varieties of one species) in PCNB and Cd co-contaminated soils in Southwest China was investigated through a 100-day simulated contamination pot experiment. Interspecific and intervariety differences in the uptake and accumulation of PCNB and Cd were also examined. These vegetables included leafy types such as Lactuca sativa (CL), Lactuca sativa var. longifolia (RL), and Brassica rapa subsp. chinensis (BC), and root types such as Red Raphanus sativus (RR) and Lactuca sativa var. angustata (AL). Results showed that light to medium PCNB contamination (0.44-6.74 mg kg-1) promoted the growth of leafy vegetables, while severe contamination (9.88-9.96 mg kg-1) inhibited their growth. Root vegetables were inhibited by PCNB. Soil Cd contamination reduced the biomass of all five vegetables. In co-contamination soil (PCNB: 0.47-9.88 mg kg-1; Cd: 0.46-1.63 mg kg-1), vegetable growth was affected by the interaction between PCNB and Cd. In severely PCNB-contaminated soil, PCNB contents of CL, RL, BC, and AL leaves exceeded food safety limits, while those in RR and AL stems did not. The five vegetables showed varying Cd contamination, with AL leaves being the most contaminated, exceeding the standard by 60 times. PCNB accumulation followed the order: AL leaves > BC > AL stems > RL > CL > RR. Cd accumulation was highest in AL leaves, followed by stems, RR, BC, CL, and lowest in RL, with significant differences (P < 0.05). Co-contaminated soil did not promote PCNB and Cd uptake in vegetables. CL and RL, with low PCNB and Cd accumulation capacities, could be considered low-accumulation varieties for lightly contaminated soils.
Collapse
Affiliation(s)
- Yang Gao
- Chengdu University, Chengdu, 610106, Sichuan, China.
| | - Xin Sun
- Chengdu University, Chengdu, 610106, Sichuan, China.
| | - Yuxiao Zhou
- Chengdu University, Chengdu, 610106, Sichuan, China.
| | - Shengwang Pan
- Chengdu University, Chengdu, 610106, Sichuan, China.
| |
Collapse
|
2
|
Chen J, Yang D, Xu M, Long L, Li Q, Jin J, Chen C, Wu J, Yang G. Foliar application of silicon and selenium reduce the toxicity of cadmium to soybeans. CHEMOSPHERE 2024; 366:143390. [PMID: 39332583 DOI: 10.1016/j.chemosphere.2024.143390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Silicon (Si) and selenium (Se), two environmental protection materials, which are beneficial to plant growth and stress resistance, can also alleviate crop stress induced by heavy metals. However, the effects of Si, Se and their interactions in reducing cadmium (Cd) toxicity and the related mechanisms require further elucidation. Hence, this study implemented a foliar application of Si and Se on soybean (Glycine max L.) that subjected to Cd-induced stress with four treatments (sole/combined application of Si, Se, no fertilizer treatment). The results demonstrated that Si and Se showed effective mitigation of Cd toxicity on soybeans mainly by promoting growth, enhancing photosynthesis, maintaining root vigor, improving antioxidant capacity, alleviating oxidative damage, altering the storage form, subcellular distribution of Cd in soybeans, and was more noticeable when combined overall (Si + Se>Se>Si). Si + Se increased root activity by 28% and CAT activity in leaves by 130.65%. Overall, the combined application of Si and Se exhibited a pronounced synergistic effect in enhancing the healthy growth of soybean plants under Cd pollution, with a more prominent impact observed following the second fertilization.
Collapse
Affiliation(s)
- Jie Chen
- Chengdu University of Technology, No. 218, Section 3, University City Road, Yibin City, 610059, China
| | - Dan Yang
- China College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Min Xu
- China College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Lulu Long
- China College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Qiao Li
- Chengdu Engineering Corporation Limited (Power China), No. 1 North Huanhua Road, Qingyang District, Chengdu, 610072, China
| | - Jiyuan Jin
- Chengdu Engineering Corporation Limited (Power China), No. 1 North Huanhua Road, Qingyang District, Chengdu, 610072, China
| | - Chao Chen
- China College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jun Wu
- China College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Gang Yang
- China College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| |
Collapse
|
3
|
Dai Y, Chen H, Li Y, Hui R, Zhang Z. Promising New Methods Based on the SOD Enzyme and SAUR36 Gene to Screen for Canola Materials with Heavy Metal Resistance. BIOLOGY 2024; 13:441. [PMID: 38927321 PMCID: PMC11200428 DOI: 10.3390/biology13060441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Canola is the largest self-produced vegetable oil source in China, although excessive levels of cadmium, lead, and arsenic seriously affect its yield. Therefore, developing methods to identify canola materials with good heavy metal tolerance is a hot topic for canola breeding. In this study, canola near-isogenic lines with different oil contents (F338 (40.62%) and F335 (46.68%) as the control) and heavy metal tolerances were used as raw materials. In an experiment with 100 times the safe standard values, the superoxide dismutase (SOD) and peroxidase (POD) activities of F335 were 32.02 mmol/mg and 71.84 mmol/mg, while the activities of F338 were 24.85 mmol/mg and 63.86 mmol/mg, exhibiting significant differences. The DEGs and DAPs in the MAPK signaling pathway of the plant hormone signal transduction pathway and other related pathways were analyzed and verified using RT-qPCR. SAUR36 and SAUR32 were identified as the key differential genes. The expression of the SAUR36 gene in canola materials planted in the experimental field was significantly higher than in the control, and FY958 exhibited the largest difference (27.82 times). In this study, SOD and SAUR36 were found to be closely related to heavy metal stress tolerance. Therefore, they may be used to screen for new canola materials with good heavy metal stress tolerance for canola breeding.
Collapse
Affiliation(s)
- Yue Dai
- College of Agriculture, Agricultural University of Hunan, 1 Agricultural Road, Changsha 410128, China; (Y.D.); (H.C.)
| | - Hao Chen
- College of Agriculture, Agricultural University of Hunan, 1 Agricultural Road, Changsha 410128, China; (Y.D.); (H.C.)
| | - Yufang Li
- Hunan Cotton Science Institute, No. 3036 Shanjuan Road, Changde 415101, China;
| | - Rongkui Hui
- Hunan Province Institute of Agricultural Science, South of Hongyuan East Road, Changsha 410125, China
| | - Zhenqian Zhang
- College of Agriculture, Agricultural University of Hunan, 1 Agricultural Road, Changsha 410128, China; (Y.D.); (H.C.)
| |
Collapse
|
4
|
Gong Y, Luo X, Zhang T, Zhou G, Li J, Zhang B, Li P, Huang H. Assembly and comparative analysis of the complete mitochondrial genome of white towel gourd (Luffa cylindrica). Genomics 2024; 116:110859. [PMID: 38750703 DOI: 10.1016/j.ygeno.2024.110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Mitochondria play an important role in the energy production of plant cells through independent genetic systems. This study has aimed to assemble and annotate the functions of the mitochondrial (mt) genome of Luffa cylindrica. The mt genome of L. cylindrica contained two chromosomes with lengths of 380,879 bp and 67,982 bp, respectively. Seventy-seven genes including 39 protein-coding genes, 34 tRNA genes, 3 rRNA genes, and 1 pseudogene, were identified. About 90.63% of the codons ended with A or U bases, and 98.63% of monomers contained A/T, which contributed to the high A/T content (55.91%) of the complete mt genome. Six genes (ATP8, CCMFC, NAD4, RPL10, RPL5 and RPS4) showed positive selection. Phylogenetic analysis indicates that L. cylindrica is closely related to L. acutangula. The present results provide the mt genome of L. cylindrica, which may facilitate possible genetic variation, evolutionary, and molecular breeding studies of L. cylindrica.
Collapse
Affiliation(s)
- Yihui Gong
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China,.
| | - Xuan Luo
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Ting Zhang
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Guihua Zhou
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Jingyi Li
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Bin Zhang
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Peng Li
- Xiangtan Agricultural Science Research Institute, Xiangtan 411100, China
| | - Hua Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical, Fruit Tree Research, Guangzhou 510640, China.
| |
Collapse
|
5
|
Mu D, Zheng S, Lin D, Xu Y, Dong R, Pei P, Sun Y. Derivation and validation of soil cadmium thresholds for the safe farmland production of vegetables in high geological background area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162171. [PMID: 36775143 DOI: 10.1016/j.scitotenv.2023.162171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Excessive dietary intake of cadmium (Cd) poses toxicity risks to human health, and it is therefore essential to establish accurate and regionally appropriate soil Cd thresholds that ensure the safety of agricultural products grown in different areas. This study investigated the differences in the Cd accumulation in 32 vegetable varieties and found that the Cd content ranged from 0.01 to 0.24 mg·kg-1, and decreased in the order of stem and bulb vegetables > leafy vegetables > solanaceous crops > bean cultivars. A correlation analysis and structural equation model showed that pH, soil organic matter, and the cation exchange capacity had significant effects on Cd accumulation in the vegetables and explained 72.1 % of the variance. In addition, species sensitivity distribution (SSD) curves showed that stem and bulb vegetables were more sensitive to Cd than other types of vegetables. Using the Burr Type III function for curve fitting, we derived Cd thresholds of 6.66, 4.15, and 1.57 mg·kg-1 for vegetable soils. These thresholds will ensure that 20 %, 50 %, and 95 % of these vegetable varieties were risk-free, respectively. The predicted threshold of soil Cd was more than twice that of China's current National Soil Quality Standard (GB 15618-2018) for Cd values. Therefore, soil scenarios and cultivars should be considered comprehensively when determining farmland soil thresholds. The present results provide a new model for setting soil Cd criteria in high geological background areas.
Collapse
Affiliation(s)
- Demiao Mu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Shunan Zheng
- Rural Energy & Environment Agency, MARA, Beijing 100125, China
| | - Dasong Lin
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yingming Xu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Ruyin Dong
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Penggang Pei
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| |
Collapse
|
6
|
Ogunkunle CO, Balogun GY, Olatunji OA, Han Z, Adeleye AS, Awe AA, Fatoba PO. Foliar application of nanoceria attenuated cadmium stress in okra (Abelmoschus esculentus L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130567. [PMID: 37055974 DOI: 10.1016/j.jhazmat.2022.130567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Foliar application of nanoparticles (NPs) as a means for ameliorating abiotic stress is increasingly employed in crop production. In this study, the potential of CeO2-NPs as stress suppressants for cadmium (Cd)-stressed okra (Abelmoschus esculentus) plants was investigated, using two cycles of foliar application of CeO2-NPs at 200, 400, and 600 mg/l. Compared to untreated stressed plants, Cd-stressed plants treated with CeO2-NPs presented higher pigments (chlorophyll a and carotenoids). In contrast, foliar applications did not alter Cd root uptake and leaf bioaccumulation. Foliar CeO2-NPs application modulated stress enzymes (APX, SOD, and GPx) in both roots and leaves of Cd-stressed plants, and led to decreases in Cd toxicity in plant's tissues. In addition, foliar application of CeO2-NPs in Cd-stressed okra plants decreased fruit Cd contents, and improved fruit mineral elements and bioactive compounds. The infrared spectroscopic analysis of fruit tissues showed that foliar-applied CeO2-NPs treatments did not induce chemical changes but induced conformational changes in fruit macromolecules. Additionally, CeO2-NPs applications did not alter the eating quality indicator (Mg/K ratio) of okra fruits. Conclusively, the present study demonstrated that foliar application of CeO2-NPs has the potential to ameliorate Cd toxicity in tissues and improve fruits of okra plants.
Collapse
Affiliation(s)
- C O Ogunkunle
- Environmental Botany unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria.
| | - G Y Balogun
- Environmental Botany unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria
| | - O A Olatunji
- Department of Plant Biology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Z Han
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697-2175 CA, USA
| | - A S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697-2175 CA, USA
| | - A A Awe
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - P O Fatoba
- Environmental Botany unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
7
|
Zhu Y, Dong Y, Zhu N, Jin H. Foliar application of biosynthetic nano-selenium alleviates the toxicity of Cd, Pb, and Hg in Brassica chinensis by inhibiting heavy metal adsorption and improving antioxidant system in plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113681. [PMID: 35653978 DOI: 10.1016/j.ecoenv.2022.113681] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Biosynthetic nano-selenium (bio-SeNP), as a plant growth regulator, has better bioavailability and lower toxicity than selenite and selenate. This study investigated the beneficial role of bio-SeNP in mitigating the adverse effects of multiple heavy metals (HMs, e.g., Cd, Pb, and Hg) on growth and yield of pak choi (Brassica chinensis) grown in slightly or heavily polluted (SP or HP) soil by regulating metabolic and antioxidant systems. The results revealed that foliar application of bio-SeNP (5, 10, 20 mg L-1 Se) at the 6-leaf stage greatly reduced the levels of Cd, Pb, and Hg in shoots and roots of pak choi. Application of 5 mg L-1 bio-SeNP significantly (p < 0.05) decreased the translocation factor (TF) of Cd, Pb, and Hg from root to shoot by 9.83%, 44.21%, and 46.99% for SP soil, 24.17%, 56.00%, and 39.36% for HP soil, respectively. Meanwhile, all bio-SeNP treatments led to a significant improvement in plants growth by enhancing the antioxidant defense system (e.g., AsA-GSH) and promoting chlorophyll synthesis as well as suppressed the lipid peroxidation products contents (MDA) in shoots. Moreover, the enhanced levels of mineral nutrient elements (e.g., Ca, Mg, Fe, or Zn) and organic selenium (e.g., selenocystine, Se-methylselenocysteine, and selenomethionine) in the edible shoots of bio-SeNP-treated pak choi plant under multiple HMs stress indicated the positive impacts of bio-SeNP on the improvement of shoot quality and nutritional values. Collectively, our results indicated that bio-SeNP play an important role in the management of multiple HMs-induced adverse effects on pak choi. Foliar application of bio-SeNP at appropriate concentration (≤ 5 mg L-1 Se) can be considered as a promising agronomic measure for safety leafy vegetable production in multiple HMs polluted soils when bio-SeNP application.
Collapse
Affiliation(s)
- Yanyun Zhu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Yiwei Dong
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ning Zhu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Human risk associated with the ingestion of artichokes grown in soils irrigated with water contaminated by potentially toxic elements, Junin, Peru. Saudi J Biol Sci 2021; 28:5952-5962. [PMID: 34588912 PMCID: PMC8459158 DOI: 10.1016/j.sjbs.2021.06.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 11/22/2022] Open
Abstract
The contamination of water, air and soil with potentially toxic elements (PTE) compromises the supply of contaminant free food. Vegetables grown in contaminated soils can absorb and accumulate PTE at concentrations that are toxic to human health. In this context, the human risk associated with the intake of artichokes grown in soils irrigated with PTE contaminated water was assessed. 120 samples of surface soil and artichoke heads were collected and the concentrations of Cu, Fe, Pb, Zn and As were determined. The results showed that the concentrations of Cu, Fe and Zn in soil did not exceed the standards of the Ministry of Environment of Peru, but they did exceed those of Pb (125.45 mg kg-1) and As (28.70 mg kg-1). The decreasing order of mean PTE concentration in artichoke heads was Fe > Zn > Cu > Pb > As, exceeding the permissible levels of FAO/WHO CODEX Alimentarius. However, the concentrations of As comply with the maximum limits of inorganic contaminants in vegetables (0.3 mg kg-1) established in the MERCOSUR regulations. The non-carcinogenic and carcinogenic risk of Pb and As indicated that the ingestion of artichoke heads does not represent a health risk.
Collapse
|
9
|
Zhang T, Zhang Y, Li W, Wang L, Jiao Y, Wang Y, Jiang D, Gao X. Occurrence and dietary exposure of heavy metals in marketed vegetables and fruits of Shandong Province, China. Food Sci Nutr 2021; 9:5166-5173. [PMID: 34532025 PMCID: PMC8441287 DOI: 10.1002/fsn3.2485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/27/2021] [Accepted: 07/06/2021] [Indexed: 11/26/2022] Open
Abstract
The contamination of heavy metals in vegetables and fruits is a serious threat to food safety and human health. The present study was designed to investigate the occurrence and dietary exposure of lead (Pb), arsenic (As), cadmium (Cd), and mercury (Hg) in vegetables and fruits in Shandong Province, China. Results demonstrated that the mean level of total heavy metals was 30.25 µg/kg. The most frequently found heavy metal was Cd (69.2%) with a mean value of 11.54 µg/kg. The mean exposure values of Pb, As, Cd, and Hg in vegetables were 0.052, 0.045, 0.038, and 2.40 × 10-3 µg/kg bw/day, respectively. Moreover, the calculated hazard quotient (HQ) values of mean levels for these four heavy metals were all less than 1, indicating the health risk of heavy metal exposure caused by vegetable consumption was low. This study has displayed baseline information on heavy metal contamination in vegetables and fruits, which can provide useful data support for the formulation of relevant standards and government management.
Collapse
Affiliation(s)
- Tianran Zhang
- Department of Physical and Chemical InspectionSchool of Public HealthCheeloo College of MedicineShandong UniversityJinanP. R. China
- Department of Physical and Chemical TestingShandong Center for Food Safety Risk AssessmentShandong Center for Disease Control and PreventionJinanP. R. China
| | - Yuan Zhang
- Department of Medical ExaminationShandong Medical CollegeJinanP. R. China
| | - Wei Li
- Department of Physical and Chemical TestingShandong Center for Food Safety Risk AssessmentShandong Center for Disease Control and PreventionJinanP. R. China
| | - Lin Wang
- Department of Physical and Chemical TestingShandong Center for Food Safety Risk AssessmentShandong Center for Disease Control and PreventionJinanP. R. China
| | - Yanni Jiao
- Department of Physical and Chemical TestingShandong Center for Food Safety Risk AssessmentShandong Center for Disease Control and PreventionJinanP. R. China
| | - Yuxin Wang
- Department of Physical and Chemical InspectionSchool of Public HealthCheeloo College of MedicineShandong UniversityJinanP. R. China
| | - Dafeng Jiang
- Department of Physical and Chemical TestingShandong Center for Food Safety Risk AssessmentShandong Center for Disease Control and PreventionJinanP. R. China
| | - Xibao Gao
- Department of Physical and Chemical InspectionSchool of Public HealthCheeloo College of MedicineShandong UniversityJinanP. R. China
| |
Collapse
|