1
|
Ghonaim MM, Habeb MM, Mansour MTM, Mohamed HI, Omran AAA. Investigation of genetic diversity using molecular and biochemical markers associated with powdery mildew resistance in different flax (Linum usitatissimum L.) genotypes. BMC PLANT BIOLOGY 2024; 24:412. [PMID: 38760706 PMCID: PMC11100107 DOI: 10.1186/s12870-024-05113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Under greenhouse conditions, the resistance of 18 different genotypes of flax to powdery mildew was evaluated. To investigate genetic diversity and identify the molecular and biochemical markers linked to powdery mildew resistance in the tested genotypes, two molecular marker systems-start codon targeted (SCoT) and inter-simple sequence repeat (ISSR)-as well as a biochemical marker (protein profiles, antioxidant enzyme activity, and secondary metabolites) were used. Based on the results, the genotypes were classified into four categories: highly susceptible, susceptible, moderately susceptible, and moderately resistant. The genotypes differed significantly in powdery mildew severity: Polk had a severity of 92.03% and Leona had a severity of 18.10%. Compared to the other genotypes, the moderately resistant genotypes had higher levels of flavonoids, antioxidant enzymes, phenolics, and straw yield; nevertheless, their hydrogen peroxide and malondialdehyde levels were lower. Protein profiles revealed 93.75% polymorphism, although the ISSR marker displayed more polymorphism (78.4%) than the SCoT marker (59.7%). Specific molecular and biochemical markers associated with powdery mildew resistance were identified. The 18 genotypes of flax were divided into two major clusters by the dendrogram based on the combined data of molecular markers. The first main cluster included Leona (genotype number 7), considered moderate resistance to powdery mildew and a separate phenetic line. The second main cluster included the other 17 genotypes, which are grouped together in a sub-cluster. This means that, besides SCoT, ISSR markers can be a useful supplementary technique for molecular flax characterization and for identifying genetic associations between flax genotypes under powdery mildew infection.
Collapse
Affiliation(s)
- Marwa M Ghonaim
- Cell Study Research Department, Agriculture Research Center, Field Crops Research Institute, Giza, Egypt
| | - Marian M Habeb
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Mahmoud T M Mansour
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| | - Ahmed A A Omran
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Mogazy AM, Abdallah WE, Mohamed HI, Omran AAA. The efficacy of chemical inducers and fungicides in controlling tomato root rot disease caused by Rhizoctoniasolani. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108669. [PMID: 38685150 DOI: 10.1016/j.plaphy.2024.108669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Chitosan is an environmentally friendly natural substance that is used in crop disease management as an alternative to chemical pesticides. A significant issue restricting output in Egypt is root rot, which is a disease, caused by Rhizoctonia solani. Therefore, a greenhouse experiment was conducted to assess the effects of R. solani on 60-day-old tomato plants under fungal infection and to determine the antifungal activity of chitosan and Rizolax T fungicide against the pathogenic fungus. The findings demonstrated that 4 g/L of chitosan seed application completely obstructed the radial mycelial growth of R. solani and decreased the disease severity. Pathogenic infection significantly decreased morphological characteristics and total chlorophyll but significantly increased carotenoid, total thiol, non-protein thiol, protein thiol, antioxidant enzymes, oxidative stress, total phenolic, total flavonoid, and isoflavone compared to healthy plants. Tomato plants treated with chitosan exhibited lower rates of oxidative stress, but higher levels of all previously mentioned parameters compared to untreated infected plants. The number and molecular mass of protein banding patterns varied in all treated tomato plants as compared to the healthy control. There are 42 bands in the treatments, and their polymorphism rate is 69.55%. Moreover, the number and density of α- and β-esterase, and peroxidase isozymes in treated tomato plants exhibited varied responses. Moreover, in treated and control plants, chitosan treatment raised the expression levels of phenylalanine ammonia-lyase, pathogenesis-related protein-1, β-1,3-glucanases and chitinase. In conclusions, chitosan reduces R. solani infection by controlling the biochemical and molecular mechanisms in tomato plants during infection.
Collapse
Affiliation(s)
- Asmaa M Mogazy
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt
| | - Wafaa E Abdallah
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| | - Ahmed A A Omran
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt
| |
Collapse
|
3
|
Muhammad M, Basit A, Ali K, Ahmad H, Li WJ, Khan A, Mohamed HI. A review on endophytic fungi: a potent reservoir of bioactive metabolites with special emphasis on blight disease management. Arch Microbiol 2024; 206:129. [PMID: 38416214 DOI: 10.1007/s00203-023-03828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/30/2023] [Indexed: 02/29/2024]
Abstract
Phytopathogenic microorganisms have caused blight diseases that present significant challenges to global agriculture. These diseases result in substantial crop losses and have a significant economic impact. Due to the limitations of conventional chemical treatments in effectively and sustainably managing these diseases, there is an increasing interest in exploring alternative and environmentally friendly approaches for disease control. Using endophytic fungi as biocontrol agents has become a promising strategy in recent years. Endophytic fungi live inside plant tissues, forming mutually beneficial relationships, and have been discovered to produce a wide range of bioactive metabolites. These metabolites demonstrate significant potential for fighting blight diseases and provide a plentiful source of new biopesticides. In this review, we delve into the potential of endophytic fungi as a means of biocontrol against blight diseases. We specifically highlight their significance as a source of biologically active compounds. The review explores different mechanisms used by endophytic fungi to suppress phytopathogens. These mechanisms include competing for nutrients, producing antifungal compounds, and triggering plant defense responses. Furthermore, this review discusses the challenges of using endophytic fungi as biocontrol agents in commercial applications. It emphasizes the importance of conducting thorough research to enhance their effectiveness and stability in real-world environments. Therefore, bioactive metabolites from endophytic fungi have considerable potential for sustainable and eco-friendly blight disease control. Additional research on endophytes and their metabolites will promote biotechnology solutions.
Collapse
Affiliation(s)
- Murad Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Abdul Basit
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Korea
| | - Kashif Ali
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Haris Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ayesha Khan
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
4
|
Chinachanta K, Shutsrirung A, Santasup C, Pathom-Aree W, Luu DT, Herrmann L, Lesueur D, Prom-u-thai C. Rhizoactinobacteria Enhance Growth and Antioxidant Activity in Thai Jasmine Rice ( Oryza sativa) KDML105 Seedlings under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3441. [PMID: 37836181 PMCID: PMC10574518 DOI: 10.3390/plants12193441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Salinity is one of the most devastating abiotic stresses hampering the growth and production of rice. Nine indole-3-acetic acid (IAA)-producing salt-tolerant plant-growth-promoting rhizobacteria (ST-PGPR) were inoculated into Thai jasmine rice (Oryza sativa L.) variety Khao Dawk Mali 105 (KDML105) seedlings grown under different concentrations of NaCl (0, 50, 100, and 150 mM). The ST-PGPR strains significantly promoted the growth parameters, chlorophyll content, nutrient uptake (N, P, K, Ca, and Mg), antioxidant activity, and proline accumulation in the seedlings under both normal and saline conditions compared to the respective controls. The K+/Na+ ratio of the inoculated seedlings was much higher than that of the controls, indicating greater salt tolerance. The most salt-tolerant and IAA-producing strain, Sinomonas sp. ORF15-23, yielded the highest values for all the parameters, particularly at 50 mM NaCl. The percentage increases in these parameters relative to the controls ranged from >90% to 306%. Therefore, Sinomonas sp. ORF15-23 was considered a promising ST-PGPR to be developed as a bioinoculant for enhancing the growth, salt tolerance, and aroma of KDML105 rice in salt-affected areas. Environmentally friendly technologies such as ST-PGPR bioinoculants could also support the sustainability of KDML105 geographical indication (GI) products. However, the efficiency of Sinomonas sp. ORF15-23 should be evaluated under field conditions for its effect on rice nutrient uptake and growth, including the 2AP level.
Collapse
Affiliation(s)
- Kawiporn Chinachanta
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (A.S.); (C.S.)
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Arawan Shutsrirung
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (A.S.); (C.S.)
| | - Choochad Santasup
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (A.S.); (C.S.)
| | - Wasu Pathom-Aree
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Doan Trung Luu
- IPSiM, CNRS, INRAE, Institute Agro, University of Montpellier, 34060 Montpellier, France;
| | - Laetitia Herrmann
- Alliance of Bioversity International and Centre International of Tropical Agriculture (CIAT), Asia Hub, Common Microbial Biotechnology Platform (CMBP), Hanoi 10000, Vietnam; (L.H.); (D.L.)
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Melbourne, VIC 3125, Australia
| | - Didier Lesueur
- Alliance of Bioversity International and Centre International of Tropical Agriculture (CIAT), Asia Hub, Common Microbial Biotechnology Platform (CMBP), Hanoi 10000, Vietnam; (L.H.); (D.L.)
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Melbourne, VIC 3125, Australia
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR Eco&Sols, Hanoi 10000, Vietnam
- Eco & Sols, CIRAD, INRAE, Institut de Recherche pour le Développement (IRD), Montpellier SupAgro, Université de Montpellier (UMR), 34060 Montpellier, France
- Chinese Academy of Tropical Agricultural Sciences, Rubber Research Institute, Haikou 571101, China
| | - Chanakan Prom-u-thai
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (A.S.); (C.S.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Haris M, Hussain T, Mohamed HI, Khan A, Ansari MS, Tauseef A, Khan AA, Akhtar N. Nanotechnology - A new frontier of nano-farming in agricultural and food production and its development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159639. [PMID: 36283520 DOI: 10.1016/j.scitotenv.2022.159639] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
The potential of nanotechnology for the development of sustainable agriculture has been promising. The initiatives to meet the rising food needs of the rapidly growing world population are mainly powered by sustainable agriculture. Nanoparticles are used in agriculture due to their distinct physicochemical characteristics. The interaction of nanomaterials with soil components is strongly determined in terms of soil quality and plant growth. Numerous research has been carried out to investigate how nanoparticles affect the growth and development of plants. Nanotechnology has been applied to improve the quality and reduce post-harvest loss of agricultural products by extending their shelf life, particularly for fruits and vegetables. This review assesses the latest literature on nanotechnology, which is used as a nano-biofertilizer as seen in the agricultural field for high productivity and better growth of plants, an important source of balanced nutrition for the crop, seed germination, and quality enrichment. Additionally, post-harvest food processing and packaging can benefit greatly from the use of nanotechnology to cut down on food waste and contamination. It also critically discusses the mechanisms involved in nanoparticle absorption and translocation within the plants and the synthesis of green nanoparticles.
Collapse
Affiliation(s)
- Mohammad Haris
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Touseef Hussain
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; Division. of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt.
| | - Amir Khan
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Moh Sajid Ansari
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Atirah Tauseef
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Abrar Ahmad Khan
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Naseem Akhtar
- Department of Pharmaceutics, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Qassim 51418, Saudi Arabia
| |
Collapse
|
6
|
El-Beltagi HS, Ahmad I, Basit A, Shehata WF, Hassan U, Shah ST, Haleema B, Jalal A, Amin R, Khalid MA, Noor F, Mohamed HI. Ascorbic Acid Enhances Growth and Yield of Sweet Peppers (Capsicum annum) by Mitigating Salinity Stress. GESUNDE PFLANZEN 2022; 74:423-433. [DOI: 10.1007/s10343-021-00619-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/21/2021] [Indexed: 10/26/2023]
|
7
|
Calcium and iron nanoparticles: A positive modulator of innate immune responses in strawberry against Botrytis cinerea. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Aly AA, El-Mahdy OM, Habeb MM, Elhakem A, Asran AA, Youssef MM, Mohamed HI, Hanafy RS. Pathogenicity of Bacillus Strains to Cotton Seedlings and Their Effects on Some Biochemical Components of the Infected Seedlings. THE PLANT PATHOLOGY JOURNAL 2022; 38:90-101. [PMID: 35385915 PMCID: PMC9343897 DOI: 10.5423/ppj.oa.11.2021.0173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Pathogenicity of eight Bacillus strains to seedlings of four cotton cultivars was evaluated under greenhouse conditions. Each of the tested cultivars was individually treated with powdered inoculum of each bacterial strain. Untreated seeds were planted as control treatments in autoclaved soil. Effects of the tested strains on levels and activities of some biochemical components of the infected seedlings were also assayed. The biochemical components included total soluble sugars, total soluble proteins, total free amino acids, peroxidase, polyphenol oxidase, phenols, and lipid peroxidation. ANOVA showed that Bacillus strain (B) was a very highly significant source of variation in damping-off and dry weight. Cotton cultivar (V) was a nonsignificant source of variation in damping-off while it was a significant source of variation in dry weight. B × V interaction was a significant source of variation in damping-off and a nonsignificant source of variation in dry weight. Bacillus strain was the most important source of variation as it accounted for 59.36 and 64.99% of the explained (model) variation in damping-off and dry weight, respectively. The lack of significant correlation between levels and activities of the assayed biochemical components and incidence of damping-off clearly demonstrated that these biochemical components were not involved in the pathogenicity of the tested strains. Therefore, it was hypothesized that the pathogenicity of the tested strains could be due to the effect of cell wall degrading enzymes of pathogenic toxins. Based on the results of the present study, Bacillus strains should be considered in studying the etiology of cotton seedling damping-off.
Collapse
Affiliation(s)
- Aly A. Aly
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Omima M. El-Mahdy
- Faculty of Education, Department of Biological and Geological Sciences, Ain Shams University, Cairo 11341, Egypt
| | - Marian M. Habeb
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Abeer Elhakem
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, 11942 Al-Kharj, Saudi Arabia
| | - Amal A. Asran
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Maryan M. Youssef
- Faculty of Agriculture, Department of Plant Pathology, Cairo University, Giza 12613, Egypt
| | - Heba I. Mohamed
- Faculty of Education, Department of Biological and Geological Sciences, Ain Shams University, Cairo 11341, Egypt
| | - Rania S. Hanafy
- Faculty of Education, Department of Biological and Geological Sciences, Ain Shams University, Cairo 11341, Egypt
| |
Collapse
|
9
|
Lavanya SN, Niranjan-Raj S, Jadimurthy R, Sudarsan S, Srivastava R, Tarasatyavati C, Rajashekara H, Gupta VK, Nayaka SC. Immunity elicitors for induced resistance against the downy mildew pathogen in pearl millet. Sci Rep 2022; 12:4078. [PMID: 35260725 PMCID: PMC8904771 DOI: 10.1038/s41598-022-07839-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
Pearl millet (Pennisetum glaucum (L.) R. Br.) is a globally important cereal whose production is severely constrained by downy mildew caused by Sclerospora graminicola (Sacc.). In this study, immunity eliciting properties of 3,5-dichloroanthranilic acid (DCA), Cell Wall Glucan (CWG), Lipopolysaccharide (LPS), and Glycinebetaine (GB) was deciphered through enzymatic and protein studies based on elicitor treatment activated defense mechanisms. Glycinebetaine, LPS, CWS and DCA elicited enzyme activities and gene expression of the defense enzymes, such as β-1,3-glucanase, phenylalanine ammonia lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), lipoxygenase (LOX) and defense protein hydroxyproline-rich glycoproteins (HRGPs). However, the speed and the extent of elicitation differed. High levels of enzyme activities and gene expression in elicitor-treated P. glaucum positively correlated with the increased downy mildew resistance. A very rapid and large changes in elicitor-treated seedlings, in contrast to the delayed, smaller changes in the untreated susceptible control seedlings suggests that the rate and magnitude of defense gene expression are important for effective manifestation of defense against pathogen. As compared to other elicitors and control, GB promoted increase in enzyme activities and gene expression, implicating that GB is a promising elicitor of downy mildew resistance in P. glaucum.
Collapse
Affiliation(s)
| | - Sathyanarayana Niranjan-Raj
- Department of Studies in Microbiology, Karnataka State Open University, Mukthagangotri, Mysuru, Karnataka, India
| | - Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Sujesh Sudarsan
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Rakesh Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - C Tarasatyavati
- All India Coordinated Research Project on Pearl Millet, Indian Council of Agricultural Research, Mandor, Jodhpur, Rajasthan, 342304, India
| | - H Rajashekara
- Crop Protection Section, ICAR-Directorate of Cashew Research (DCR), Dakshina Kannada, Puttur, Karnataka, 574202, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC),, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK. .,Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| | - Siddaiah Chandra Nayaka
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India.
| |
Collapse
|
10
|
Bano AS, Khattak AM, Basit A, Alam M, Shah ST, Ahmad N, Gilani SAQ, Ullah I, Anwar S, Mohamed HI. Callus Induction, Proliferation, Enhanced Secondary Metabolites Production and Antioxidants Activity of Salvia moorcroftiana L. as Influenced by Combinations of Auxin, Cytokinin and Melatonin. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2022; 65. [DOI: 10.1590/1678-4324-2022210200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
11
|
Gilani SAQ, Basit A, Sajid M, Shah ST, Ullah I, Mohamed HI. Gibberellic Acid and Boron Enhance Antioxidant Activity, Phenolic Content, and Yield Quality in Pyrus Communis L. GESUNDE PFLANZEN 2021; 73:395-406. [DOI: 10.1007/s10343-021-00555-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 10/26/2023]
|
12
|
El-Mahdy OM, Mohamed HI, Mogazy AM. Biosorption effect of Aspergillus niger and Penicillium chrysosporium for Cd- and Pb-contaminated soil and their physiological effects on Vicia faba L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67608-67631. [PMID: 34258698 DOI: 10.1007/s11356-021-15382-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation is an important solution to soil pollution management. The goal of this study is to determine the biosorption ability of the two selected fungi (Aspergillus niger and Penicillium chrysosporium) under heavy metal stress on faba bean plants. The fungal strains produced phytohormones, siderophore, ACC deaminase, and secondary metabolites. The biosorption capacity of A. niger and P. chrysosporium was 0.09 and 0.06 mg g-1 and 0.5 and 0.4 mg g-1 in media containing Cd and Pb, respectively. Fourier transform infrared spectroscopy of the fungal cell wall show primary functional groups like hydroxyl, amide, carboxyl, phosphoryl, sulfhydryl, and nitro. Therefore, A. niger and P. chrysosporium were inoculated to soils, and then the faba bean seeds were sown. After 21 days of sowing, the plants were irrigated with water to severe as control, with 100 mg L-1 of Cd and 200 mg L-1 of Pb. The results show that Cd and Pb caused a significant reduction in morphological characteristics, auxin, gibberellins, photosynthetic pigments, minerals content, and antioxidant enzymes as compared to control plants but caused a substantial boost in abscisic acid, ethylene, electrolyte leakage, lipid peroxidation, glutathione, proline, superoxide dismutase, secondary metabolites, and antioxidant capacity. In inoculated plants, metal-induced oxidative stress was modulated by inhibiting the transport of metal and decreased electrolyte leakage and lipid peroxidation. Finally, the inoculation of endophytic fungi contributed actively to the absorption of heavy metals and decreased their content in soil and plants. This could be utilized as an excellent technique in the fields of heavy metal-contaminated sustainable agriculture.
Collapse
Affiliation(s)
- Omima M El-Mahdy
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, El Makres St. Roxy, Cairo, 11341, Egypt
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, El Makres St. Roxy, Cairo, 11341, Egypt.
| | - Asmaa M Mogazy
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, El Makres St. Roxy, Cairo, 11341, Egypt
| |
Collapse
|
13
|
Hussain T, Khan AA, Mohamed HI. Potential Efficacy of Biofilm-Forming Biosurfactant Bacillus firmus HussainT-Lab.66 Against Rhizoctonia solani and Mass Spectrometry Analysis of its Metabolites. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10318-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Mycorrhizal fungi induced activation of tomato defense system mitigates Fusarium wilt stress. Saudi J Biol Sci 2021; 28:5442-5450. [PMID: 34588854 PMCID: PMC8459153 DOI: 10.1016/j.sjbs.2021.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/04/2022] Open
Abstract
The fungus Fusarium oxysporum f. sp. lycopersici (FOL) is known to cause vascular wilt on tomato almost over the world. Inoculation of FOL reduced plant growth and increased wilt of tomato. The following study examined the possible role of arbuscular mycorrhizal fungi (AMF) consortium comprising of Rhizophagus intraradices, Funneliformis mosseae and Claroideoglomus etunicatum against FOL in tomato and explored in an inducing plant systemic defense. AMF inoculation reduced the wilt disease within vascular tissue and in vivo production of fusaric acid was observed which may be responsible in reduced wilting. FOL had an antagonistic effect on AMF colonization, reduced the number of spores, arbuscules and vesicles. AMF also inhibited the damage induced by Fusarium wilt through increasing chlorophyll contents along with the activity of phosphate metabolising enzymes (acid and alkaline phosphatases). Moreover, tomato plants with mycorrhizal inoculation showed an increase in the level of antioxidant enzymes including glutathione reductase, catalase, and etc. with an ultimate influence on the elimination of reactive oxygen species. Moreover, rise in phosphatase along with antioxidant enzymatic systems and enhanced photosynthetic performance contributed to induced resistance against FOL in tomato.
Collapse
|
15
|
Basit A, Shah ST, Ullah I, Muntha ST, Mohamed HI. Microbe-assisted phytoremediation of environmental pollutants and energy recycling in sustainable agriculture. Arch Microbiol 2021; 203:5859-5885. [PMID: 34545411 DOI: 10.1007/s00203-021-02576-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 01/17/2023]
Abstract
The perception of phytoremediation is efficiently utilized as an eco-friendly practice of green plants combating and cleaning up the stressed environment without harming it. The industrial revolution was followed by the green revolution which fulfilled the food demands of the growing population caused an increase in yield per unit area in crop production, but it also increased the use of synthetic fertilizers in agriculture. Globally, the intensive use of inorganic fertilizers in agriculture has led to serious health problems and irreversible environmental damage. Biofertilizers improve the growth of the plant and can be applied as an alternative to chemical/synthetic fertilizers. Cyanobacteria, bacteria, and fungi are known as some of the principal microbe groups used to produce biofertilizers that form symbiotic associations with plants. Microorganisms perform a key role in phosphate solubilization and mobilization, nitrogen fixation, nutrient management, biotic elicitors and probiotics, and pollution management (biodegradation agents), specifically bacteria which also help in atmospheric nitrogen fixation and are thus available for the growth of the plant. Management or biodegradation of hazardous chemical residues and heavy metals produced by a huge number of large-scale industries should be given primary importance to be transformed by various bacterial strains, fungi, algae. Currently, modern omics technologies such as metagenomic, transcriptomic, and proteomic are being used to develop strategies for studying the ecology of microorganisms, as well as their use in environmental monitoring and bioremediation. This review briefly discusses some of the major groups of microorganisms that can perform different functions responsible for plant health, crop production, phytoremediation and also focus on the omics techniques reportedly used in environmental monitoring to tackle the pollution load.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Syed Tanveer Shah
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Izhar Ullah
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Sidra Tul Muntha
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
16
|
Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Alnaggar AEAM, Soliman AM, El-Dougdoug NK. Ameliorating the Adverse Effects of Tomato mosaic tobamovirus Infecting Tomato Plants in Egypt by Boosting Immunity in Tomato Plants Using Zinc Oxide Nanoparticles. Molecules 2021; 26:1337. [PMID: 33801530 PMCID: PMC7958966 DOI: 10.3390/molecules26051337] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Tomato mosaic virus (ToMV) is one of the economically damageable Tobamovirus infecting the tomato in Egypt that has caused significant losses. It is therefore of great interest to trigger systemic resistance to ToMV. In this endeavor, we aimed to explore the capacity of ZnO-NPs (zinc oxide nanoparticles) to trigger tomato plant resistance against ToMV. Effects of ZnO-NPs on tomato (Solanum lycopersicum L.) growth indices and antioxidant defense system activity under ToMV stress were investigated. Noticeably that treatment with ZnO-NPs showed remarkably increased growth indices, photosynthetic attributes, and enzymatic and non-enzymatic antioxidants compared to the challenge control. Interestingly, oxidative damage caused by ToMV was reduced by reducing malondialdehyde, H2O2, and O2 levels. Overall, ZnO-NPs offer a safe and economic antiviral agent against ToMV.
Collapse
Affiliation(s)
- Ahmed R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Mahmoud R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Ahmed A. Hmed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Rehab A. Dawoud
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; (R.A.D.); (A.M.S.)
- Department of Biology, Faculty of Science, Jazan University, Box 114, Jazan 45142, Saudi Arabia
| | - Abd El-Aleem M. Alnaggar
- Agriculture Botany Department, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Ahmed M. Soliman
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; (R.A.D.); (A.M.S.)
- Department of Arid Land Agriculture, College of Agricultural & Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Noha K. El-Dougdoug
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt;
| |
Collapse
|
17
|
Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Refaey EE, Mohamed HI, El-Dougdoug NK. Molecular Characterization of the Alfalfa mosaic virus Infecting Solanum melongena in Egypt and the Control of Its Deleterious Effects with Melatonin and Salicylic Acid. PLANTS 2021; 10:plants10030459. [PMID: 33670990 PMCID: PMC7997183 DOI: 10.3390/plants10030459] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022]
Abstract
During the spring of 2019, distinct virus-like symptoms were observed in the Kafr El-Sheikh Governorate in Egypt in naturally infected eggplants. Leaves of affected plants showed interveinal leaf chlorosis, net yellow, chlorotic sectors, mottling, blisters, vein enation, necrotic intervention, and narrowing symptoms. The Alfalfa mosaic virus (AMV) was suspected of to be involved in this disease. Forty plant samples from symptomatic eggplants and 10 leaf samples with no symptoms were collected. The samples were tested by double antibody sandwich ELISA (DAS-ELISA) using AMV-IgG. Six of the 40 symptomatic leaf samples tested positive for AMV, while, DAS-ELISA found no AMV in the 10 leaf samples without symptoms. The AMV Egyptian isolate (AMV-Eggplant-EG) was biologically isolated from the six positive samples tested by DAS-ELISA and from the similar local lesions induced on Chenopodium amaranticolor and then re-inoculated in healthy Solanum melongena as a source of AMV-Eggplant-EG and confirmed by DAS-ELISA. Reverse transcription polymerase chain reaction (RT-PCR) assay with a pair of primers specific for coat protein (CP) encoding RNA 3 of AMV yielded an amplicon of 666 bp from infected plants of Solanum melongena with AMV-Eggplant-EG. The amplified PCR product was cloned and sequenced. Analysis of the AMV-Eggplant-EG sequence revealed 666 nucleotides (nt) of the complete CP gene (translating 221 amino acid (aa) residues). Analysis of phylogeny for nt and deduced aa sequences of the CP gene using the maximum parsimony method clustered AMV-Eggplant-EG in the lineage of Egyptian isolates (shark-EG, mans-EG, CP2-EG, and FRE-EG) with a high bootstrap value of 88% and 92%, respectively. In addition to molecular studies, melatonin (MTL) and salicylic acid (SA) (100 μM) were used to increase the resistance of eggplant to AMV- infection. Foliar spray with MLT and SA caused a significant increase in the morphological criteria (shoot, root length, number of leaves, leaf area, and leaf biomass), chlorophyll and carotenoid content, antioxidant enzymes, and gene expression of some enzymes compared to the infected plants. On the other hand, treatment with MLT and SA reduced the oxidative damage caused by AMV through the reduction of hydrogen peroxide, superoxide anions, hydroxyl radicals, and malondialdehyde. In conclusion, MLT and SA are eco-friendly compounds and can be used as antiviral compounds.
Collapse
Affiliation(s)
- Ahmed R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (A.A.H.); (E.E.R.)
- Correspondence: (A.R.S.); (M.R.S.)
| | - Mahmoud R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (A.A.H.); (E.E.R.)
- Correspondence: (A.R.S.); (M.R.S.)
| | - Ahmed A. Hmed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (A.A.H.); (E.E.R.)
| | - Rehab A. Dawoud
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
- Department of Biology, Faculty of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Ehab E. Refaey
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (A.A.H.); (E.E.R.)
| | - Heba I. Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo 11566, Egypt;
| | - Noha K. El-Dougdoug
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt;
| |
Collapse
|
18
|
Silicon Alleviates Copper Toxicity in Flax Plants by Up-Regulating Antioxidant Defense and Secondary Metabolites and Decreasing Oxidative Damage. SUSTAINABILITY 2020. [DOI: 10.3390/su12114732] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In recent years, nutrient management has gained much attention as a way to mitigate heavy metal stress. Silicon (Si) promotes plant defense responses against toxic metal stresses. In this study, we evaluated the effects of silicon (Si) on copper (Cu) toxicity in two flax genotypes (Sakha 1 and Sakha 2) as it relates to plant growth, yield attributes, total chlorophyll, nucleic acid content, enzymatic and non-enzymatic antioxidants, oxidative damage, lipid peroxidation, copper and silicon content, and fatty acid composition. The results showed that Cu (100 and 200 µM) inhibited plant growth and increased Cu accumulation in soil, roots, and shoots. Cu significantly decreased the yield attributes, total chlorophyll by 9.5% and 22% in Sakha 1 and by 22.5% and 29% in Sakha 2, and enhanced the accumulation of non-enzymatic (tocopherol), enzymatic antioxidants such as superoxide dismnutase, peroxidase, ascorbate peroxidase and catalase) and secondary metabolites (phenol and flavonoids). The DNA content significantly decreased in stressed plants with 100 and 200 µM Cu about 22% and 44%, respectively, in Sakha 1 and about 21.6% and 34.7% in Sakha 2, and RNA content also decreased by about 20% and 29%, respectively, in Sakha 1 and by about 2% and 13% in Sakha 2 compared to the control plant. Furthermore, Cu stress accelerated the generation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) and induced cellular oxidative injury caused by lipid peroxidation. In parallel, Cu induced a change in the composition of fatty acids, resulting in lower unsaturated fatty acid levels and increased saturated fatty acids (increased saturation/unsaturation ratio for both genotypes). Treating the flax plants with irrigation three times with Si protected the plants from Cu toxicity. Si treatment decreased the uptake and the transport of Cu to the shoots and harvested seeds and promoted plant growth, yield attributes, and antioxidant defense systems by reducing Cu accumulation, lipid peroxidation, and the generation of H2O2. In addition, the alleviation of Cu toxicity correlated with increased Si accumulation in the roots and shoots. In conclusion, Si can be used to improve the resistance of flax plants to Cu toxicity by up-regulating the antioxidant defense system such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and catalase (CAT) and decreasing the oxidative damage caused by reactive oxygen species (ROS).
Collapse
|
19
|
El-Beltagi HS, Mohamed HI, Sofy MR. Role of Ascorbic acid, Glutathione and Proline Applied as Singly or in Sequence Combination in Improving Chickpea Plant through Physiological Change and Antioxidant Defense under Different Levels of Irrigation Intervals. Molecules 2020; 25:E1702. [PMID: 32276352 PMCID: PMC7180974 DOI: 10.3390/molecules25071702] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, the harmful effects of drought stress have been be mitigated by using bioactive compounds such as antioxidants and osmolytes. In this research, pot experiments were carried out to investigate the effects of ascorbic acid, glutathione and proline on alleviating the harmful effect of drought stress in chickpea plants during season 2017. Chickpea plant seeds were soaked in ascorbic acid (0.75 mM), glutathione (0.75 mM), proline (0.75 mM) singly and/or in sequence combinations for 4 h and then planted in pots. The pots were irrigated with water after seven days (to serve as control), after 14 days (moderate drought stress) and after 28 days (severe drought stress). The sequence combination of antioxidants and proline under drought stress has not been studied yet. The results showed significantly decreased in plant growth, yielding characteristics, photosynthetic pigments and soluble protein content in response to moderate and severe drought stress. Moreover, treatment with antioxidants caused increment the antioxidant enzyme activity, non-enzymatic antioxidant (ascorbic acid and glutathione) contents and endogenous proline in stressed and unstressed plants. In conclusion, The sequence combination of antioxidants and proline caused improvement in plant growth under drought stress by up-regulating the antioxidant defense system and osmolyte synthesis.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Gamma St., P.O. Box 12613 Giza, Cairo, Egypt
| | - Heba I. Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Roxy, P.C.11757 Heliopolis, Cairo, Egypt
| | - Mahmoud R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| |
Collapse
|
20
|
Abraham EM, Ganopoulos I, Madesis P, Mavromatis A, Mylona P, Nianiou-Obeidat I, Parissi Z, Polidoros A, Tani E, Vlachostergios D. The Use of Lupin as a Source of Protein in Animal Feeding: Genomic Tools and Breeding Approaches. Int J Mol Sci 2019; 20:ijms20040851. [PMID: 30781397 PMCID: PMC6413129 DOI: 10.3390/ijms20040851] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/05/2022] Open
Abstract
Livestock production in the European Union EU is highly dependent on imported soybean, exposing the livestock farming system to risks related to the global trade of soybean. Lupin species could be a realistic sustainable alternative source of protein for animal feeding. Lupinus is a very diverse genus with many species. However, only four of them—namely, L. albus, L. angustifolius, L. luteus and L. mutabilis—are cultivated. Their use in livestock farming systems has many advantages in relation to economic and environmental impact. Generally, lupin grains are characterized by high protein content, while their oil content is relatively low but of high quality. On the other hand, the presence of quinolizidine alkaloids and their specific carbohydrate composition are the main antinutritional factors that prevent their use in animal feeding. This research is mainly related to L. albus and to L. angustifolius, and to a lesser extent, to L. lauteus and L. mutabilis. The breeding efforts are mostly focused on yield stabilization, resistance to biotic and abiotic stresses, biochemical structure associated with seed quality and late maturing. Progress is made in improving lupin with respect to the seed quality, as well as the tolerance to biotic and abiotic stress. It has to be noted that modern cultivars, mostly of L. albus and L. angustifolius, contain low levels of alkaloids. However, for future breeding efforts, the implementation of marker-assisted selection and the available genomic tools is of great importance.
Collapse
Affiliation(s)
- Eleni M Abraham
- Laboratory of Range Science, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, HAO-DEMETER, Thermi, 57001 Thessaloniki, Greece.
| | | | - Athanasios Mavromatis
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Photini Mylona
- Institute of Plant Breeding and Genetic Resources, HAO-DEMETER, Thermi, 57001 Thessaloniki, Greece.
| | - Irini Nianiou-Obeidat
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Zoi Parissi
- Laboratory of Range Science, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Alexios Polidoros
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Eleni Tani
- Department of Crop Science, Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | | |
Collapse
|
21
|
Transgenic expression of plant chitinases to enhance disease resistance. Biotechnol Lett 2013; 35:1719-32. [PMID: 23794096 DOI: 10.1007/s10529-013-1269-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 06/11/2013] [Indexed: 12/11/2022]
Abstract
Crop plants have evolved an array of mechanisms to counter biotic and abiotic stresses. Many pathogenesis-related proteins are expressed by plants during the attack of pathogens. Advances in recombinant DNA technology and understanding of plant-microbe interactions at the molecular level have paved the way for isolation and characterization of genes encoding such proteins, including chitinases. Chitinases are included in families 18 and 19 of glycosyl hydrolases (according to www.cazy.org ) and they are further categorized into seven major classes based on their aminoacid sequence homology, three-dimensional structures, and hydrolytic mechanisms of catalytic reactions. Although chitin is not a component of plant cell walls, plant chitinases are involved in development and non-specific stress responses. Also, chitinase genes sourced from plants have been successfully over-expressed in crop plants to combat fungal pathogens. Crops such as tomato, potato, maize, groundnut, mustard, finger millet, cotton, lychee, banana, grape, wheat and rice have been successfully engineered for fungal resistance either with chitinase alone or in combination with other PR proteins.
Collapse
|