1
|
Manzeke-Kangara MG, Ligowe IS, Kaninga B, Nalivata P, Kabambe V, Mbewe E, Chishala BH, Sakala GM, Mapfumo P, Mtambanengwe F, Tendayi T, Murwira A, Chilimba ADC, Phiri FP, Ander EL, Bailey EH, Lark RM, Millar K, Watts MJ, Young SD, Broadley MR. Doctoral training to support sustainable soil geochemistry research in Africa. Interface Focus 2024; 14:20230058. [PMID: 39129856 PMCID: PMC11310714 DOI: 10.1098/rsfs.2023.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 05/22/2024] [Indexed: 08/13/2024] Open
Abstract
Africa's potential for scientific research is not yet being realized, for various reasons including a lack of researchers in many fields and insufficient funding. Strengthened research capacity through doctoral training programmes in higher education institutes (HEIs) in Africa, to include collaboration with national, regional and international research institutions, can facilitate self-reliant and sustainable research to support socio-economic development. In 2012, the Royal Society and the UK's Department for International Development (now the Foreign, Commonwealth and Development Office) launched the Africa Capacity Building Initiative (ACBI) Doctoral Training Network which aimed to strengthen research capacity and training across sub-Saharan Africa. The ACBI supported 30 core PhD scholarships, all registered/supervised within African HEIs with advisory support from the UK-based institutes. Our 'Soil geochemistry to inform agriculture and health policies' consortium project, which was part of the ACBI doctoral training programme network, was implemented in Malawi, Zambia and Zimbabwe between 2014 and 2020. The aims of our consortium were to explore linkages between soil geochemistry, agriculture and public health for increased crop productivity, nutrition and safety of food systems and support wider training and research activities in soil science. Highlights from our consortium included: (i) the generation of new scientific evidence on linkages between soils, crops and human nutrition; (ii) securing new projects to translate science into policy and practice; and (iii) maintaining sustainable collaborative learning across the consortium. Our consortium delivered high-quality science outputs and secured new research and doctoral training funding from a variety of sources to ensure the continuation of research and training activities. For example, follow-on Global Challenges Research Funded Translation Award provided a strong evidence base on the prevalence of deficiencies in children under 5 years of age and women of reproductive age in Zimbabwe. This new evidence will contribute towards the design and implementation of a nationally representative micronutrient survey as an integral part of the Zimbabwe Demographic and Health Surveys conducted by the Ministry of Health and Child Care. The award also generated new evidence and a road map for creating quality innovative doctorates through a doctoral training landscape activity led by the Zimbabwe Council for Higher Education. Although our project and the wider ACBI has contributed to increasing the self-reliance and sustainability of research within the region, many challenges remain and ongoing investment is required.
Collapse
Affiliation(s)
- M. G. Manzeke-Kangara
- Rothamsted Research, West Common, Harpenden, UK
- Department of Soil Science and Environment, University of Zimbabwe, Harare, Zimbabwe
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - I. S. Ligowe
- Department of Crop and Soil Sciences, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
- Department of Agricultural Research Services, Lilongwe, Malawi
- Department of Forestry and Environmental Management, Mzuzu University, Mzuzu, Malawi
| | - B. Kaninga
- Zambia Agriculture Research Institute, Mount Makulu, Central Research Station, Lusaka, Zambia
- School of Agricultural Sciences, University of Zambia, Great East Road Campus, Lusaka, Zambia
| | - P. Nalivata
- Department of Crop and Soil Sciences, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - V. Kabambe
- Department of Crop and Soil Sciences, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - E. Mbewe
- Department of Crop and Soil Sciences, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - B. H. Chishala
- School of Agricultural Sciences, University of Zambia, Great East Road Campus, Lusaka, Zambia
| | - G. M. Sakala
- Zambia Agriculture Research Institute, Mount Makulu, Central Research Station, Lusaka, Zambia
| | - P. Mapfumo
- Department of Soil Science and Environment, University of Zimbabwe, Harare, Zimbabwe
| | - F. Mtambanengwe
- Department of Soil Science and Environment, University of Zimbabwe, Harare, Zimbabwe
| | - T. Tendayi
- Department of Soil Science and Environment, University of Zimbabwe, Harare, Zimbabwe
| | - A. Murwira
- Department of Geography, Geospatial Sciences and Earth Observation, University of Zimbabwe, Harare, Zimbabwe
| | | | - F. P. Phiri
- Department of Nutrition, HIV and AIDS, Ministry of Health, Lilongwe, Malawi
| | - E. L. Ander
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Nottinghamshire, UK
| | - E. H. Bailey
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - R. M. Lark
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - K. Millar
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - M. J. Watts
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Nottinghamshire, UK
| | - S. D. Young
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - M. R. Broadley
- Rothamsted Research, West Common, Harpenden, UK
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
2
|
Avnee, Sood S, Chaudhary DR, Jhorar P, Rana RS. Biofortification: an approach to eradicate micronutrient deficiency. Front Nutr 2023; 10:1233070. [PMID: 37789898 PMCID: PMC10543656 DOI: 10.3389/fnut.2023.1233070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
Micronutrient deficiency also known as "hidden hunger" refers to a condition that occurs when the body lacks essential vitamins and minerals that are required in small amounts for proper growth, development and overall health. These deficiencies are particularly common in developing countries, where a lack of access to a varied and nutritious diet makes it difficult for people to get the micronutrients they need. Micronutrient supplementation has been a topic of interest, especially during the Covid-19 pandemic, due to its potential role in supporting immune function and overall health. Iron (Fe), zinc (Zn), iodine (I), and selenium (Se) deficiency in humans are significant food-related issues worldwide. Biofortification is a sustainable strategy that has been developed to address micronutrient deficiencies by increasing the levels of essential vitamins and minerals in staple crops that are widely consumed by people in affected communities. There are a number of agricultural techniques for biofortification, including selective breeding of crops to have higher levels of specific nutrients, agronomic approach using fertilizers and other inputs to increase nutrient uptake by crops and transgenic approach. The agronomic approach offers a temporary but speedy solution while the genetic approach (breeding and transgenic) is the long-term solution but requires time to develop a nutrient-rich variety.
Collapse
Affiliation(s)
- Avnee
- Department of Agronomy, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | - Sonia Sood
- Department of Vegetable Science and Floriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | - Desh Raj Chaudhary
- Department of Vegetable Science and Floriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | - Pooja Jhorar
- Department of Agronomy, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | - Ranbir Singh Rana
- Department of Agronomy, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| |
Collapse
|
3
|
Tianyi Y, Farooq A, Mohiuddin M, Farooq A, Gonzalez NCT, Abbasi A, Hina A, Irshad M. Role of different organic and inorganic amendments in the biofortification of iodine in Coriandrum sativum crop. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1145979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Iodine deficiency disorder (IDDs) is one of the most prevailing and common health issues in mountainous communities. An effective way to control the prevalence and emergence of IDDs in remote areas is to use iodized salt. However, recent studies indicated that iodized salt is mostly lost during the cooking process. The current study of iodine biofortification differed from the previous studies in two main aspects: it involved exogenous organic iodine (OI), and inorganic iodine such as potassium iodide (KI), added in the amended soils, which previous studies did not consider. Moreover, the translocation, transformation, and distribution of iodine from soil to plants are poorly understood in amended soil. Thus, identifying an effective management option to enhance iodine (I) bioavailability in nutrient-deficient soils is currently a significant challenge. Therefore, a greenhouse study was conducted to investigate the effects of organic and inorganic soil amendments on the uptake of different iodine sources in coriander crops. Results showed that applying an inorganic iodine source significantly enhanced the iodine edible part of the crop compared to the control (p < 0.05). The application of soil amendments relatively improved iodine uptake by the coriander crop compared to the control. The highest iodine was found in crop tissues grown in wood ash-amended soil supplemented with KI (291.97 μg kg−1). The KI uptake was significantly higher than the OI (p < 0.05). Compared to OI, a higher translocation factor (0.96) and distribution coefficient (3.51) were found for plants treated with KI. Thus, this study indicates that a suitable soil amendment can be a better option for iodine biofortification and that it can serve as an alternative to iodized salt in preventing IDDs.
Collapse
|
4
|
Smoleń S, Kowalska I, Skoczylas Ł, Tabaszewska M, Pitala J, Mrożek J, Kováčik P. Effectiveness of enriching lettuce with iodine using 5-iodosalicylic and 3,5-diiodosalicylic acids and the chemical composition of plants depending on the type of soil in a pot experiment. Food Chem 2022; 382:132347. [PMID: 35151013 DOI: 10.1016/j.foodchem.2022.132347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 11/27/2022]
Abstract
Iodine is a beneficial element for humans, animals and plants. This study was a comparison of the effectiveness of iodosalicylate uptake by lettuce. The experiment included two sub-blocks: organic soil and mineral soil with the addition of the same fertigation of plants (8 times every 7 days) with 10 µM solutions (100 mL/per one plant/one application) of potassium iodate (KIO3), salicylic acid (SA) alone or together with KIO3, 5-iodosalicylic acid (5-ISA) or 3,5-diiodosalicylic acid (3,5-diISA). None of the tested iodine compounds negatively affected the yield of lettuce. When growing plants on mineral soil, plants accumulated more iodine in the leaves than plants grown on peat substrate. The use of 5-ISA allowed for achieving better efficiency of plant biofortification in iodine than the application of KIO3 and 3,5-diISA. The type of soil significantly modified the chemical composition of lettuce.
Collapse
Affiliation(s)
- Sylwester Smoleń
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Krakow, Poland.
| | - Iwona Kowalska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Krakow, Poland.
| | - Łukasz Skoczylas
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Krakow, Poland.
| | - Małgorzata Tabaszewska
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Krakow, Poland.
| | - Joanna Pitala
- Laboratory of Mass Spectrometry, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Krakow, Poland.
| | - Joanna Mrożek
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Krakow, Poland.
| | - Peter Kováčik
- Department of Agrochemistry and Plant Nutrition, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia.
| |
Collapse
|
5
|
Dhaliwal SS, Sharma V, Shukla AK, Verma V, Kaur M, Shivay YS, Nisar S, Gaber A, Brestic M, Barek V, Skalicky M, Ondrisik P, Hossain A. Biofortification-A Frontier Novel Approach to Enrich Micronutrients in Field Crops to Encounter the Nutritional Security. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041340. [PMID: 35209127 PMCID: PMC8877941 DOI: 10.3390/molecules27041340] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/21/2022]
Abstract
Globally, many developing countries are facing silent epidemics of nutritional deficiencies in human beings and animals. The lack of diversity in diet, i.e., cereal-based crops deficient in mineral nutrients is an additional threat to nutritional quality. The present review accounts for the significance of biofortification as a process to enhance the productivity of crops and also an agricultural solution to address the issues of nutritional security. In this endeavor, different innovative and specific biofortification approaches have been discussed for nutrient enrichment of field crops including cereals, pulses, oilseeds and fodder crops. The agronomic approach increases the micronutrient density in crops with soil and foliar application of fertilizers including amendments. The biofortification through conventional breeding approach includes the selection of efficient genotypes, practicing crossing of plants with desirable nutritional traits without sacrificing agricultural and economic productivity. However, the transgenic/biotechnological approach involves the synthesis of transgenes for micronutrient re-translocation between tissues to enhance their bioavailability. Soil microorganisms enhance nutrient content in the rhizosphere through diverse mechanisms such as synthesis, mobilization, transformations and siderophore production which accumulate more minerals in plants. Different sources of micronutrients viz. mineral solutions, chelates and nanoparticles play a pivotal role in the process of biofortification as it regulates the absorption rates and mechanisms in plants. Apart from the quality parameters, biofortification also improved the crop yield to alleviate hidden hunger thus proving to be a sustainable and cost-effective approach. Thus, this review article conveys a message for researchers about the adequate potential of biofortification to increase crop productivity and nourish the crop with additional nutrient content to provide food security and nutritional quality to humans and livestock.
Collapse
Affiliation(s)
- Salwinder Singh Dhaliwal
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India; (S.S.D.); (V.S.); (V.V.); (M.K.); (S.N.)
| | - Vivek Sharma
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India; (S.S.D.); (V.S.); (V.V.); (M.K.); (S.N.)
| | | | - Vibha Verma
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India; (S.S.D.); (V.S.); (V.V.); (M.K.); (S.N.)
| | - Manmeet Kaur
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India; (S.S.D.); (V.S.); (V.V.); (M.K.); (S.N.)
| | - Yashbir Singh Shivay
- Department of Agronomy, Indian Agricultural Research Institute (ICAR), New Delhi 110012, India;
| | - Shahida Nisar
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India; (S.S.D.); (V.S.); (V.V.); (M.K.); (S.N.)
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
- Correspondence: (M.B.); (A.H.)
| | - Viliam Barek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Peter Ondrisik
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
- Correspondence: (M.B.); (A.H.)
| |
Collapse
|
6
|
Golubkina N, Moldovan A, Fedotov M, Kekina H, Kharchenko V, Folmanis G, Alpatov A, Caruso G. Iodine and Selenium Biofortification of Chervil Plants Treated with Silicon Nanoparticles. PLANTS (BASEL, SWITZERLAND) 2021; 10:2528. [PMID: 34834890 PMCID: PMC8618568 DOI: 10.3390/plants10112528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Production of functional food with high levels of selenium (Se) and iodine (I) obtained via plant biofortification shows significant difficulties due to the complex interaction between the two elements. Taking into account the known beneficial effect of silicon (Si) on plant growth and development, single and joint foliar biofortification of chervil plants with potassium iodide (150 mg L-1) and sodium selenate (10 mg L-1) was carried out in a pot experiment with and without Si nanoparticles foliar supplementation. Compared to control plants, nano-Si (14 mg L-1) increased shoot biomass in all treatments: by 4.8 times with Si; by 2.8 times with I + Si; by 5.6 times with Se + Si; by 4.0 times with I + Se + Si. The correspondent increases in root biomass were 4.5, 8.7, 13.3 and 10.0 times, respectively. The growth stimulation effect of Se, I and I + Se treatments resulted in a 2.7, 3.5 and 3.6 times increase for chervil shoots and 1.6, 3.1 and 8.6 times for roots, respectively. Nano-Si improved I biofortification levels by twice, while I and Se enhanced the plant content of each other. All treatments decreased nitrate levels, compared to control, and increased the photopigment accumulation. Improvement of total antioxidant activity and phenolic content was recorded only under the joint application of Se + I + Si. Foliar nano-Si treatment affected other element content in plants: decreased Na+ accumulation in single and joint supplementation with Se and I, restored Fe, Mn and Cr amount compared to the decreased levels recorded in separately Se and I fortified plants and promoted Al accumulation both with or without Se and I biofortification. The results of this research suggest high prospects of foliar nano-Si supply for enhancing both growth and joint I/Se biofortification of chervil.
Collapse
Affiliation(s)
- Nadezhda Golubkina
- Federal Scientific Vegetable Center, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Anastasia Moldovan
- Federal Scientific Vegetable Center, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Mikhail Fedotov
- A. Baikov Institute of Metallurgy and Material Science, Leninsky Pr. 49, Moscow 119334, Russia; (M.F.); (G.F.); (A.A.)
| | - Helene Kekina
- Department of Hygiene, Medical Postgraduate Academy, Moscow 123995, Russia;
| | - Viktor Kharchenko
- Federal Scientific Vegetable Center, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Gundar Folmanis
- A. Baikov Institute of Metallurgy and Material Science, Leninsky Pr. 49, Moscow 119334, Russia; (M.F.); (G.F.); (A.A.)
| | - Andrey Alpatov
- A. Baikov Institute of Metallurgy and Material Science, Leninsky Pr. 49, Moscow 119334, Russia; (M.F.); (G.F.); (A.A.)
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy;
| |
Collapse
|
7
|
Golubkina N, Moldovan A, Kekina H, Kharchenko V, Sekara A, Vasileva V, Skrypnik L, Tallarita A, Caruso G. Joint Biofortification of Plants with Selenium and Iodine: New Field of Discoveries. PLANTS (BASEL, SWITZERLAND) 2021; 10:1352. [PMID: 34371555 PMCID: PMC8309223 DOI: 10.3390/plants10071352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 05/04/2023]
Abstract
The essentiality of selenium (Se) and iodine (I) to human beings and the widespread areas of selenium and iodine deficiency determine the high significance of functional food production with high levels of these elements. In this respect, joint biofortification of agricultural crops with Se and I is especially attractive. Nevertheless, in practice this topic has raised many problems connected with the possible utilization of many Se and I chemical forms, different doses and biofortification methods, and the existence of wide species and varietal differences. The limited reports relevant to this subject and the multiplicity of unsolved questions urge the need for an adequate evaluation of the results obtained up-to-date, useful for developing further future investigations. The present review discusses the outcome of joint plant Se-I biofortification, as well as factors affecting Se and I accumulation in plants, paying special attention to unsolved issues. A particular focus has been given to the prospects of herb sprouts production enriched with Se and I, as well as the interactions between the latter microelements and arbuscular-mycorrhizal fungi (AMF).
Collapse
Affiliation(s)
- Nadezhda Golubkina
- Laboratory Analytical Department, Federal Scientific Center of Vegetable Production, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Anastasia Moldovan
- Laboratory Analytical Department, Federal Scientific Center of Vegetable Production, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Helene Kekina
- Medical Academy of Post Graduate Education, Moscow 123995, Russia;
| | - Victor Kharchenko
- Laboratory Analytical Department, Federal Scientific Center of Vegetable Production, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland;
| | - Viliana Vasileva
- Institute of Forage Crops, 89 General Vladimir Vazov Str, 5802 Pleven, Bulgaria;
| | - Liubov Skrypnik
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad 236040, Russia;
| | - Alessio Tallarita
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (A.T.); (G.C.)
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (A.T.); (G.C.)
| |
Collapse
|