1
|
Abbas G, Tariq ML, Khan MN, Ahmed K, Amjad M, Jabeen Z, Ali Q, Raza M. Multivariate characterization of salicylic acid and potassium induced physio-biochemical and phytoremediation responses in quinoa exposed to lead and cadmium contamination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109029. [PMID: 39137682 DOI: 10.1016/j.plaphy.2024.109029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/16/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The levels of soils pollutants such as lead (Pb) and cadmium (Cd) have significantly increased recently resulting in ecological disturbances and threatening crop production. Various amendments have been employed to enhance the tolerance of crops to withstand Cd and Pb stresses. However, the role of combined application of potassium (K) and of salicylic acid (SA) for Cd and Pb stress mitigation and phytoremediation by quinoa (Chenopodium quinoa Willd) has not been comprehended well. In the present study, the effect of 10 mM K and 0.1 mM SA was tested on the quinoa plants subjected to 250 μM Pb and/or 100 μM Cd. The Pb and Cd treatments were applied separately or together. Phytotoxicity induced by Pb and Cd resulted in drastic decrease (>60%) in chlorophyll contents, stomatal conductance, and plant biomass. The collective treatment of Pb and Cd induced an increase in the concentration of hydrogen peroxide (13-fold) and lipid peroxidation (16-fold) that resulted in a 61% reduction in membrane stability. The application of 10 mM K and/or 0.1 mM SA was remarkable in mitigating the adverse effect of Pb and Cd. The reduction in plant biomass was 17% when 10 mM K and 0.1 mM SA were applied together under the combined treatment of both the metals. The simultaneous application of K and SA effectively mitigated oxidative stress by enhancing the activities of superoxide dismutase, peroxidase, ascorbate peroxidase, and catalase by 12, 10, 7 and 10-folds respectively. The positive effect of K and SA on these attributes resulted in a remarkable reduction in metal accumulation and translocation and lipid peroxidation. The stressed plants supplemented with K and SA exhibited a significant improvement in the membrane stability index, chlorophyll content, and stomatal conductance. This study concluded that the combined application of K and SA could be a good approach for reducing Pb and Cd phytotoxicity in quinoa and enhancing their phytostabilization potential in the contaminated soils.
Collapse
Affiliation(s)
- Ghulam Abbas
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan.
| | - Muhammad Luqman Tariq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 71491, Saudi Arabia; Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Khalil Ahmed
- Soil Salinity Research Institute Pindi Bhattian, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Zahra Jabeen
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| | - Qasim Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Mohsin Raza
- Department of Chemistry, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| |
Collapse
|
2
|
Zarrabi A, Ghasemi-Fasaei R, Ronaghi A, Zeinali S, Safarzadeh S. Application of synthesized metal-trimesic acid frameworks for the remediation of a multi-metal polluted soil and investigation of quinoa responses. PLoS One 2024; 19:e0310054. [PMID: 39240855 PMCID: PMC11379216 DOI: 10.1371/journal.pone.0310054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/16/2024] [Indexed: 09/08/2024] Open
Abstract
Metal-organic frameworks (MOFs) are structures with high surface area that can be used to remove heavy metals (HMs) efficiently from the environment. The effect of MOFs on HMs removal from contaminated soils has not been already investigated. Monometallic MOFs are easier to synthesize with high efficiency, and it is also important to compare their structures. In the present study, Zn-BTC, Cu-BTC, and Fe-BTC as three metal-trimesic acid MOFs were synthesized from the combination of zinc (Zn), copper (Cu), and iron (Fe) nitrates with benzene-1,3,5-tricarboxylic acid (H3BTC) by solvothermal method. BET analysis showed that the specific surface areas of the Zn-BTC, Cu-BTC, and Fe-BTC were 502.63, 768.39 and 92.4 m2g-1, respectively. The synthesized MOFs were added at the rates of 0.5 and 1% by weight to the soils contaminated with 100 mgkg-1 of Zn, nickel (Ni), lead (Pb), and cadmium (Cd). Then quinoa seeds were sown in the treated soils. According to the results, the uptakes of all four HMs by quinoa were the lowest in the Cu-BTC 1% treated pots and the lowest uptakes were observed for Pb in shoot and root (4.87 and 0.39, μgpot-1, respectively). The lowest concentration of metal extracted with EDTA in the post-harvest soils was for Pb (11.86 mgkg-1) in the Cu-BTC 1% treatment. The lowest metal pollution indices were observed after the application of Cu-BTC 1%, which were 20.29 and 11.53 for shoot and root, respectively. With equal molar ratios, highly porous and honeycomb-shaped structure, the most crystallized and the smallest constituent particle size (34.64 nm) were obtained only from the combination of Cu ions with H3BTC. The lowest porosity, crystallinity, and a semi-gel like feature was found for the Fe-BTC. The synthesized Cu-BTC showed the highest capacity of stabilizing HMs, especially Pb in the soil compared to the Zn-BTC and the Fe-BTC. The highly porous characteristic of the Cu-BTC can make the application of this MOF as a suitable environmental solution for the remediation of high Pb-contaminated soils.
Collapse
Affiliation(s)
- Amir Zarrabi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sedigheh Zeinali
- Department of Nanochemical Engineering Faculty of Advanced Technology, Shiraz University, Shiraz, Iran
| | - Sedigheh Safarzadeh
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Sigal Carriço MR, Diaz Rodrigues M, Piaia Ramborger B, Cristofari Gayer M, Kanaan SHH, Moreira Farias F, Gasparotto Denardin EL, Roehrs R. Influence of light-emitting diodes (LEDs) on the 2,4-diclorophenoxyacetic acid phytoremediation by plectranthus neochilus. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1815-1823. [PMID: 38800998 DOI: 10.1080/15226514.2024.2357639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is an herbicide widely used in crops against broadleaf weeds. However, 2,4-D residues are considered an environmental pollutant in bodies of water. Phytoremediation with Plectranthus neochilus is a substantial strategy to remove 2,4-D from the aquatic environment. The objective of this study was to verify the efficiency of the association of the photostimulus by Light Emitting Diodes (LED) with P. neochilus to improve phytoremediation of 2,4-D in water. Phytoremediation was evaluated with the following samples: natural light, white LED, blue LED, and red LED, with and without the plant as controls. The data corresponding to the validation of the method were in accordance with the required parameters: R2: 0.9926; RSD: 1.74%; LOD: 0.075 mg.L-1; LOQ: 0.227 mg.L-1 and recovery by SPE was 76.57%. The efficiency of the association of LED with P. neochilus in the 28 days was: ambient light + plant (47.0%); white light + plant (37.10%); blue light + plant (26.80%); red light + plant (3.32%). This study demonstrated, for the first time, the efficiency of using LEDs light in association with P. neochilus for the phytoremediation of 2,4-D in water.
Collapse
|
4
|
Gol-Soltani M, Ghasemi-Fasaei R, Ronaghi A, Zarei M, Zeinali S, Haderlein SB. Natural solution for the remediation of multi-metal contamination: application of natural amino acids, Pseudomonas fluorescens and Micrococcus yunnanensis to increase the phytoremediation efficiency. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2021-2033. [PMID: 38949066 DOI: 10.1080/15226514.2024.2372688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Natural amino acids (NAA) have been rarely investigated as chelators, despite their ability to chelate heavy metals (HMs). In the present research, the effects of extracted natural amino acids, as a natural and environmentally friendly chelate agent and the inoculation of Pseudomonas fluorescens (PF) and Micrococcus yunnanensis (MY) bacteria were investigated on some responses of quinoa in a soil polluted with Pb, Ni, Cd, and Zn. Inoculation of PGPR bacteria enhanced plant growth and phytoremediation efficiency. Pb and Cd were higher in quinoa roots, while Ni and Zn were higher in the shoots. The highest efficiencies were observed with NAA treatment and simultaneous inoculation of PF and MY bacteria for Ni, Cd, Pb, and Zn. The highest values of phytoremediation efficiency and uptake efficiency of Ni, Cd, Pb, and Zn were 21.28, 19.11, 14.96 and 18.99 μg g-1, and 31.52, 60.78, 51.89, and 25.33 μg g-1, respectively. Results of present study well demonstrated NAA extracted from blood powder acted as strong chelate agent due to their diversity in size, solubilizing ability, abundant functional groups, and potential in the formation of stable complexes with Ni, Cd, Pb, and Zn, increasing metal availability in soil and improving phytoremediation efficiency in quinoa.
Collapse
Affiliation(s)
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Zarei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sedigheh Zeinali
- Department of Nanochemical Engineering, Shiraz University, Shiraz, Iran
| | - Stefan B Haderlein
- Department of Environmental Mineralogy, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Alghamdi SA, Alharby HF, Abbas G, Al-Solami HM, Younas A, Aldehri M, Alabdallah NM, Chen Y. Salicylic Acid- and Potassium-Enhanced Resilience of Quinoa ( Chenopodium quinoa Willd.) against Salinity and Cadmium Stress through Mitigating Ionic and Oxidative Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3450. [PMID: 37836189 PMCID: PMC10575393 DOI: 10.3390/plants12193450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Salinity and cadmium (Cd) contamination of soil are serious environmental issues threatening food security. This study investigated the role of salicylic acid (SA) and potassium (K) in enhancing the resilience of quinoa against the combined stress of salinity and Cd. Quinoa plants were grown under NaCl (0, 200 mM) and Cd (0, 100 µM) stress, with the addition of 0.1 mM SA and 10 mM K, separately or in combination. The joint stress of Cd and NaCl caused >50% decrease in plant growth, chlorophyll contents, and stomatal conductance compared to the control plants. The higher accumulation of Na and Cd reduced the uptake of K in quinoa tissues. The joint stress of salinity and Cd caused an 11-fold increase in hydrogen peroxide and 13-fold increase in thiobarbituric acid reactive substances contents, and caused a 61% decrease in membrane stability. An external supply of 0.1 mM SA and 10 mM K helped plants to better adapt to salinity and Cd stress with less of a reduction in plant biomass (shoot 19% and root 24%) and less accumulation of Na and Cd in plant tissues. The activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) were enhanced by 11-fold, 10-fold, 7.7-fold, and 7-fold, respectively, when SA and K were applied together to the plants subjected to the joint stress of Cd and salinity. Based on the values of the bioconcentration factor (>1), the translocation factor (<1), and the higher tolerance index, it was clear that Cd-contaminated, salty soils could be stabilized with quinoa under the combined supply of SA and K.
Collapse
Affiliation(s)
- Sameera A. Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.A.); (H.M.A.-S.)
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.A.); (H.M.A.-S.)
- Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan;
- Department of Bio Sciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
| | - Habeeb M. Al-Solami
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.A.); (H.M.A.-S.)
| | - Afshan Younas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan;
| | - Majed Aldehri
- Anatomy Department, College of Medicine, King Khalid University, Abha 62217, Saudi Arabia;
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Yinglong Chen
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
6
|
Aslam M, Sonia M, Abbas G, Shahid M, Murtaza B, Khalid MS, Qaisrani SA, Alharby HF, Alghamdi SA, Alharbi BM, Chen Y. Multivariate characterization of biochemical and physiological attributes of quinoa (Chenopodium quinoa Willd.) genotypes exposed to nickel stress: implications for phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99247-99259. [PMID: 36279057 DOI: 10.1007/s11356-022-23581-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Nickel (Ni) is an essential element for plants; however, excessive uptake of Ni causes phytotoxicity in plants. The phytotoxic effects of Ni on the growth of quinoa and the underlaying mechanisms for Ni tolerance and phytoremediation are unknown. Hence, the present study investigated Ni tolerance and accumulation potential of two quinoa genotypes (Puno and Vikinga). Both genotypes were exposed to Ni (0, 100, 200, 300, and 400 μM) in half-strength Hoagland nutrient solution for three weeks. Results revealed that shoot and root lengths, biomass, stomatal conductance, and chlorophyll contents were decreased with the increase of Ni concentration. Excessive uptake of Ni resulted in the limited uptake of K by root and its translocation to shoot. Ni caused oxidative stress in plants by overproduction of H2O2 leading to lipid peroxidation of cell membranes. Genotype Puno showed greater tolerance to Ni than Vikinga based on tolerance index, lower bioconcentration factor, and translocation factor. Greater tolerance of Puno was mainly attributed to improved physiological responses and amelioration of oxidative stress by induction of antioxidant enzymes such as peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX). It was revealed through multivariate analysis that Ni had strong negative correlations with growth and physiological attributes and positive associations with oxidative stress attributes. The study demonstrated genotypic variation in response to varying Ni concentrations and Puno performed better than Vikinga for phytostabilization of Ni-contaminated soils.
Collapse
Affiliation(s)
- Maria Aslam
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Mbarki Sonia
- Laboratory of Management and Valorization of Forest Resources, Water and Forestry (INRGREF), National Research Institute of Rural Engineering, 2080, Ariana, Tunisia
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhmmad Shafique Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Saeed Ahmad Qaisrani
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sameera A Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Basmah M Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Yinglong Chen
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| |
Collapse
|
7
|
Abbas G, Areej F, Asad SA, Saqib M, Anwar-ul-Haq M, Afzal S, Murtaza B, Amjad M, Naeem MA, Akram M, Akhtar N, Aftab M, Siddique KHM. Differential Effect of Heat Stress on Drought and Salt Tolerance Potential of Quinoa Genotypes: A Physiological and Biochemical Investigation. PLANTS (BASEL, SWITZERLAND) 2023; 12:774. [PMID: 36840121 PMCID: PMC9963737 DOI: 10.3390/plants12040774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Soil salinity, drought, and increasing temperatures are serious environmental issues that drastically reduce crop productivity worldwide. Quinoa (Chenopodium quinoa Willd) is an important crop for food security under the changing climate. This study examined the physio-biochemical responses, plant growth, and grain yield of four quinoa genotypes (A7, Titicaca, Vikinga, and Puno) grown in pots containing normal (non-saline) or salt-affected soil exposed to drought and elevated-temperature treatments. Combinations of drought, salinity, and high-temperature stress decreased plant growth and yield more than the individual stresses. The combined drought, salinity, and heat stress treatment decreased the shoot biomass of A7, Puno, Titicaca, and Vikinga by 27, 36, 41, and 50%, respectively, compared to that of control plants. Similar trends were observed for grain yield, chlorophyll contents, and stomatal conductance. The combined application of these three stresses increased Na concentrations but decreased K concentrations in roots and shoots relative to control. Moreover, in the combined salinity, drought, and high-temperature treatment, A7, Puno, Titicaca, and Vikinga had 7.3-, 6.9-, 8-, and 12.6-fold higher hydrogen peroxide contents than control plants. All four quinoa genotypes increased antioxidant enzyme activities (CAT, SOD, and POD) to overcome oxidative stress. Despite A7 producing the highest biomass under stress, it did not translate into increased grain production. We conclude that Puno and Titicaca are more tolerant than Vikinga for cultivation in salt-affected soils prone to drought and heat stress.
Collapse
Affiliation(s)
- Ghulam Abbas
- Centre for Climate Research and Development (CCRD), COMSATS University Islamabad, Islamabad 45550, Pakistan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Fiza Areej
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Saeed Ahmad Asad
- Department of Bio Sciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
| | - Muhammad Saqib
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Anwar-ul-Haq
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Saira Afzal
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Muhammad Akram
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Naseem Akhtar
- Biochemistry Section, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Muhammad Aftab
- Soil Chemistry Section, Institute of Soil Chemistry and Environmental Sciences, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
8
|
Abdal N, Abbas G, Asad SA, Ghfar AA, Shah GM, Rizwan M, Ali S, Shahbaz M. Salinity mitigates cadmium-induced phytotoxicity in quinoa (Chenopodium quinoa Willd.) by limiting the Cd uptake and improved responses to oxidative stress: implications for phytoremediation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:171-185. [PMID: 34476635 DOI: 10.1007/s10653-021-01082-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/24/2021] [Indexed: 05/17/2023]
Abstract
Cadmium (Cd) contamination and soil salinity are the main environmental issues reducing crop productivity. This study aimed to examine the combined effects of salinity (NaCl) and Cd on the physiological and biochemical attributes of quinoa (Chenopodium quinoa Willd.). For this purpose, 30-day-old plants of quinoa genotype "Puno" were transplanted in Hoagland's nutrient solution containing diverse concentrations of Cd: 0, 50, 100, 200 µM Cd, and salinity: 0, 150, and 300 mM NaCl. Results demonstrated that plant growth, stomatal conductance, and pigment contents were significantly lower at all Cd concentrations than the control plants. Quinoa plants exhibited improved growth and tolerance against Cd when grown at a lower level of salinity (150 mM NaCl) combined with Cd. In contrast, the elevated concentration of salinity (300 mM NaCl) combined with Cd reduced shoot and root growth of experimental plants more than 50%. Combined application of salinity and Cd increased Na (25-fold), while lessened the Cd (twofold) and K (1.5-fold) uptake. A blend of high concentrations of Na and Cd caused overproduction of H2O2 (eightfold higher than control) contents and triggered lipid peroxidation. The activities of antioxidant enzymes: ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) were 13, 12, 7 and ninefold higher than control to mitigate the oxidative stress. Due to restricted root to shoot translocation, and greater tolerance potential against Cd, the quinoa genotype, Puno, is suitable for phytostabilization of Cd in saline soils.
Collapse
Affiliation(s)
- Noman Abdal
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Saeed Ahmad Asad
- Centre for Climate Research and Development (CCRD), COMSATS University Islamabad, Islamabad, Pakistan
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, Riyadh, P.O. Box 2455, 11451, Saudi Arabia
| | - Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Muhammad Shahbaz
- Centre for Environmental and Climate Science, Lund University, 22362, Lund, Sweden
| |
Collapse
|
9
|
Gu J, Hu C, Jia X, Ren Y, Su D, He J. Physiological and biochemical bases of spermidine-induced alleviation of cadmium and lead combined stress in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:104-114. [PMID: 36081232 DOI: 10.1016/j.plaphy.2022.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) and lead (Pb) pollution is a major environmental issue affecting plant production. Spermidine (Spd) is involved in plant response to abiotic stress. However, the role and associated mechanism of Spd under Cd + Pb combined stress are poorly understood. The potential protective role of Spd at different concentration on rice (Oryza sativa L.) seedlings exposed to Cd + Pb treatment was investigated by a hydroponic experiment in this study. The results showed that exogenous Spd enhanced the tolerance of rice seedlings to Cd + Pb stress, resulted in an increase in plant height, root length, fresh weight and dry weight of roots and shoots. Further, application of Spd decreased the contents of hydrogen peroxide, superoxide anion, malondialdehyde, and the accumulation of Cd and Pb, and increased the contents of mineral nutrient, carotenoids, chlorophyll, proline, soluble sugar, soluble protein, total phenol, flavonoid, anthocyanin, and antioxidant enzymes activities in roots and shoots of rice seedlings under Cd + Pb stress. Particularly, 0.5 mmol L-1 Spd was the most effective to alleviate the adverse impacts on growth and physiological metabolism of rice seedlings under Cd + Pb stress. Principal component analysis and heat map clustering established correlations between physio-biochemical parameters and further revealed Spd alleviated Cd + Pb damage in rice seedling was associated with inhibition of accumulation and translocation of Cd and Pb, increasing the contents of photosynthetic pigments and mineral nutrient and stimulation of antioxidative response and osmotic adjustment. Overall, our findings provide an important prospect for use of Spd in modulating Cd + Pb tolerance in rice plants. Spd could help to alleviate Cd + Pb damage through inhibition of accumulation and translocation of Cd and Pb and stimulation of oxidant-defense system and osmotic adjustment.
Collapse
Affiliation(s)
- Jinyu Gu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Chunmei Hu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Xiangwei Jia
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Yanfang Ren
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China; Jiangsu Petrochemical Safety and Environmental Engineering Research Center, Changzhou, 213164, PR China.
| | - Dongming Su
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Junyu He
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China; Jiangsu Petrochemical Safety and Environmental Engineering Research Center, Changzhou, 213164, PR China.
| |
Collapse
|
10
|
Naheed N, Abbas G, Naeem MA, Hussain M, Shabbir R, Alamri S, Siddiqui MH, Mumtaz MZ. Nickel tolerance and phytoremediation potential of quinoa are modulated under salinity: multivariate comparison of physiological and biochemical attributes. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1409-1424. [PMID: 34988723 DOI: 10.1007/s10653-021-01165-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Soils salinization along with heavy metals contamination is among the serious environmental menaces. The present experiment was conducted to study the combined influence of salinity and nickel (Ni) on growth and physiological attributes of quinoa (Chenopodium quinoa Willd.). Thirty-day-old healthy and uniform seedlings of quinoa genotype A7 were exposed to different concentrations of Ni (0, 100, 200, 400 µM), NaCl (0, 150, 300 mM) and their combinations for three weeks. Results indicated that plant growth, pigments and stomatal conductance decreased with increasing Ni concentrations in nutrient solution. Combining lower level of salt (150 mM NaCl) with Ni resulted in improvement in growth and physiological attributes of quinoa. However, the combined application of higher level of salt (300 mM NaCl) with Ni was more detrimental for plant growth and caused more oxidative stress (H2O2 and TBARS) than the alone treatments. The oxidative stress was mitigated by 5.5-fold, 5-fold and 15-fold increase in the activities of SOD, CAT and APX, respectively. The concentration of Na was increased, while K and Ni decreased under the combined treatment of Ni and salinity. Multivariate analysis revealed that a moderate level of salinity had positive effects on growth and Ni phytoremediation potential of quinoa. The higher tolerance index, bioconcentration factor and lower translocation factor depicted that quinoa genotype A7 can be cultivated for phytostabilization of Ni under salinity stress. It was concluded that NaCl salinity level of 150 mM is promising for increasing growth of quinoa on Ni contaminated soils.
Collapse
Affiliation(s)
- Naila Naheed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Munawar Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Rahat Shabbir
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Main Campus Lahore, Lahore, 54000, Pakistan
| |
Collapse
|
11
|
Potassium and Silicon Synergistically Increase Cadmium and Lead Tolerance and Phytostabilization by Quinoa through Modulation of Physiological and Biochemical Attributes. TOXICS 2022; 10:toxics10040169. [PMID: 35448430 PMCID: PMC9027815 DOI: 10.3390/toxics10040169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 01/24/2023]
Abstract
Cadmium (Cd) and lead (Pb) contaminated soils have increased recently, resulting in limited crop productivity. The ameliorative role of potassium (K) and silicon (Si) is well established in plants under heavy metals stress; however, their combined role under the co-contamination of Cd and Pb is not well understood. We hypothesized that the synergistic application of K and Si would be more effective than their sole treatment for increasing the Pb and Cd tolerance and phytostabilization potential of quinoa (Chenopodium quinoa Willd.). In the current study, quinoa genotype ‘Puno’ was exposed to different concentrations of Cd (0, 200 µM), Pb (0, 500 µM) and their combination with or without 10 mM K and 1.0 mM Si supplementation. The results revealed that the combined stress of Cd and Pb was more detrimental than their separate application to plant biomass (66% less than the control), chlorophyll content and stomatal conductance. Higher accumulation of Pb and Cd led to a limited uptake of K and Si in quinoa plants. The supplementation of metal-stressed plants with 10 mM K and 1.0 mM Si, particularly in combination, caused a significant increase in the growth, stomatal conductance and pigment content of plants. The combined stress of Cd and Pb resulted in an overproduction of H2O2 (11-fold) and TBARS (13-fold) and a decrease in membrane stability (59%). Oxidative stress induced by metals was lessened by 8-fold, 9-fold, 7-fold and 11-fold increases in SOD, CAT, APX and POD activities, respectively, under the combined application of K and Si. It is concluded that the exogenous supply of K and Si in combination is very promising for increasing Cd and Pb tolerance and the phytostabilization potential of quinoa.
Collapse
|
12
|
Differential Uptake and Translocation of Cadmium and Lead by Quinoa: A Multivariate Comparison of Physiological and Oxidative Stress Responses. TOXICS 2022; 10:toxics10020068. [PMID: 35202254 PMCID: PMC8880804 DOI: 10.3390/toxics10020068] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023]
Abstract
Contamination of soils with cadmium (Cd) and lead (Pb) has emerged as a serious environmental issue that reduces crop productivity. However, the metals tolerance and accumulation potential of quinoa (Chenopodium Quinoa Willd) under the combined stress of Cd and Pb has not yet been explored. In the present hydroponic study, the physiological and biochemical characteristics of quinoa exposed to Cd and Pb were explored. Four-week-old plants of quinoa genotype ‘Puno’ were grown under different concentrations of Cd (0, 50 and 100 µM), Pb (0, 250 and 500 µM) alone as well as in combinations. The results showed that with increasing Cd and Pb levels in the nutrient solution, the plant biomass, stomatal conductance and chlorophyll contents were decreased. However, the concurrent application of higher concentrations of Cd (100 µM) and Pb (500 µM) caused even more reduction in the plant biomass (more than 50% than the control) and physiological attributes. The combined application of Pb and Cd caused oxidative stress through an overproduction of H2O2 (10-fold) and TBARS (12.5-fold), leading to decrease in membrane stability (52%). The oxidative stress was alleviated by a 7-fold, 10-fold and 9-fold overactivation of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), respectively. An excessive uptake of Cd resulted in a limited uptake of Pb and K in the roots and shoots of quinoa plants. The Cd and Pb tolerance and uptake potential of Puno showed its ability to stabilize Cd and Pb in co-contaminated soils.
Collapse
|
13
|
Abbas G, Rehman S, Siddiqui MH, Ali HM, Farooq MA, Chen Y. Potassium and Humic Acid Synergistically Increase Salt Tolerance and Nutrient Uptake in Contrasting Wheat Genotypes through Ionic Homeostasis and Activation of Antioxidant Enzymes. PLANTS (BASEL, SWITZERLAND) 2022; 11:263. [PMID: 35161244 PMCID: PMC8840195 DOI: 10.3390/plants11030263] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 05/17/2023]
Abstract
Salinity limits the growth and nutrient uptake in crop species. Studies show that both potassium (K) and humic acid (HA) improved plant tolerance to salinity. However, the interactive effect of K and HA on plant tolerance to salinity stress remains unknown. This pot study examined the effect of application of K (0, 5 or 10 mM) and HA (0 or 2 g kg-1), alone or in combination, on the growth and physiology under salinity (100 mM NaCl) in two wheat genotypes (SARC 1, salt tolerant; and SARC 5, salt sensitive). The results revealed that salt stress reduced shoot biomass by 35% and 49% in SARC 1 and SARC 5, respectively. Salinity induced overproduction of H2O2 and lipid peroxidation in both genotypes, but the decline in pigments and stomatal conductance was more profound in SARC 5 than in SARC 1. Combined application of 10 mM K and HA was most effective in alleviating salt stress with improved plant biomass by 47% and 43% in SARC 1 and SARC 5, respectively. Combined application of 10 mM K and HA mitigated salt and induced oxidative stress with the activities of APX, CAT, POD and SOD increased by up to 2.8 folds in SARC 1, and by upto 2.5 folds in SARC 5, respectively. Root and shoot Na contents were increased, while K, Fe and Zn contents were decreased under saline conditions. HA combined with K decreased Na and increased K, Fe and Zn contents in both genotypes. Combined application of 10 mM K and HA was more promising for increasing wheat salt tolerance and nutrient uptake and genotype SARC 1 performed better than SARC 5 for cultivation on saline soils.
Collapse
Affiliation(s)
- Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan;
| | - Sadia Rehman
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan;
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.H.S.); (H.M.A.)
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.H.S.); (H.M.A.)
| | - Muhammad Ansar Farooq
- Institute of Environmental Sciences & Engineering, School of Civil & Environmental Engineering, National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan;
| | - Yinglong Chen
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
14
|
Bech J. Special issue "Soil and plant contamination and remediation: Part 1". ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1-6. [PMID: 34893944 DOI: 10.1007/s10653-021-01170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Jaume Bech
- University of Barcelona, Barcelona, UB, Spain.
| |
Collapse
|