1
|
Yousaf B, Javid K, Mahmood S, Habib W, Hussain S. Delineating groundwater potential zones using integrated remote sensing and GIS in Lahore, Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:884. [PMID: 39225827 DOI: 10.1007/s10661-024-13057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Groundwater depletion and water scarcity are pressing issues in water-limited regions worldwide, including Pakistan, where it ranks as the third-largest user of groundwater. Lahore, Pakistan, grapples with severe groundwater depletion due to factors like population growth and increased agricultural land use. This study aims to address the lack of comprehensive groundwater availability data in Lahore's semi-arid region by employing GIS techniques and remote sensing data. Various parameters, including Land Use and Land Cover (LULC), Rainfall, Drainage Density (DD), Water Depth, Soil Type, Slope, Population Density, Road Density, Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-Up Index (NDBI), Moisture Stress Index (MSI), Water Vegetation Water Index (WVWI), and Land Surface Temperature (LST), are considered. Thematic layers of these parameters are assigned different weights based on previous literature, reclassified, and superimposed in weighted overlay tool to develop a groundwater potential zones index map for Lahore. The groundwater recharge potential zones are categorized into five classes: Extremely Bad, Bad, Mediocre, Good, and Extremely Good. The groundwater potential zone index (GWPZI) map of Lahore reveals that the majority falls within the Bad to Mediocre recharge potential zones, covering 33% and 28% of the total land area in Lahore, respectively. Additionally, 14% of the total area falls under the category of Extremely Bad recharge potential zones, while Good to Extremely Good areas cover 19% and 6%, respectively. By providing policymakers and water supply authorities with valuable insights, this study underscores the significance of GIS techniques in groundwater management. Implementing the findings can aid in addressing Lahore's groundwater challenges and formulating sustainable water management strategies for the city's future.
Collapse
Affiliation(s)
- Bilal Yousaf
- Department of Geography, Government College University Lahore, Lahore, Pakistan
| | - Kanwal Javid
- Department of Geography, Government College University Lahore, Lahore, Pakistan
| | - Shakeel Mahmood
- Department of Geography, Government College University Lahore, Lahore, Pakistan.
| | - Warda Habib
- Department of Geography, Government College University Lahore, Lahore, Pakistan
| | - Saddam Hussain
- Department of Geography, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
2
|
Jadoon WA, Zaheer M, Tariq A, Sajjad RU, Varol M. Assessment of hydrochemical characteristics, health risks and quality of groundwater for drinking and irrigation purposes in a mountainous region of Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43967-43986. [PMID: 38918296 PMCID: PMC11252193 DOI: 10.1007/s11356-024-34046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Renowned for its agriculture, livestock, and mining, Zhob district, Pakistan, faces the urgent problem of declining groundwater quality due to natural and human-induced factors. This deterioration poses significant challenges for residents who rely on groundwater for drinking, domestic, and irrigation purposes. Therefore, this novel study aimed to carry out a comprehensive assessment of groundwater quality in Zhob district, considering various aspects such as hydrochemical characteristics, human health risks, and suitability for drinking and irrigation purposes. While previous studies may have focused on one or a few of these aspects, this study integrates multiple analyses to provide a holistic understanding of the groundwater quality situation in the region. Additionally, the study applies a range of common hydrochemical analysis methods (acid-base titration, flame atomic absorption spectrometry, and ion chromatography), drinking water quality index (WQI), irrigation indices, and health risk assessment models, using 19 water quality parameters. This multi-method approach enhances the robustness and accuracy of the assessment, providing valuable insights for decision-makers and stakeholders. The results revealed that means of the majority of water quality parameters, such as pH (7.64), electrical conductivity (830.13 μScm-1), total dissolved solids (562.83 mgL-1), as well as various anions, and cations, were in line with drinking water norms. However, the water quality index (WQI) predominantly indicated poor drinking water quality (range = 51-75) at 50% sites, followed by good quality (range = 26-50) at 37% of the sites, with 10% of the sites exhibiting very poor quality (range = 76-100). For irrigation purposes, indices such as sodium percent (mean = 31.37%), sodium adsorption ratio (mean = 0.98 meqL-1), residual sodium carbonate (- 3.15 meqL-1), Kelley's index (mean = 0.49), and permeability (mean = 49.11%) indicated suitability without immediate treatment. However, the magnesium hazard (mean = 46.11%) and potential salinity (mean = 3.93) demonstrated that prolonged application of groundwater for irrigation needs soil management to avoid soil compaction and salinity. Water samples exhibit characteristics of medium salinity and low alkalinity (C2S1) as well as high salinity and low alkalinity (C3S1) categories. The Gibbs diagram results revealed that rock weathering, including silicate weathering and cation exchange, is the primary factor governing the hydrochemistry of groundwater. The hydrochemical composition is dominated by mixed Ca-Mg-Cl, followed by Na-Cl and Mg-Cl types. Furthermore, the human health risk assessment highlighted that fluoride (F-) posed a higher risk compared with nitrate (NO3-). Additionally, ingestion was found to pose a higher risk to health compared to dermal contact, with children being particularly vulnerable. The average hazard index (HI) for children was 1.24, surpassing the allowable limit of 1, indicating detrimental health effects on this subpopulation. Conversely, average HI values for adult females (0.59) and adult males (0.44) were within safe levels, suggesting minimal concerns for these demographic groups. Overall, the study's interdisciplinary approach and depth of analysis make a significant contribution to understanding groundwater quality dynamics and associated risks in Zhob district, potentially informing future management and mitigation strategies.
Collapse
Affiliation(s)
- Waqar Azeem Jadoon
- Department of Earth & Environmental Sciences, Hazara University, Mansehra, 21120, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zaheer
- Key Laboratory of Mechanics On Disaster and Environment in Western China, the Ministry of Education of China, Lanzhou University, Lanzhou, 730000, China
- Department of Mechanics, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, 730000, China
| | - Abdul Tariq
- Engineering and Management Sciences, Balochistan University of Information Technology, Quetta, 87300, Balochistan, Pakistan
| | - Raja Umer Sajjad
- Department of Earth & Environmental Sciences, Hazara University, Mansehra, 21120, Khyber Pakhtunkhwa, Pakistan
| | - Memet Varol
- Agriculture Faculty, Aquaculture Department, Malatya Turgut Özal University, Malatya, Türkiye.
| |
Collapse
|
3
|
Ullah Z, Younas F, Bacha AUR, Rashid A, Al-Onazi WA, Sardar MF. Occurrence of toxic elements in river areas along drains and groundwater resources: source of contamination and associated health risk. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:480. [PMID: 38676764 DOI: 10.1007/s10661-024-12648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
The objective of the current research was to examine the water quality of the River Ravi and the River Sutlej, with a specific focus on potentially toxic elements (PTEs). Additionally, we sought to monitor the sources of pollution in these rivers by gathering samples from the primary drains that carry industrial and municipal waste into these water bodies. Furthermore, we aimed to evaluate the impact of PTEs in surface water on groundwater quality by collecting groundwater samples from nearby populated areas. A total of 30 samples were collected from these three sources: rivers (6 samples), drains (9 samples), and groundwater (15 samples). The analysis revealed that the levels of PTEs in the samples from these three resources having a mean value: arsenic (As) 23.5 µg/L, zinc (Zn) 2.35 mg/L, manganese (Mn) 0.51 mg/L, lead (Pb) 6.63 µg/L, and chromium (Cr) 10.9 µg/L, exceeded the recommended values set by the World Health Organization (WHO). Furthermore, PTEs including (As 84%), (Zn 65%), (Mn 69%), (Pb 53%), (Cr 53%), and (Ni 27%), samples were beyond the recommended values of WHO. The results of the Principal Component Analysis indicated that surface water and groundwater exhibited total variability of 83.87% and 85.97%, respectively. This indicates that the aquifers in the study area have been contaminated due to both natural geogenic factors and anthropogenic sources. These sources include the discharge of industrial effluents, wastewater from municipal sources, mining activities, agricultural practices, weathering of rocks, and interactions between rocks and water. Spatial distribution maps clearly illustrated the widespread mobilization of PTEs throughout the study area. Furthermore, a health risk assessment was conducted to evaluate the potential adverse health effects of PTEs through the ingestion of drinking groundwater by both children and adults. Health risk assessment result show the mean carcinogenic values for As, Cr, Pb and Ni in children are calculated to be (1.88E-04), (2.61E-04), (2.16E-02), and (5.74E-05), respectively. Similarly, the mean carcinogenic values for the above mentioned PTEs in adults were recorded to be (2.39E-05), (3.32E-05), (1.19E-03), and (7.29E-06) respectively. The total hazard index values for As, Zn, Cr, Pb, Mn, Cu, and Ni in children were observed to be (9.07E + 00), (9.95E-07), (4.59E-04), (5.75E-04), (4.72E-05), (2.78E-03), and (5.27E-05) respectively. The analysis revealed that As has an adverse effect on the population of the study area as compared to other PTEs investigated in this study.
Collapse
Affiliation(s)
- Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Aziz Ur Rahim Bacha
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pol- Lution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, People's Republic of China
| | - Abdur Rashid
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Wedad A Al-Onazi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
4
|
Jehan S, Khattak SA, Khan S, Ali L, Hussain ML. Hydrochemical evaluation of groundwater for drinking and irrigation purposes using multivariate indices along Indus Suture Zone, North Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2511-2531. [PMID: 36006578 DOI: 10.1007/s10653-022-01364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The present study is aimed to investigate the hydrochemical characteristics, spatial distribution and suitability of groundwater for drinking and irrigation purposes along the Indus Suture Zone (ISZ), north Pakistan. Physicochemical parameters and hazardous trace elements (HTEs) like Cd, Co, Cu and Mn were determined following standard methods. The mean and median concentrations were found below the World Health Organization (WHO) drinking water guidelines values. Hydrochemical results indicate that groundwater sources were mainly attributed to rock-water interaction category. Piper diagram shows that most of the groundwater samples fall in Ca-HCO3─ class presenting weak-alkaline proportion type. The drinking water quality index (DWQI) ranking was categorized as good to excellent, indicating the overall quality of the groundwater may pose no health hazard concern. Based on irrigation WQI (SAR, Na%, MAR, KR), the groundwater was found fit for irrigation except SAR whereas 36% of the groundwater samples fall within the poor class. The total HI values through dermal contact exceeded the safe non-carcinogenic threshold of HI = 1. Therefore, there is required an effective groundwater monitoring and management facility in the study area to safeguard residents from various illnesses associated with varying HTEs concentrations in drinking water. The major response actions needed for groundwater bodies restoration are including the installation of a continuous groundwater monitoring network and control of agricultural fertilizers that seems to be the most effective and tangible for immediate action.
Collapse
Affiliation(s)
- Shah Jehan
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan.
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202, USA.
| | - Seema Anjum Khattak
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan.
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Liaqat Ali
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan
| | - Mian Luqman Hussain
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan
| |
Collapse
|
5
|
Non-Carcinogenic Health Risk Evaluation of Elevated Fluoride in Groundwater and Its Suitability Assessment for Drinking Purposes Based on Water Quality Index. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159071. [PMID: 35897434 PMCID: PMC9331254 DOI: 10.3390/ijerph19159071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
Fluoride (F-) contamination in drinking groundwater is a significant human health risk in Pakistan. Moreover, high fluoride pollution in drinking water causes a variety of disorders, including dental, neurological, and skeletal fluorosis. The aim of this research was to evaluate the health risk of elevated fluoride in groundwater and its suitability assessment for drinking purposes. The total of (n = 37) samples were collected from community tube wells of Quetta Valley, Balochistan, Pakistan. The results show a mean pH value of 7.7, TDS of 404.6 mg/L, EC of 500 µs/cm, depth of 96.8 feet, and turbidity of 1.7 nephelometric turbidity units. The mean values of HCO3-, Ca2+, Mg2+, and Na+, were 289.5, 47.5, 30.6, and 283.3 mg/L, respectively. The mean values of SO42-, NO3-, K+, Cl-, and Fe2+, were 34.9, 1.0, 1.6, 25.6, and 0.01 mg/L, respectively. The F- concentration in the groundwater varied between 0.19 and 6.21, with a mean value of 1.8 mg/L, and 18 samples out of 37 were beyond the WHO recommended limit of 1.5 mg/L. The hydrochemical analysis results indicated that among the groundwater samples of the study area, 54% samples were Na-HCO3 type and 46% were mixed CaNaHCO3 type. The saturation indices of the mineral phases reveal that the groundwater sources of the study area were saturated with CaCO3 and halide minerals due to their positive (SI) values. Such minerals include calcite, dolomite, gypsum, and fluorite. The principal component analysis results reveal that the groundwater sources of the study area are contaminated due to geological and anthropogenic actions. The health risk assessment results of the F- concentrations show the ranges of ADDingestion for children, females, and males in the Quetta Valley, and their mean values were observed to be 0.093052, 0.068825, and 0.065071, respectively. The HQingestion mean values were 1.55086, 1.147089, and 1.084521 for children, females, and males, respectively. It was noticed that children had the highest maximum and average values of ADDingestion and HQingestion in the research area, indicating that groundwater fluoride intake poses the greatest health risk to children. The water quality index (WQI) analyses show that 44% of the samples belong to the poor-quality category, 49% were of good quality, and 8% of the samples of the study area belong to the excellent category.
Collapse
|