1
|
Ryu MH, Gómez C, Yuen ACY, Brook JR, Wheelock CE, Carlsten C. Urinary Eicosanoid Levels Reflect Allergen and Diesel Exhaust Coexposure and Are Linked to Impaired Lung Function. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7107-7118. [PMID: 35044166 DOI: 10.1021/acs.est.1c07268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Eicosanoids are potent regulators of homeostasis and inflammation. Co-exposure to allergen and diesel exhaust (DE) have been shown to lead to eosinophilic inflammation, impaired airflow, and increased airway responsiveness. It is not clear whether eicosanoids mediate the mechanism by which these exposures impair lung function. We conducted a randomized, double-blinded, and four-arm crossover study. Fourteen allergen-sensitized participants were exposed to four conditions: negative control; allergen-alone exposure; DE and allergen coexposure; coexposure with particle-reducing technology applied. Quantitative metabolic profiling of urinary eicosanoids was performed using LC-MS/MS. As expected, allergen inhalation increased eicosanoids. The prostacyclin metabolite 2,3-dinor-6-keto-PGF1α (PGF1α, prostaglandin F1α) increased with coexposure, but particle depletion suppressed this pathway. Individuals with a high genetic risk score demonstrated a greater increase in isoprostane metabolites following coexposure. Causal mediation analyses showed that allergen induced airflow impairment was mediated via leukotriene E4 and tetranor-prostaglandin D metabolite. Overall, DE exposure did not augment the allergen's effect on urinary eicosanoids, except insofar as variant genotypes conferred susceptibility to the addition of DE in terms of isoprostane metabolites. These findings will add to the body of previous controlled human exposure studies and provide greater insight into how complex environmental exposures in urban air may influence individuals with sensitivity to aeroallergens.
Collapse
Affiliation(s)
- Min Hyung Ryu
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Cristina Gómez
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 65, Sweden
- Unit of Lung and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Agnes C Y Yuen
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Jeffrey R Brook
- Occupational and Environmental Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 1P8, Canada
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 65, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm SE-171 76, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| |
Collapse
|
2
|
Jung JH, Kim GE, Park M, Kim SY, Kim MJ, Lee YJ, Kim YH, Kim KW, Sohn MH. Changes in allergen sensitization in children with allergic diseases in the 1980 to 2019. ALLERGY ASTHMA & RESPIRATORY DISEASE 2021. [DOI: 10.4168/aard.2021.9.4.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jae Hwa Jung
- Department of Pediatrics, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Ga Eun Kim
- Department of Pediatrics, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Mireu Park
- Department of Pediatrics, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Min Jung Kim
- Department of Pediatrics, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Ju Lee
- Department of Pediatrics, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Hee Kim
- Department of Pediatrics, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Wooding DJ, Ryu MH, Hüls A, Lee AD, Lin DTS, Rider CF, Yuen ACY, Carlsten C. Particle Depletion Does Not Remediate Acute Effects of Traffic-related Air Pollution and Allergen. A Randomized, Double-Blind Crossover Study. Am J Respir Crit Care Med 2020; 200:565-574. [PMID: 30974969 DOI: 10.1164/rccm.201809-1657oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rationale: Diesel exhaust (DE), an established model of traffic-related air pollution, contributes significantly to the global burden of asthma and may augment the effects of allergen inhalation. Newer diesel particulate-filtering technologies may increase NO2 emissions, raising questions regarding their effectiveness in reducing harm from associated engine output.Objectives: To assess the effects of DE and allergen coexposure on lung function, airway responsiveness, and circulating leukocytes, and determine whether DE particle depletion remediates these effects.Methods: In this randomized, double-blind crossover study, 14 allergen-sensitized participants (9 with airway hyperresponsiveness) underwent inhaled allergen challenge after 2-hour exposures to DE, particle-depleted DE (PDDE), or filtered air. The control condition was inhaled saline after filtered air. Blood sampling and spirometry were performed before and up to 48 hours after exposures. Airway responsiveness was evaluated at 24 hours.Measurements and Main Results: PDDE plus allergen coexposure impaired lung function more than DE plus allergen, particularly in those genetically at risk. DE plus allergen and PDDE plus allergen each increased airway responsiveness in normally responsive participants. DE plus allergen increased blood neutrophils and was associated with persistent eosinophilia at 48 hours. DE and PDDE each increased total peripheral leukocyte counts in a manner affected by participant genotypes. Changes in peripheral leukocytes correlated with lung function decline.Conclusions: Coexposure to DE and allergen impaired lung function, which was worse after particle depletion (which increased NO2). Thus, particulates are not necessarily the sole or main culprit responsible for all harmful effects of DE. Policies and technologies aimed at protecting public health should be scrutinized in that regard.Clinical trial registered with www.clinicaltrials.gov (NCT02017431).
Collapse
Affiliation(s)
- Denise J Wooding
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, and
| | - Min Hyung Ryu
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, and
| | - Anke Hüls
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Human Genetics, Emory University, Atlanta, Georgia; and.,Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Andrew D Lee
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, and
| | - David T S Lin
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Christopher F Rider
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, and
| | - Agnes C Y Yuen
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, and
| | - Chris Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, and
| |
Collapse
|
4
|
Hernandez-Ferrer C, Gonzalez JR. CTDquerier: a bioconductor R package for Comparative Toxicogenomics DatabaseTM data extraction, visualization and enrichment of environmental and toxicological studies. Bioinformatics 2019; 34:3235-3237. [PMID: 29688259 PMCID: PMC6137994 DOI: 10.1093/bioinformatics/bty326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 04/20/2018] [Indexed: 12/05/2022] Open
Abstract
Summary Biomedical studies currently include a large volume of genomic and environmental factors for studying the etiology of human diseases. R/Bioconductor projects provide several tools for performing enrichment analysis at gene-pathway level, allowing researchers to develop novel hypotheses. However, there is a need to perform similar analyses at the chemicals-genes or chemicals-diseases levels to provide complementary knowledge of the causal path between chemicals and diseases. While the Comparative Toxicogenomics DatabaseTM (CTD) provides information about these relationships, there is no software for integrating it into R/Bioconductor analysis pipelines. CTDquerier helps users to easily download CTD data and integrate it in the R/Bioconductor framework. The package also contains functions for visualizing CTD data and performing enrichment analyses. We illustrate how to use the package with a real data analysis of asthma-related genes. CTDquerier is a flexible and easy-to-use Bioconductor package that provides novel hypothesis about the relationships between chemicals and diseases. Availability and implementation CTDquerier R package is available through Bioconductor and its development version at https://github.com/isglobal-brge/CTDquerier. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Carles Hernandez-Ferrer
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Computational Health Informatics Program, Boston Children's Hospital, Boston, USA
| | - Juan R Gonzalez
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
5
|
Lee SJ, Kim JM, Kim HB. Recent changing pattern of aeroallergen sensitization in children with allergic diseases: A single center study. ALLERGY ASTHMA & RESPIRATORY DISEASE 2019. [DOI: 10.4168/aard.2019.7.4.186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Su-Jin Lee
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Jung-Min Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Hyo-Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| |
Collapse
|
6
|
Hüls A, Klümper C, MacIntyre EA, Brauer M, Melén E, Bauer M, Berdel D, Bergström A, Brunekreef B, Chan-Yeung M, Fuertes E, Gehring U, Gref A, Heinrich J, Standl M, Lehmann I, Kerkhof M, Koppelman GH, Kozyrskyj AL, Pershagen G, Carlsten C, Krämer U, Schikowski T. Atopic dermatitis: Interaction between genetic variants of GSTP1, TNF, TLR2, and TLR4 and air pollution in early life. Pediatr Allergy Immunol 2018; 29:596-605. [PMID: 29624745 DOI: 10.1111/pai.12903] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Associations between traffic-related air pollution (TRAP) and childhood atopic dermatitis (AD) remain inconsistent, possibly due to unexplored gene-environment interactions. The aim of this study was to examine whether a potential effect of TRAP on AD prevalence in children is modified by selected single nucleotide polymorphisms (SNPs) related to oxidative stress and inflammation. METHODS Doctor-diagnosed AD up to age 2 years and at 7-8 years, as well as AD symptoms up to age 2 years, was assessed using parental-reported questionnaires in six birth cohorts (N = 5685). Associations of nitrogen dioxide (NO2 ) estimated at the home address of each child at birth and nine SNPs within the GSTP1, TNF, TLR2, or TLR4 genes with AD were examined. Weighted genetic risk scores (GRS) were calculated from the above SNPs and used to estimate combined marginal genetic effects of oxidative stress and inflammation on AD and its interaction with TRAP. RESULTS GRS was associated with childhood AD and modified the association between NO2 and doctor-diagnosed AD up to the age of 2 years (P(interaction) = .029). This interaction was mainly driven by a higher susceptibility to air pollution in TNF rs1800629 minor allele (A) carriers. TRAP was not associated with the prevalence of AD in the general population. CONCLUSIONS The marginal genetic association of a weighted GRS from GSTP1, TNF, TLR2, and TLR4SNPs and its interaction with air pollution supports the role of oxidative stress and inflammation in AD.
Collapse
Affiliation(s)
- Anke Hüls
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Claudia Klümper
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Hochschule Hamm-Lippstadt, Hamm, Germany
| | - Elaina A MacIntyre
- Environmental and Occupational Health, Public Health Ontario, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden.,Sachs Children's Hospital, Stockholm, Sweden
| | - Mario Bauer
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Dietrich Berdel
- Department of Pediatrics, Marien-Hospital Wesel, Research Institute, Wesel, Germany
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Moira Chan-Yeung
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Elaine Fuertes
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anna Gref
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joachim Heinrich
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City Clinic, University Hospital of Munich (LMU), Munich, Germany
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Irina Lehmann
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Marjan Kerkhof
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Observational and Pragmatic Research Institute, Singapore
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anita L Kozyrskyj
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Christopher Carlsten
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Institute for Heart and Lung Health, Vancouver, BC, Canada
| | - Ursula Krämer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tamara Schikowski
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | |
Collapse
|
7
|
van Bragt JJMH, Vijverberg SJH, Weersink EJM, Richards LB, Neerincx AH, Sterk PJ, Bel EHD, Maitland-van der Zee AH. Blood biomarkers in chronic airways diseases and their role in diagnosis and management. Expert Rev Respir Med 2018; 12:361-374. [PMID: 29575948 DOI: 10.1080/17476348.2018.1457440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The complexity and heterogeneous nature of asthma and chronic obstructive pulmonary disease (COPD) results in difficulties in diagnosing and treating patients. Biomarkers that can identify underlying mechanisms, identify patient phenotypes and to predict treatment response could be of great value for adequate treatment. Areas covered: Biomarkers play an important role for the development of novel targeted therapies in airways disease. Blood biomarkers are relatively non-invasive, easy to obtain and easy to apply in routine care. Several blood biomarkers are being used to diagnose and monitor chronic airways diseases, as well as to predict response to treatment and long-term prognosis. Blood eosinophils are the best studied biomarker, the most applied in clinical practice, and until now the most promising of all blood biomarkers. Other blood biomarkers, including serum periostin, IgE and ECP and plasma fibrinogen are less studied and less relevant in clinical practice. Recent developments include the use of antibody assays of many different cytokines at the same time, and 'omics' techniques and systems medicine. Expert commentary: With the exception of blood eosinophils, the use of blood biomarkers in asthma and COPD has been rather disappointing. Future research using new technologies like big-data analysis of blood samples from real-life patient cohorts will probably gain better insight into underlying mechanisms of different disease phenotypes. Identification of specific molecular pathways and associated biomarkers will then allow the development of new targets for precision medicine.
Collapse
Affiliation(s)
- Job J M H van Bragt
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , the Netherlands
| | - Susanne J H Vijverberg
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , the Netherlands
| | - Els J M Weersink
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , the Netherlands
| | - Levi B Richards
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , the Netherlands
| | - Anne H Neerincx
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , the Netherlands
| | - Peter J Sterk
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , the Netherlands
| | - Elisabeth H D Bel
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , the Netherlands
| | - Anke H Maitland-van der Zee
- a Department of Respiratory Medicine, Academic Medical Center (AMC) , University of Amsterdam , Amsterdam , the Netherlands
| |
Collapse
|
8
|
Hüls A, Krämer U, Carlsten C, Schikowski T, Ickstadt K, Schwender H. Comparison of weighting approaches for genetic risk scores in gene-environment interaction studies. BMC Genet 2017; 18:115. [PMID: 29246113 PMCID: PMC5732390 DOI: 10.1186/s12863-017-0586-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/07/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Weighted genetic risk scores (GRS), defined as weighted sums of risk alleles of single nucleotide polymorphisms (SNPs), are statistically powerful for detection gene-environment (GxE) interactions. To assign weights, the gold standard is to use external weights from an independent study. However, appropriate external weights are not always available. In such situations and in the presence of predominant marginal genetic effects, we have shown in a previous study that GRS with internal weights from marginal genetic effects ("GRS-marginal-internal") are a powerful and reliable alternative to single SNP approaches or the use of unweighted GRS. However, this approach might not be appropriate for detecting predominant interactions, i.e. interactions showing an effect stronger than the marginal genetic effect. METHODS In this paper, we present a weighting approach for such predominant interactions ("GRS-interaction-training") in which parts of the data are used to estimate the weights from the interaction terms and the remaining data are used to determine the GRS. We conducted a simulation study for the detection of GxE interactions in which we evaluated power, type I error and sign-misspecification. We compared this new weighting approach to the GRS-marginal-internal approach and to GRS with external weights. RESULTS Our simulation study showed that in the absence of external weights and with predominant interaction effects, the highest power was reached with the GRS-interaction-training approach. If marginal genetic effects were predominant, the GRS-marginal-internal approach was more appropriate. Furthermore, the power to detect interactions reached by the GRS-interaction-training approach was only slightly lower than the power achieved by GRS with external weights. The power of the GRS-interaction-training approach was confirmed in a real data application to the Traffic, Asthma and Genetics (TAG) Study (N = 4465 observations). CONCLUSION When appropriate external weights are unavailable, we recommend to use internal weights from the study population itself to construct weighted GRS for GxE interaction studies. If the SNPs were chosen because a strong marginal genetic effect was hypothesized, GRS-marginal-internal should be used. If the SNPs were chosen because of their collective impact on the biological mechanisms mediating the environmental effect (hypothesis of predominant interactions) GRS-interaction-training should be applied.
Collapse
Affiliation(s)
- Anke Hüls
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Faculty of Statistics, TU Dortmund University, Dortmund, Germany
| | - Ursula Krämer
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Christopher Carlsten
- Department of Medicine, University of British Columbia, Vancouver, BC Canada
- Institute for Heart and Lung Health, Vancouver, BC Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC Canada
| | - Tamara Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Katja Ickstadt
- Faculty of Statistics, TU Dortmund University, Dortmund, Germany
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
9
|
Interactions of GST Polymorphisms in Air Pollution Exposure and Respiratory Diseases and Allergies. Curr Allergy Asthma Rep 2017; 16:85. [PMID: 27878551 DOI: 10.1007/s11882-016-0664-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the evidence from recently published original studies investigating how glutathione S-transferase (GST) gene polymorphisms modify the impact of air pollution on asthma, allergic diseases, and lung function. RECENT FINDINGS Current studies in epidemiological and controlled human experiments found evidence to suggest that GSTs modify the impact of air pollution exposure on respiratory diseases and allergies. Of the nine articles included in this review, all except one identified at least one significant interaction with at least one of glutathione S-transferase pi 1 (GSTP1), glutathione S-transferase mu 1 (GSTM1), or glutathione S-transferase theta 1 (GSTT1) genes and air pollution exposure. The findings of these studies, however, are markedly different. This difference can be partially explained by regional variation in the exposure levels and oxidative potential of different pollutants and by other interactions involving a number of unaccounted environment exposures and multiple genes. Although there is evidence of an interaction between GST genes and air pollution exposure for the risk of respiratory disease and allergies, results are not concordant. Further investigations are needed to explore the reasons behind the discordancy.
Collapse
|
10
|
Khreis H, Kelly C, Tate J, Parslow R, Lucas K, Nieuwenhuijsen M. Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis. ENVIRONMENT INTERNATIONAL 2017; 100:1-31. [PMID: 27881237 DOI: 10.1016/j.envint.2016.11.012] [Citation(s) in RCA: 412] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND OBJECTIVE The question of whether children's exposure to traffic-related air pollution (TRAP) contributes to their development of asthma is unresolved. We conducted a systematic review and performed meta-analyses to analyze the association between TRAP and asthma development in childhood. DATA SOURCES We systematically reviewed epidemiological studies published until 8 September 2016 and available in the Embase, Ovid MEDLINE (R), and Transport databases. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS, AND INTERVENTIONS We included studies that examined the association between children's exposure to TRAP metrics and their risk of 'asthma' incidence or lifetime prevalence, from birth to age 18years old. STUDY APPRAISAL AND SYNTHESIS METHODS We extracted key characteristics of each included study using a predefined data items template and these were tabulated. We used the Critical Appraisal Skills Programme checklists to assess the validity of each included study. Where four or more independent risk estimates were available for a continuous pollutant exposure, we conducted overall and age-specific meta-analyses, and four sensitivity analyses for each summary meta-analytic exposure-outcome association. RESULTS Forty-one studies met our eligibility criteria. There was notable variability in asthma definitions, TRAP exposure assessment methods and confounder adjustment. The overall random-effects risk estimates (95% CI) were 1.08 (1.03, 1.14) per 0.5×10-5m-1 black carbon (BC), 1.05 (1.02, 1.07) per 4μg/m3 nitrogen dioxide (NO2), 1.48 (0.89, 2.45) per 30μg/m3 nitrogen oxides (NOx), 1.03 (1.01, 1.05) per 1μg/m3 Particulate Matter <2.5μm in diameter (PM2.5), and 1.05 (1.02, 1.08) per 2μg/m3 Particulate Matter <10μm in diameter (PM10). Sensitivity analyses supported these findings. Across the main analysis and age-specific analysis, the least heterogeneity was seen for the BC estimates, some heterogeneity for the PM2.5 and PM10 estimates and the most heterogeneity for the NO2 and NOx estimates. LIMITATIONS, CONCLUSIONS AND IMPLICATION OF KEY FINDINGS The overall risk estimates from the meta-analyses showed statistically significant associations for BC, NO2, PM2.5, PM10 exposures and risk of asthma development. Our findings support the hypothesis that childhood exposure to TRAP contributes to their development of asthma. Future meta-analyses would benefit from greater standardization of study methods including exposure assessment harmonization, outcome harmonization, confounders' harmonization and the inclusion of all important confounders in individual studies. SYSTEMATIC REVIEW REGISTRATION NUMBER PROSPERO 2014: CRD42014015448.
Collapse
Affiliation(s)
- Haneen Khreis
- Institute for Transport Studies, University of Leeds, Leeds, United Kingdom.
| | - Charlotte Kelly
- Institute for Transport Studies, University of Leeds, Leeds, United Kingdom; Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
| | - James Tate
- Institute for Transport Studies, University of Leeds, Leeds, United Kingdom
| | - Roger Parslow
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Karen Lucas
- Institute for Transport Studies, University of Leeds, Leeds, United Kingdom
| | - Mark Nieuwenhuijsen
- ISGlobal CREAL, C/Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), C/Dr. Aiguader 88, 08003, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
11
|
Fuertes E, Markevych I, Bowatte G, Gruzieva O, Gehring U, Becker A, Berdel D, von Berg A, Bergström A, Brauer M, Brunekreef B, Brüske I, Carlsten C, Chan-Yeung M, Dharmage SC, Hoffmann B, Klümper C, Koppelman GH, Kozyrskyj A, Korek M, Kull I, Lodge C, Lowe A, MacIntyre E, Pershagen G, Standl M, Sugiri D, Wijga A, Heinrich J. Residential greenness is differentially associated with childhood allergic rhinitis and aeroallergen sensitization in seven birth cohorts. Allergy 2016; 71:1461-71. [PMID: 27087129 DOI: 10.1111/all.12915] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The prevalence of allergic rhinitis is high, but the role of environmental factors remains unclear. We examined cohort-specific and combined associations of residential greenness with allergic rhinitis and aeroallergen sensitization based on individual data from Swedish (BAMSE), Australian (MACS), Dutch (PIAMA), Canadian (CAPPS and SAGE), and German (GINIplus and LISAplus) birth cohorts (n = 13 016). METHODS Allergic rhinitis (doctor diagnosis/symptoms) and aeroallergen sensitization were assessed in children aged 6-8 years in six cohorts and 10-12 years in five cohorts. Residential greenness was defined as the mean Normalized Difference Vegetation Index (NDVI) in a 500-m buffer around the home address at the time of health assessment. Cohort-specific associations per 0.2 unit increase in NDVI were assessed using logistic regression models and combined in a random-effects meta-analysis. RESULTS Greenness in a 500-m buffer was positively associated with allergic rhinitis at 6-8 years in BAMSE (odds ratio = 1.42, 95% confidence interval [1.13, 1.79]) and GINI/LISA South (1.69 [1.19, 2.41]) but inversely associated in GINI/LISA North (0.61 [0.36, 1.01]) and PIAMA (0.67 [0.47, 0.95]). Effect estimates in CAPPS and SAGE were also conflicting but not significant (0.63 [0.32, 1.24] and 1.31 [0.81, 2.12], respectively). All meta-analyses were nonsignificant. Results were similar for aeroallergen sensitization at 6-8 years and both outcomes at 10-12 years. Stratification by NO2 concentrations, population density, an urban vs rural marker, and moving did not reveal consistent trends within subgroups. CONCLUSION Although residential greenness appears to be associated with childhood allergic rhinitis and aeroallergen sensitization, the effect direction varies by location.
Collapse
|
12
|
Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology 2015; 59:140-154. [PMID: 26721665 DOI: 10.1016/j.neuro.2015.12.014] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 12/25/2022]
Abstract
Accumulating evidence from both human and animal studies show that brain is a target of air pollution. Multiple epidemiological studies have now linked components of air pollution to diagnosis of autism spectrum disorder (ASD), a linkage with plausibility based on the shared mechanisms of inflammation. Additional plausibility appears to be provided by findings from our studies in mice of exposures from postnatal day (PND) 4-7 and 10-13 (human 3rd trimester equivalent), to concentrated ambient ultrafine (UFP) particles, considered the most reactive component of air pollution, at levels consistent with high traffic areas of major U.S. cities and thus highly relevant to human exposures. These exposures, occurring during a period of marked neuro- and gliogenesis, unexpectedly produced a pattern of developmental neurotoxicity notably similar to multiple hypothesized mechanistic underpinnings of ASD, including its greater impact in males. UFP exposures induced inflammation/microglial activation, reductions in size of the corpus callosum (CC) and associated hypomyelination, aberrant white matter development and/or structural integrity with ventriculomegaly (VM), elevated glutamate and excitatory/inhibitory imbalance, increased amygdala astrocytic activation, and repetitive and impulsive behaviors. Collectively, these findings suggest the human 3rd trimester equivalent as a period of potential vulnerability to neurodevelopmental toxicity to UFP, particularly in males, and point to the possibility that UFP air pollution exposure during periods of rapid neuro- and gliogenesis may be a risk factor not only for ASD, but also for other neurodevelopmental disorders that share features with ASD, such as schizophrenia, attention deficit disorder, and periventricular leukomalacia.
Collapse
|
13
|
Abstract
The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, otolaryngological, locomotor, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. The findings of the Rotterdam Study have been presented in over 1200 research articles and reports (see www.erasmus-epidemiology.nl/rotterdamstudy ). This article gives the rationale of the study and its design. It also presents a summary of the major findings and an update of the objectives and methods.
Collapse
|
14
|
The Generation R Study: Biobank update 2015. Eur J Epidemiol 2014; 29:911-27. [PMID: 25527369 DOI: 10.1007/s10654-014-9980-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/06/2014] [Indexed: 12/14/2022]
Abstract
The Generation R Study is a population-based prospective cohort study from fetal life until adulthood. The study is designed to identify early environmental and genetic causes and causal pathways leading to normal and abnormal growth, development and health from fetal life, childhood and young adulthood. In total, 9,778 mothers were enrolled in the study. Data collection in children and their parents include questionnaires, interviews, detailed physical and ultrasound examinations, behavioural observations, Magnetic Resonance Imaging and biological samples. Efforts have been conducted for collecting biological samples including blood, hair, faeces, nasal swabs, saliva and urine samples and generating genomics data on DNA, RNA and microbiome. In this paper, we give an update of the collection, processing and storage of these biological samples and available measures. Together with detailed phenotype measurements, these biological samples provide a unique resource for epidemiological studies focused on environmental exposures, genetic and genomic determinants and their interactions in relation to growth, health and development from fetal life onwards.
Collapse
|
15
|
MacIntyre EA, Brauer M, Melén E, Bauer CP, Bauer M, Berdel D, Bergström A, Brunekreef B, Chan-Yeung M, Klümper C, Fuertes E, Gehring U, Gref A, Heinrich J, Herbarth O, Kerkhof M, Koppelman GH, Kozyrskyj AL, Pershagen G, Postma DS, Thiering E, Tiesler CMT, Carlsten C. GSTP1 and TNF Gene variants and associations between air pollution and incident childhood asthma: the traffic, asthma and genetics (TAG) study. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:418-24. [PMID: 24465030 PMCID: PMC3984232 DOI: 10.1289/ehp.1307459] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 01/24/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND Genetics may partially explain observed heterogeneity in associations between traffic-related air pollution and incident asthma. OBJECTIVE Our aim was to investigate the impact of gene variants associated with oxidative stress and inflammation on associations between air pollution and incident childhood asthma. METHODS Traffic-related air pollution, asthma, wheeze, gene variant, and potential confounder data were pooled across six birth cohorts. Parents reported physician-diagnosed asthma and wheeze from birth to 7-8 years of age (confirmed by pediatric allergist in two cohorts). Individual estimates of annual average air pollution [nitrogen dioxide (NO2), particulate matter ≤ 2.5 μm (PM2.5), PM2.5 absorbance, ozone] were assigned to each child's birth address using land use regression, atmospheric modeling, and ambient monitoring data. Effect modification by variants in GSTP1 (rs1138272/Ala114Val and rs1695/IIe105Val) and TNF (rs1800629/G-308A) was investigated. RESULTS Data on asthma, wheeze, potential confounders, at least one SNP of interest, and NO2 were available for 5,115 children. GSTP1 rs1138272 and TNF rs1800629 SNPs were associated with asthma and wheeze, respectively. In relation to air pollution exposure, children with one or more GSTP1 rs1138272 minor allele were at increased risk of current asthma [odds ratio (OR) = 2.59; 95% CI: 1.43, 4.68 per 10 μg/m3 NO2] and ever asthma (OR = 1.64; 95% CI: 1.06, 2.53) compared with homozygous major allele carriers (OR = 0.95; 95% CI: 0.68, 1.32 for current and OR = 1.20; 95% CI: 0.98, 1.48 for ever asthma; Bonferroni-corrected interaction p = 0.04 and 0.01, respectively). Similarly, for GSTP1 rs1695, associations between NO2 and current and ever asthma had ORs of 1.43 (95% CI: 1.03, 1.98) and 1.36 (95% CI: 1.08, 1.70), respectively, for minor allele carriers compared with ORs of 0.82 (95% CI: 0.52, 1.32) and 1.12 (95% CI: 0.84, 1.49) for homozygous major allele carriers (Bonferroni-corrected interaction p-values 0.48 and 0.09). There were no clear differences by TNF genotype. CONCLUSIONS Children carrying GSTP1 rs1138272 or rs1695 minor alleles may constitute a susceptible population at increased risk of asthma associated with air pollution.
Collapse
Affiliation(s)
- Elaina A MacIntyre
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|