1
|
Rajesh TA, Ramachandran S. Atmospheric black carbon aerosol: Long-term characteristics, source apportionment, and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172928. [PMID: 38754497 DOI: 10.1016/j.scitotenv.2024.172928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Black carbon (BC) aerosols play a very significant role in influencing air quality, climate, and human health. Large uncertainties still exist in BC emissions due to limited observations on the relative source contributions of fossil fuel (ff) combustion and biomass (wood fuel, wf) burning. Our understanding of long-term changes in BC emissions, especially their source apportionment, is sparse and limited. For the first time, BC characteristics, its source apportionment into ff and wf components, and their trends measured using a multi-wavelength aethalometer over an urban location (Ahmedabad) in India covering a 14 year period (2006-2019) are comprehensively investigated. The average contributions of eBCff and eBCwf concentrations to total eBC are 80 % and 20 %, respectively, which highlights the dominance of emissions from fossil fuel combustion processes. A statistically significant increasing trend in eBC and eBCff mass concentrations at the rate of 11 % and 29%yr-1, respectively, and a decreasing trend in eBCwf concentration at the rate of 36%yr-1 are detected. The study reveals a significant decrease in biomass (wood fuel) burning emissions over the past decade and an increase in emissions from fossil fuel combustion. However, the rates of increase and decrease in eBCff and eBCwf are different, which indicate that rapid urbanization led to an increase in anthropogenic emissions, whereas an increase in usage of non-polluting fuel led to a decreasing trend in wood burning contribution. During weekdays and weekends, eBC and eBCff mass concentrations did not exhibit any statistically significant trends. However, eBCwf concentration shows a statistically significant decreasing trend during weekdays 34%yr-1 and weekends 38%yr-1. Globally, several countries are adopting various strategies and mitigation policies to improve air quality; however, significant gaps exist in their implementation towards achieving cleaner air and less polluted environment. This comprehensive study is relevant for understanding the impact of urbanization and devising better BC emission control policies.
Collapse
Affiliation(s)
- T A Rajesh
- Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad 380009, India.
| | - S Ramachandran
- Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad 380009, India
| |
Collapse
|
2
|
Sheoran R, Dumka UC, Hyvärinen AP, Sharma VP, Tiwari RK, Lihavainen H, Virkkula A, Hooda RK. Assessment of carbonaceous aerosols at Mukteshwar: A high-altitude (~2200 m amsl) background site in the foothills of the Central Himalayas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161334. [PMID: 36596417 DOI: 10.1016/j.scitotenv.2022.161334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The present study examined the equivalent black carbon (eBC) mass concentrations measured over 10.5 years (September 2005-March 2016) using a 7-wavelength Aethalometer (AE-31) at Mukteshwar, a high-altitude and regional background site in the foothills of Indian central Himalayas. The total spectral absorption coefficient (babs) was divided into three categories: black carbon (BC) and brown carbon (BrC); fossil fuels (FF) and wood/biomass burning (WB/BB); and primary and secondary sources. At the wavelength of 370 nm, a significant BrC contribution (25 %) to the total babs is identified, characterized by a pronounced seasonal variation with winter (December-January-February) maxima (31 %) and post-monsoon (October and November) minima (20 %); whereas, at 660 nm, the contribution of BrC is dramatically less (9 %). Climatologically, the estimated BCFF at 880 nm ranges from 0.25 ± 0.19 μg m-3 in July to 1.17 ± 0.80 μg m-3 in May with the annual average of 0.67 ± 0.63 μg m-3, accounting for 79 % of the BC mass. The maximum BCFF/BC fraction reaches its peak value during the monsoon (July and August, 85 %), indicating the dominance of local traffic emissions due to tourism activities. Further, the highest BCWB concentration observed during pre-monsoon (March-May) suggests the influence of local forest fires along with long-range transported aerosols from the low-altitude plains. The increased contribution of BrC (26 % at 370 nm) and WB absorption (61 % at 370 nm) to the total absorption at the shorter wavelengths suggests that wood burning is one of the major sources of BrC emissions. Secondary BrC absorption accounts for 24 % [91 %] of the total absorption [BrC absorption] at 370 nm, implying the dominance of secondary sources in BrC formation. A trend analysis for the measured BC concentration shows a statistically significant increasing trend with a slope of 0.02 μgm-3/year with a total increase of about 22 % over the study period. A back trajectory-based receptor model, potential source contribution function (PSCF), was used to identify the potential regional source region of BC. The main source regions of BC are the northwest states of India in the IGP region and the northeast Pakistan region.
Collapse
Affiliation(s)
- Rahul Sheoran
- Aryabhatta Research Institute of Observational Sciences, Nainital 263001, India; Department of Physics, D.D.U. Gorakhpur University, Gorakhpur 273009, India.
| | - U C Dumka
- Aryabhatta Research Institute of Observational Sciences, Nainital 263001, India.
| | - A P Hyvärinen
- Finnish Meteorological Institute, Erik Palménin Aukio 1, FI-00560 Helsinki, Finland
| | - V P Sharma
- The Energy and Resources Institute, New Delhi, India
| | - Rakesh K Tiwari
- Department of Physics, D.D.U. Gorakhpur University, Gorakhpur 273009, India
| | - H Lihavainen
- Finnish Meteorological Institute, Erik Palménin Aukio 1, FI-00560 Helsinki, Finland; Svalbard Integrated Arctic Earth Observing System, 156, 9171 Longyearbyen, Norway
| | - A Virkkula
- Finnish Meteorological Institute, Erik Palménin Aukio 1, FI-00560 Helsinki, Finland
| | - Rakesh K Hooda
- Finnish Meteorological Institute, Erik Palménin Aukio 1, FI-00560 Helsinki, Finland.
| |
Collapse
|
3
|
Hussain N, Ahmad M, Sipra H, Ali S, Syed JH, Hussain K, Hassan SW. First insight into seasonal variability of urban air quality of northern Pakistan: An emerging issue associated with health risks in Karakoram-Hindukush-Himalaya region. CHEMOSPHERE 2023; 316:137878. [PMID: 36646179 DOI: 10.1016/j.chemosphere.2023.137878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
There is a dire need of air quality monitoring in the high-mountain areas of Karakoram-Hindu Kush-Himalaya (HKH) region, particularly related to the recent activities undergoing the China-Pakistan Economic Corridor (CPEC). This study presents the first baseline monitoring and evaluation findings from Gilgit city, Gilgit-Baltistan. Hourly data collection for air quality parameters (PM2.5, NO, NO2, SO2, O3 and CO) were measured using air-pointer (recordum, Austria) from 1 Jan 2018 to 31 Mar 2018 (winter) and 1 Jun 2018 to 31 Aug 2018 (summer). Our findings depict PM2.5 health limits were crossed in the winter season, while NO, NO2 and SO2 remained below their health limits. O3 and CO showed a rising trend in summer months, crossing the 8-h health limits during the season. Seasonal correlation in meteorology found an inverse relationship between most parameters and temperatures; reverse was true for O3 and CO. In parallel, thermal optical carbon analysis filter-based sampling characterized air quality into mass concentrations of PM2.5, organic carbon (OC), elemental carbon (EC) and various heavy metals. Filter-based PM2.5 correlated well with analyzer-based PM2.5 for all months that were studied, except February and March 2018. PM2.5, OC and EC were higher in summer as compared to winter, whereas higher heavy metal contributions were measured predominantly during summer. Health impacts were found to be above health limits for Ni in children only. Furthermore, principal component analysis-multiple linear regression (PCA-MLR) technique was applied to determine source apportionment, confirming the role of biomass burning in winters, and vehicular emissions in summers, highlighting the need for flexible monitoring of technologies/approaches, and communications among the various public, private agencies, and all relevant stakeholders.
Collapse
Affiliation(s)
- Nasir Hussain
- Department of Environmental Sciences, Karakorum International University, Gilgit, Pakistan; Gilgit-Baltistan Environmental Protection Agency (GB-EPA), Gilgit, Pakistan
| | - Masroor Ahmad
- Department of Environmental Sciences, Karakorum International University, Gilgit, Pakistan
| | - Hassaan Sipra
- Centre for Climate Research and Development, COMSATS University Islamabad, Park Road Tarlai Kalan, 45550, Islamabad, Pakistan
| | - Shuakat Ali
- Department of Environmental Sciences, Karakorum International University, Gilgit, Pakistan
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS University Islamabad, Park Road Tarlai Kalan, 45550, Islamabad, Pakistan; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong.
| | - Khadim Hussain
- Gilgit-Baltistan Environmental Protection Agency (GB-EPA), Gilgit, Pakistan
| | - Syed Waqar Hassan
- Gilgit-Baltistan Environmental Protection Agency (GB-EPA), Gilgit, Pakistan
| |
Collapse
|
4
|
Romshoo SA, Bhat MA, Beig G. Particulate pollution over an urban Himalayan site: Temporal variability, impact of meteorology and potential source regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149364. [PMID: 34371409 DOI: 10.1016/j.scitotenv.2021.149364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Five-year (2013-2017) particulate matter (PM) data observed at an urban site, Srinagar, Kashmir Himalaya, India was used to examine the temporal variability, meteorological impacts and potential source regions of PM. The daily mean PM10 and PM2.5 concentration was 135 ± 112 μg/m3 and 87 ± 93 μg/m3 respectively with significant intra- and inter-daily variation. The annual PM10 and PM2.5 concentration was 2.0-3.2 and 1.7-2.8 times higher than the annual Indian National Ambient Air Quality Standards (PM10 = 60 μg/m3 and PM2.5 = 40 μg/m3). PM concentration shows a bimodal diurnal pattern with morning and evening peaks, which coincide with the increased anthropogenic activity and shallow planetary boundary layer (PBL). The combined effect of the low temperature, low wind speed, shallow and stable PBL and geomorphic setup of Kashmir valley leads to the accumulation of particulate pollution during autumn and winter and the converse meteorological conditions leads to dispersion, dilution and deposition during spring and summer. High precipitation rate (>15 mm/day) removes the coarse particles (PM10) more efficiently than fine particles (PM2.5), while as the moderate to high humid conditions (55-95%) leads to the accumulation and growth of more PM. It was observed that ~80% of the air masses arriving at the site during spring, autumn and winter are westerlies. Source contribution analysis revealed that highly potential source regions of PM at the site are neighboring Pakistan, Afghanistan, parts of Iran and Trans-Gangetic Plains, which could contribute high concentration of the PM10 (>250 μg/m3) and PM2.5 (>150 μg/m3) during autumn and winter. The high PM load observed at the site during autumn and winter, with major contribution from the anthropogenic source emissions like biomass and coal burning, fossil fuel combustion and suspension of road dust, is aggravated by the geomorphic and meteorological setup of the Kashmir valley.
Collapse
Affiliation(s)
- Shakil Ahmad Romshoo
- Department of Geoinformatics, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India.
| | - Mudasir Ahmad Bhat
- Department of Geoinformatics, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India
| | - Gufran Beig
- Indian Institute of Tropical Meteorology (IITM), Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
5
|
Dumka UC, Kaskaoutis DG, Mihalopoulos N, Sheoran R. Identification of key aerosol types and mixing states in the central Indian Himalayas during the GVAX campaign: the role of particle size in aerosol classification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143188. [PMID: 33143923 DOI: 10.1016/j.scitotenv.2020.143188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Studies in aerosol properties, types and sources in the Himalayas are important for atmospheric and climatic issues due to high aerosol loading in the neighboring plains. This study uses in situ measurements of aerosol optical and microphysical properties obtained during the Ganges Valley Aerosol eXperiment (GVAX) at Nainital, India over the period June 2011-March 2012, aiming to identify key aerosol types and mixing states for two particle sizes (PM1 and PM10). Using a classification matrix based on SAE vs. AAE thresholds (scattering vs. absorption Ångström exponents, respectively), seven aerosol types are identified, which are highly dependent on particle size. An aerosol type named "large/BC mix" dominates in both PM1 (45.4%) and PM10 (46.9%) mass, characterized by aged BC mixed with other aerosols, indicating a wide range of particle sizes and mixing states. Small particles with low spectral dependence of the absorption (AAE < 1) account for 31.6% and BC-dominated aerosols for 14.8% in PM1, while in PM10, a large fraction (39%) corresponds to "large/low-absorbing" aerosols and only 3.9% is characterized as "BC-dominated". The remaining types consist of mixtures of dust and local emissions from biofuel burning and display very small fractions. The main optical properties e.g. spectral scattering, absorption, single scattering albedo, activation ratio, as well as seasonality and dependence on wind speed and direction of identified types are examined, revealing a large influence of air masses originating from the Indo-Gangetic Plains. This indicates that aerosols over the central Himalayas are mostly composed by mixtures of processed and transported polluted plumes from the plains. This is the first study that identifies key aerosol populations in the central Indian Himalayas based on in situ measurements and the results are highly important for aerosol-type inventories, chemical transport models and reducing the uncertainty in aerosol radiative forcing over the third pole.
Collapse
Affiliation(s)
- U C Dumka
- Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital 263 001, India.
| | - D G Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Crete, Greece.
| | - N Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Crete, Greece
| | - Rahul Sheoran
- Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital 263 001, India
| |
Collapse
|
6
|
One-Year Measurements of Equivalent Black Carbon, Optical Properties, and Sources in the Urumqi River Valley, Tien Shan, China. ATMOSPHERE 2020. [DOI: 10.3390/atmos11050478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Equivalent black carbon (EBC) was measured with a seven-wavelength Aethalometer (AE-31) in the Urumqi River Valley, eastern Tien Shan, China. This is the first high-resolution, online measurement of EBC conducted in the eastern Tien Shan allowing analysis of the seasonal and hourly variations of the light absorption properties of EBC. Results showed that the highest concentrations of EBC were in autumn, followed by those in summer. The hourly variations of EBC showed two plateaus during 8:00–9:00 h local time (LT) and 16:00–19:00 h LT, respectively. The contribution of biomass burning to EBC in winter and spring was higher than in summer and autumn. The planetary boundary layer height (PBLH) showed an inverse relationship with EBC concentrations, suggesting that the reduction of the PBLH leads to enhanced EBC. The aerosol optical depths (AOD) over the Urumqi River Valley, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data and back trajectory analysis, showed that the pollution from Central Asia was more likely to affect the atmosphere of Tien Shan in summer and autumn. This suggests that long-distance transported pollutants from Central Asia could also be potential contributors to EBC concentrations in the Urumqi River Valley, the same as local anthropogenic activities.
Collapse
|
7
|
Liu B, Li T, Yang J, Wu J, Wang J, Gao J, Bi X, Feng Y, Zhang Y, Yang H. Source apportionment and a novel approach of estimating regional contributions to ambient PM 2.5 in Haikou, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:334-345. [PMID: 28161268 DOI: 10.1016/j.envpol.2017.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 01/02/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
A novel approach was developed to estimate regional contributions to ambient PM2.5 in Haikou, China. In this paper, the investigation was divided into two main steps. The first step: analysing the characteristics of the chemical compositions of ambient PM2.5, as well as the source profiles, and then conducting source apportionments by using the CMB and CMB-Iteration models. The second step: the development of estimation approaches for regional contributions in terms of local features of Haikou and the results of source apportionment, and estimating regional contributions to ambient PM2.5 in Haikou by this new approach. The results indicate that secondary sulphate, resuspended dust and vehicle exhaust were the major sources of ambient PM2.5 in Haikou, contributing 9.9-21.4%, 10.1-19.0% and 10.5-20.2%, respectively. Regional contributions to ambient PM2.5 in Haikou in spring, autumn and winter were 22.5%, 11.6% and 32.5%, respectively. The regional contribution in summer was assumed to be zero according to the better atmospheric quality and assumptions of this new estimation approach. The higher regional contribution in winter might be mainly attributable to the transport of polluted air originating in mainland China, especially from the north, where coal is burned for heating in winter.
Collapse
Affiliation(s)
- Baoshuang Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Tingkun Li
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiamei Yang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jianhui Wu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Jiao Wang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jixin Gao
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xiaohui Bi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yufen Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Haihang Yang
- Haikou Environmental Protection Monitoring Station, Haikou, 570102, China
| |
Collapse
|