1
|
Tserendorj D, Szabó KZ, Völgyesi P, Nguyen TC, Hatvani IG, Buczkó N, Abbaszade G, Salazar-Yanez N, Szabó C. Distribution and impacts of contamination by natural and artificial radionuclides in attic dust and urban soil samples from a former industrial Hungarian city: A case study from Salgótarján. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107291. [PMID: 37806188 DOI: 10.1016/j.jenvrad.2023.107291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023]
Abstract
Primordial radionuclides can be found in all environmental compartments. Since coal-fired power plants (CFPP) can be a source of additional radionuclide contamination because coal contains natural radioactive isotopes such as 238U (226Ra) and 232Th. This study investigated the impact of such possible radionuclide contamination from former heavy industrial activities, namely a former local coal-fired power plant, in urban soils and attic dust in Salgótarján, Hungary. Even today, industrial by-products, e.g., coal ash, in this city represent significant threat to its residents. A total of 36 attic dust samples (family houses, kindergartens, churches and blockhouses) were collected and 19 urban soil samples (playgrounds, kindergartens, parks and others) were selected no further than 500 m from the corresponding attic dust sampling sites. Additionally, a coal ash and a brown forest soil sample were also collected to differentiate between the anthropogenic and geogenic sources in the residential area. The sampled houses, built between 1890 and 1990, are considered to be representative sampling sites for long-term accumulations of attic dust. The mean values of the total U, Th and Cs (mg kg-1) concentrations as well as those of K (m/m %) in attic dust and urban soil samples are 2.4, 3.6, 1.7 and 0.6 and 1.1, 4.4, 1.2 and 0.3, respectively, measured using ICP-MS. The mean activity concentrations of 226Ra, 232Th, 40K and 137Cs in attic dust and urban soil samples are 43.3, 34.0, 534.4 and 88.5 and 25.1, 32.8, 386.4 and 5.6 Bq kg-1, respectively, by using a low-background iron chamber with a well-type HPGe and a n-type coaxial HPGe detector. The elemental compositions (U, Th) and activity concentrations (226Ra, 232Th) along with their abundances in coal ash from the CFPP increase in both studied media as the distance of the sampling sites from the CFPP decreases. Two outlier attic dust samples in particular show significantly high activity concentrations of 226Ra: 145 and 143, of 232Th: 83 and 94 Bq kg-1, which can be considered as a proxy of unweathered coal ash. The calculated total absorbed gamma dose rate (D) and annual effective dose (E) received from urban soils indicate that the presence of the CFPP, coal ash cone and slag dumps does not cause an increase in the level of background radiation in Salgótarján. However, the concentrations of the studied radionuclides are much higher (except for 232Th) and exhibit higher degree of variability in the samples of attic dustthan in those of urban soils. The study suggests that attic dust preserves the undisturbed 'fingerprints' of long-term atmospheric deposition thanks to its chemical and physical properties unlike urban soil.
Collapse
Affiliation(s)
- Davaakhuu Tserendorj
- Lithosphere Fluid Research Laboratory, Institute of Geography and Earth Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary; Centre for Ecological Research Institute of Aquatic Ecology, Karolina út 29, 1113, Budapest, Hungary
| | - Katalin Zsuzsanna Szabó
- Nuclear Security Department, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós út 29-33, 1121, Budapest, Hungary
| | - Péter Völgyesi
- Nuclear Security Department, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós út 29-33, 1121, Budapest, Hungary
| | - Tam Cong Nguyen
- Nuclear Security Department, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós út 29-33, 1121, Budapest, Hungary
| | - István Gábor Hatvani
- Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Eötvös Loránd Research Network (ELKH), Budaörsi út 45, 1112, Budapest, Hungary; CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, H-1121, Budapest, Hungary
| | - Noémi Buczkó
- Nuclear Analysis and Radiography Department, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós út 29-33, 1121, Budapest, Hungary
| | - Gorkhmaz Abbaszade
- Lithosphere Fluid Research Laboratory, Institute of Geography and Earth Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Nelson Salazar-Yanez
- Lithosphere Fluid Research Laboratory, Institute of Geography and Earth Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Csaba Szabó
- Lithosphere Fluid Research Laboratory, Institute of Geography and Earth Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary; Institute of Earth Physics and Space Science, HUN-REN, Csatkai E. u. 6-8, 9400, Sopron, Hungary.
| |
Collapse
|
2
|
Juang KW, Chu LJ, Syu CH, Chen BC. Coupling phytotoxicity and human health risk assessment to refine the soil quality standard for As in farmlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38212-38225. [PMID: 36580243 DOI: 10.1007/s11356-022-25011-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
In the present study, a field experiment was conducted to investigate arsenic (As) concentrations in soils and in grains of 15 rice varieties in a contaminated site in Taiwan. The studied site was divided into two experimental units, namely plot A and plot B. The results showed that mean total As concentrations were 70.94 and 61.80 mg kg-1 in plot A and plot B, respectively, and thus greater than or approximate to the soil quality standard for total As in Taiwan (60 mg kg-1). The As levels in rhizosphere soil in plot A (19.71-32.33 mg kg-1) were much higher than in plot B (6.41-8.60 mg kg-1); however, As accumulation in brown rice did not significantly differ between the plots. These results implied that a significant variation in the bioconcentration factor (BCF) value of As existed among different rice genotypes, and a negative correlation was observed between BCF value and rhizosphere As level in the soil. In phytotoxicity, the median values of the ecological risk indicator were 104.85 and 103.89 in plot A and plot B, respectively, indicating considerable risk. In human health risk assessment, the median and 97.5%-tile values for cancer risk for both male and female residents were markedly higher than the acceptable risk (1 × 10-4). Furthermore, non-cancer and cancer risks were higher for males than females, mainly due to the greater rice ingestion rate of males. Sensitivity analysis showed that total As concentration in soil was the main factor affecting health risks, suggesting that priority should be given to the reduction of soil As levels. To better manage the phytotoxicity of As on rice, as well as the health risk to residents resulting from exposure to As-contaminated soils, the soil quality standard for As in farmland soils should be set between 5 and 10 mg kg-1. The methodology developed in this study could also be applied to provide the basis for refining and revising the soil quality standard for heavy metals in farmland in other regions and countries.
Collapse
Affiliation(s)
- Kai-Wei Juang
- Department of Agronomy, National Chiayi University, Chiayi, Taiwan
| | - Li-Jia Chu
- Department of Agronomy, National Chiayi University, Chiayi, Taiwan
- Department of Natural Biotechnology, Nanhua University, 622 No. 55, Sec. 1, Nanhua Rd., Dalin Township, Chiayi, Taiwan
| | - Chien-Hui Syu
- Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Taichung, Taiwan
| | - Bo-Ching Chen
- Department of Natural Biotechnology, Nanhua University, 622 No. 55, Sec. 1, Nanhua Rd., Dalin Township, Chiayi, Taiwan.
| |
Collapse
|
4
|
Distribution of Heavy Metals in the Commune of Coronel, Chile. MINERALS 2022. [DOI: 10.3390/min12030320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anthropogenic activities often produce different emanations, some of them excessive, producing contamination of the soil, water, and/or air. This article analyzes soil conditions in Coronel, Chile, a commune with a large industrial presence, identifying the sources emitting potentially toxic elements, the degree of soil contamination, and the carcinogenic and non-carcinogenic risks in the area. Ninety-four samples in the study area were analyzed using different methods. Three factors were identified through a principal component analysis (PCA) that explain 83.27% of the variability of the elements. Four factors were identified through the positive matrix factorization (PMF) model, making it possible to identify the polluting sources according to the pattern of elements they contain. The sources of these factors were then identified. The most common elements in the soil with a particularly high degree of contamination are nickel, vanadium, and chromium, the latter of which being the element that poses the greatest carcinogenic and non-carcinogenic risk to children and adults. Additionally, the highest concentrations of chromium and vanadium were identified near industrial areas of the commune.
Collapse
|