1
|
Kaur K, Kaur P, Kumar S, Zalpouri R, Singh M. Ozonation as a Potential Approach for Pesticide and Microbial Detoxification of Food Grains with a Focus on Nutritional and Functional Quality. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Kulwinder Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, India
| | - Preetinder Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, India
| | - Satish Kumar
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, India
| | - Ruchika Zalpouri
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, India
| | - Manpreet Singh
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
2
|
Moura BB, Bolsoni VP, de Paula MD, Dias GM, de Souza SR. Ozone Impact on Emission of Biogenic Volatile Organic Compounds in Three Tropical Tree Species From the Atlantic Forest Remnants in Southeast Brazil. FRONTIERS IN PLANT SCIENCE 2022; 13:879039. [PMID: 35812949 PMCID: PMC9263830 DOI: 10.3389/fpls.2022.879039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Plants emit a broad number of Biogenic Volatile Organic Compounds (BVOCs) that can impact urban ozone (O3) production. Conversely, the O3 is a phytotoxic pollutant that causes unknown alterations in BVOC emissions from native plants. In this sense, here, we characterized the constitutive and O3-induced BVOCs for two (2dO3) and four (4dO3) days of exposure (O3 dose 80 ppb) and evaluated the O3 response by histochemical techniques to detect programmed cell death (PCD) and hydrogen peroxide (H2O2) in three Brazilian native species. Croton floribundus Spreng, Astronium graveolens Jacq, and Piptadenia gonoacantha (Mart.) JF Macbr, from different groups of ecological succession (acquisitive and conservative), different carbon-saving defense strategies, and specific BVOC emissions. The three species emitted a very diverse BVOC composition: monoterpenes (MON), sesquiterpenes (SEQ), green leaf volatiles (GLV), and other compounds (OTC). C. floribundus is more acquisitive than A. graveolens. Their most representative BVOCs were methyl salicylate-MeSA (OTC), (Z) 3-hexenal, and (E)-2-hexenal (GLV), γ-elemene and (-)-β-bourbonene (SEQ) β-phellandrene and D-limonene (MON), while in A. graveolens were nonanal and decanal (OTC), and α-pinene (MON). Piptadenia gonoachanta is more conservative, and the BVOC blend was limited to MeSA (OTC), (E)-2-hexenal (GLV), and β-Phellandrene (MON). The O3 affected BVOCs and histochemical traits of the three species in different ways. Croton floribundus was the most O3 tolerant species and considered as an SEQ emitter. It efficiently reacted to O3 stress after 2dO3, verified by a high alteration of BVOC emission, the emergence of the compounds such as α-Ionone and trans-ß-Ionone, and the absence of H2O2 detection. On the contrary, A. graveolens, a MON-emitter, was affected by 2dO3 and 4dO3, showing increasing emissions of α-pinene and β-myrcene, (MON), γ-muurolene and β-cadinene (SEQ) and H2O2 accumulation. Piptadenia gonoachanta was the most sensitive and did not respond to BVOCs emission, but PCD and H2O2 were highly evidenced. Our results indicate that the BVOC blend emission, combined with histochemical observations, is a powerful tool to confirm the species' tolerance to O3. Furthermore, our findings suggest that BVOC emission is a trade-off associated with different resource strategies of species indicated by the changes in the quality and quantity of BVOC emission for each species.
Collapse
Affiliation(s)
- Bárbara Baêsso Moura
- Institute of Research on Terrestrial Ecosystems, National Research Council of Italy, Sesto Fiorentino, Italy
| | - Vanessa Palermo Bolsoni
- Núcleo de Uso Sustentável de Recursos Naturais, Instituto de Pesquisas Ambientais de São Paulo, São Paulo, Brazil
| | - Monica Dias de Paula
- Núcleo de Uso Sustentável de Recursos Naturais, Instituto de Pesquisas Ambientais de São Paulo, São Paulo, Brazil
| | - Gustavo Muniz Dias
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Silvia Ribeiro de Souza
- Núcleo de Uso Sustentável de Recursos Naturais, Instituto de Pesquisas Ambientais de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
da Silva Pedrosa G, de Oliveira DP, Bison JVS, Bugarelli RM, Cruz LS, de Souza SR. Biogenic Volatile Organic Compounds Emission of Brazilian Atlantic Tree Grown Under Elevated Ozone in Ambient Controlled and Field Conditions. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:958-966. [PMID: 33226442 DOI: 10.1007/s00128-020-03056-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Croton floribundus (L.) Spreng trees were exposed to accumulated ozone (O3) levels under laboratory and field conditions and monitored the foliar visible symptoms and BVOC emissions. Plants exposed to O3 in the laboratory presented more substantial damage and significant increase in the BVOC emissions than plants in the field. Caryophyllene and 3-hexen-1-ol emissions were significantly increased in plants exposed to O3 in the laboratory. Under field conditions, methyl salicylate (MeSA) was the majority compound emitted. A positive correlation among the meteorological conditions, O3 and MeSA emission was observed in the field conditions, which may represent a mechanism of tolerance by C. floribundus to deal with long-term exposure to O3.
Collapse
Affiliation(s)
- Giselle da Silva Pedrosa
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210-580, Brazil
| | - Debora Pinheiro de Oliveira
- Instituto de Botânica de São Paulo, São Paulo, SP, 01061-970, Brasil
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil
| | - Josiane Valéria Soares Bison
- Instituto de Botânica de São Paulo, São Paulo, SP, 01061-970, Brasil
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil
| | - Ricardo Marcondes Bugarelli
- Instituto de Botânica de São Paulo, São Paulo, SP, 01061-970, Brasil
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil
| | - Luciano Soares Cruz
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210-580, Brazil
| | | |
Collapse
|
4
|
Bison JV, Cardoso-Gustavson P, de Moraes RM, da Silva Pedrosa G, Cruz LS, Freschi L, de Souza SR. Volatile organic compounds and nitric oxide as responses of a Brazilian tropical species to ozone: the emission profile of young and mature leaves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3840-3848. [PMID: 29178001 DOI: 10.1007/s11356-017-0744-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/14/2017] [Indexed: 05/03/2023]
Abstract
The emission profile of volatile organic compounds (VOCs) and nitric oxide (NO) in young and mature leaves of Croton floribundus was assessed in plants exposed to filtered air (FA) and ozone-enriched filtered air (FA+O3). After the period of exposure, leaves were enclosed in polyethylene terephthalate bags and VOCs were collected in young and mature leaves. Both young and mature leaves constitutively emitted the same VOC, but the concentrations were higher in young leaves. O3 exposure induced the emission of sesquiterpenes (mainly β-caryophyllene) known as antioxidant compounds that may scavenge O3. Young leaves were the highest emitters of sesquiterpenes. O3 induced a rapid accumulation of NO in different tissues and leaf developmental stages; this accumulation was marked in palisade and spongy parenchyma cells in young and mature leaves, respectively. O3 altered the levels of the signaling compound methyl salicylate (MeSA). Moreover, our data showed that NO together with VOC emissions, such as geranyl acetate, α-cadiene, trans-farnesol, cis-β-farnesene, and MeSA, participate of plant defense mechanisms against the oxidative damage caused by O3.
Collapse
Affiliation(s)
- Josiane Valéria Bison
- Núcleo de Pesquisa em Ecologia, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil
| | - Poliana Cardoso-Gustavson
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, 09210-580, Brazil
| | - Regina Maria de Moraes
- Núcleo de Pesquisa em Ecologia, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil
| | - Giselle da Silva Pedrosa
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, 09210-580, Brazil
- Programa de Pós-Graduação em Biotecnociências, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, 09210-580, Brazil
| | - Luciano Soares Cruz
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, 09210-580, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociência, Universidade de São Paulo, Rua do Matão 277, Butantã, SP, 05508-090, Brazil
| | - Silvia Ribeiro de Souza
- Núcleo de Pesquisa em Ecologia, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil.
| |
Collapse
|
5
|
Moura BB, Alves ES, Marabesi MA, de Souza SR, Schaub M, Vollenweider P. Ozone affects leaf physiology and causes injury to foliage of native tree species from the tropical Atlantic Forest of southern Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:912-925. [PMID: 28830051 DOI: 10.1016/j.scitotenv.2017.08.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/10/2017] [Accepted: 08/13/2017] [Indexed: 06/07/2023]
Abstract
In southern Brazil, the recent increase in tropospheric ozone (O3) concentrations poses an additional threat to the biodiverse but endangered and fragmented remnants of the Atlantic Forest. Given the mostly unknown sensitivity of tropical species to oxidative stress, the principal objective of this study was to determine whether the current O3 levels in the Metropolitan Region of Campinas (MRC), downwind of São Paulo, affect the native vegetation of forest remnants. Foliar responses to O3 of three tree species typical of the MRC forests were investigated using indoor chamber exposure experiments under controlled conditions and a field survey. Exposure to 70ppb O3 reduced assimilation and leaf conductance but increased respiration in Astronium graveolens while gas exchange in Croton floribundus was little affected. Both A. graveolens and Piptadenia gonoacantha developed characteristic O3-induced injury in the foliage, similar to visible symptoms observed in >30% of trees assessed in the MRC, while C. floribundus remained asymptomatic. The underlying structural symptoms in both O3-exposed and field samples were indicative of oxidative burst, hypersensitive responses, accelerated cell senescence and, primarily in field samples, interaction with photo-oxidative stress. The markers of O3 stress were thus mostly similar to those observed in other regions of the world. Further research is needed, to estimate the proportion of sensitive forest species, the O3 impact on tree growth and stand stability and to detect O3 hot spots where woody species in the Atlantic Forest are mostly affected.
Collapse
Affiliation(s)
- Bárbara Baêsso Moura
- Botanical Institute of São Paulo, P. O. Box 4005, 01061-970 São Paulo, SP, Brazil; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland.
| | - Edenise Segala Alves
- Botanical Institute of São Paulo, P. O. Box 4005, 01061-970 São Paulo, SP, Brazil
| | | | | | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Pierre Vollenweider
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland
| |
Collapse
|
6
|
Esposito JBN, Esposito BP, Azevedo RA, Cruz LS, da Silva LC, de Souza SR. Protective effect of Mn(III)-desferrioxamine B upon oxidative stress caused by ozone and acid rain in the Brazilian soybean cultivar Glycine max "Sambaiba". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5315-24. [PMID: 25510614 DOI: 10.1007/s11356-014-3951-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/04/2014] [Indexed: 06/04/2023]
Abstract
This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone.
Collapse
|
7
|
Pasqualetti CB, Sandrin CZ, Pedroso ANV, Domingos M, Figueiredo-Ribeiro RCL. Fructans, ascorbate peroxidase, and hydrogen peroxide in ryegrass exposed to ozone under contrasting meteorological conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4771-4779. [PMID: 25583262 DOI: 10.1007/s11356-014-3965-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
Ozone (O3) is the most abundant tropospheric oxidant as well as an important component of photochemical pollution. Once inside the plant, ozone can produce reactive oxygen species that change the antioxidative pool and the carbohydrate metabolism. The current study aimed to analyze whether the contents and the composition of the fructan, the ascorbate peroxidase activity, and the H2O2 accumulation were changed in Lolium multiflorum ssp. italicum cv. Lema plants as response to short-term exposure to ozone and/or to different meteorological conditions, in two contrasting seasons (winter and summer). Results showed that higher solar radiation tends to decrease fructose content and, along with temperature, increases the ascorbate peroxidase (APX) activity. Such activity and levels of fructans practically did not vary during the time the experiment was being done, but APX daylight variation was modified by the ozone. Thus, the higher levels of this pollutant decreased the APX activity and increased fructose content, as well as changed the size of the fructan chains. Hydrogen peroxide (H2O2) accumulation was higher in plants that were fumigated with ozone when compared to the control, and it decreased throughout the day. As a conclusion, fructan contents increased when the APX activity decreased. It suggested that fructans could also help the defense system when there is a reduction on the APX activity in the plant.
Collapse
Affiliation(s)
- C B Pasqualetti
- Núcleo de Pesquisa em Ecologia, Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
8
|
Bulbovas P, Souza SR, Esposito JBN, Moraes RM, Alves ES, Domingos M, Azevedo RA. Assessment of the ozone tolerance of two soybean cultivars (Glycine max cv. Sambaíba and Tracajá) cultivated in Amazonian areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10514-24. [PMID: 24781331 DOI: 10.1007/s11356-014-2934-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/15/2014] [Indexed: 05/23/2023]
Abstract
Brazilian soybean cultivars (Glycine max Sambaíba and Tracajá) routinely grown in Amazonian areas were exposed to filtered air (FA) and filtered air enriched with ozone (40 and 80 ppb, 6 h/day for 5 days) to assess their level of tolerance to this pollutant by measuring changes in key biochemical, physiological, and morphological indicators of injury and in enzymatic and non-enzymatic antioxidants. Sambaíba plants were more sensitive to ozone than Tracajá plants, as revealed by comparing indicator injury responses and antioxidant stimulations. Sambaíba exhibited higher visible leaf injury, higher stomatal conductance, and a severe decrease in the carbon assimilation rate. Higher ozone level (80 ppb) caused an increase in cell death in both cultivars. Levels of malondialdehyde and hydrogen peroxide also increased in Tracajá exposed under 80 ppb. Sambaíba plants exhibited decreases in ascorbate and glutathione levels and in enzymatic activities associated with these antioxidants. The higher tolerance of the Tracajá soybean appeared to be indicated by reduced physiological injuries and lower stomatal conductance, which might decrease the influx of ozone and enhance oxidation-reduction reactions involving catalase, ascorbate peroxidase, ascorbate, and glutathione, most likely stimulated by higher hydrogen peroxide.
Collapse
Affiliation(s)
- P Bulbovas
- Núcleo de Pesquisa em Ecologia, Instituto de Botânica, São Paulo, SP, CEP 04045-972, Brazil,
| | | | | | | | | | | | | |
Collapse
|
9
|
Esposito MP, Domingos M. Establishing the redox potential of Tibouchina pulchra (Cham.) Cogn., a native tree species from the Atlantic Rain Forest, in the vicinity of an oil refinery in SE Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:5484-5495. [PMID: 24407781 DOI: 10.1007/s11356-013-2453-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
The present study aimed to establish the seasonal variations in the redox potential ranges of young Tibouchina pulchra plants growing in the Cubatão region (SE Brazil) under varying levels of oxidative stress caused by air pollutants. The plants were exposed to filtered air (FA) and non-filtered air (NFA) in open-top chambers installed next to an oil refinery in Cubatão during six exposure periods of 90 days each, which included the winter and summer seasons. After exposure, several analyses were performed, including the foliar concentrations of ascorbic acid and glutathione in its reduced (AsA and GSH), total (totAA and totG) and oxidized forms (DHA and GSSG); their ratios (AsA/totAA and GSH/totG); the enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR); and the content of malondialdehyde (MDA). The range of antioxidant responses in T. pulchra plants varied seasonally and was stimulated by high or low air pollutant concentrations and/or air temperatures. Glutathione and APX were primarily responsible for increasing plant tolerance to oxidative stress originating from air pollution in the region. The high or low air temperatures mainly affected enzymatic activity. The content of MDA increased in response to increasing ozone concentration, thus indicating that the pro-oxidant/antioxidant balance may not have been reached.
Collapse
Affiliation(s)
- Marisia Pannia Esposito
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, PO Box 68041, 04045-972, São Paulo, SP, Brazil,
| | | |
Collapse
|
10
|
Moura BB, de Souza SR, Alves ES. Response of Brazilian native trees to acute ozone dose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:4220-4227. [PMID: 24297466 DOI: 10.1007/s11356-013-2326-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/04/2013] [Indexed: 06/02/2023]
Abstract
Ozone (O3) is a toxic secondary pollutant able to cause an intense oxidative stress that induces visual symptoms on sensitive plant species. Controlled fumigation experiment was conducted with the aim to verify the O3 sensibility of three tropical species: Piptadenia gonoachanta (Mart.) Macbr. (Fabaceae), Astronium graveolens Jacq. (Anacardiaceae), and Croton floribundus Spreng. (Euphorbiaceae). The microscopical features involved in the oxidative stress were recognized based on specific histochemical analysis. The three species showed visual symptoms, characterized as necrosis and stippling between the veins, mostly visible on the adaxial leaf surface. All the studied species presented hypersensitive-like response (HR-like), and peroxide hydrogen accumulation (H2O2) followed by cell death and proanthocyanidin oxidation in P. gonoachanta and A. graveolens. In P. gonoachanta, a decrease in chlorophyll autofluorescence occurred on symptomatic tissues, and in A. graveolens and C. floribundus, a polyphenol compound accumulation occurred. The responses of Brazilian native species were similar to those described for sensitive species from temperate climate, and microscopical markers may be useful for the detection of ozone symptoms in future studies in the field.
Collapse
Affiliation(s)
- Bárbara Baêsso Moura
- Instituto de Botânica de São Paulo, Av. Miguel Estefano 3687, CEP 04301-902, São Paulo, SP, Brazil,
| | | | | |
Collapse
|
11
|
Ferreira ML, Nobre Esposito JB, de Souza SR, Domingos M. Critical analysis of the potential of Ipomoea nil'Scarlet O'Hara' for ozone biomonitoring in the sub-tropics. ACTA ACUST UNITED AC 2012; 14:1959-67. [PMID: 22706014 DOI: 10.1039/c2em30026e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to analyze critically the potential of Ipomoea nil'Scarlet O'Hara' for O(3) biomonitoring in the sub-tropics. Four field experiments (one in each season of 2006) were carried out in a location of the city of São Paulo mainly polluted by O(3). Each experiment started with 50 plants, and lasted 28 days. Sub-lots of five plants were taken at intervals between three or four days long. Groups of four plants were also exposed in closed chambers to filtered air or to 40, 50 or 80 ppb of O(3) for three consecutive hours a day for six days. The percentage of leaf injury (interveinal chloroses and necroses), the concentrations of ascorbic acid (AA) and the activity of superoxide dismutase (SOD) and peroxidases (POD) were determined in the 5th, 6th and 7th oldest leaves on the main stem of the plants taken in all experiments. Visible injury occurred in the plants from all experiments. Seasonality in the antioxidant responses observed in plants grown under field conditions was associated with meteorological variables and ozone concentrations five days before leaf analyses. The highest levels of antioxidants occurred during the spring. The percentage of leaf injury was explained (R(2) = 0.97, p < 0.01) by the reduction in the levels of AA and activity of POD five days before the leaf analyses and by the reduction in the levels of particulate matter, and enhancement of temperature and global radiation 10 days before this same day. Although I. nil may be employed for qualitative O(3) biomonitoring, its efficiency for quantitative biomonitoring in the sub-tropics may be compromised, depending on how intense the oxidative power of the environment is.
Collapse
|
12
|
Kastner PE, Le Calvé S, Diss L, Sauveplane V, Franke R, Schreiber L, Pinot F. Specific accumulation of CYP94A1 transcripts after exposure to gaseous benzaldehyde: induction of lauric acid ω-hydroxylase activity in Vicia sativa exposed to atmospheric pollutants. ENVIRONMENTAL RESEARCH 2011; 111:37-44. [PMID: 21035797 DOI: 10.1016/j.envres.2010.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/20/2010] [Accepted: 09/30/2010] [Indexed: 05/30/2023]
Abstract
The effects of air pollutants such as aldehydes, ozone, nitrogen dioxide and benzene on fatty acid ω-hydroxylase activity in Vicia sativa microsomes have been investigated. Four days old etiolated V. sativa seedlings were exposed to different concentrations of selected pollutants for varying exposure times. Growing etiolated V. sativa seedlings in air containing the gaseous benzaldehyde (150 nM) led to an 8-fold enhancement of lauric acid ω-hydroxylase activity in microsomes of treated plants compared to controls grown in pure air (96 ± 10 versus 12 ± 2 pmol/min/mg protein, respectively). The induction increased with increasing gas phase concentrations (10-1300 nM) and the maximum of activity was measured after 48 h of exposure. Northern blot analysis revealed that this induction occurred via transcriptional activation of the gene coding for CYP94A1. The absence of CYP94A2 and CYP94A3 transcription activation together with the missing effect on epoxide hydrolases activities indicate the specificity of CYP94A1 induction by benzaldehyde. Exposure to nitrogen dioxide, ozone and formaldehyde also stimulated lauric acid ω-hydroxylases activity while exposure to benzene did not show any effect.
Collapse
Affiliation(s)
- P E Kastner
- Institut de Biologie Moléculaire des Plantes, CNRS - Université de Strasbourg IBMP-UPR 2357, Département Réseaux Métaboliques, 28 rue Goethe, F-67083 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|