1
|
Veluchamy C, Sharma A, Thiagarajan K. Assessing the impact of heavy metals on bacterial diversity in coastal regions of Southeastern India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:828. [PMID: 39164565 DOI: 10.1007/s10661-024-12975-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024]
Abstract
Globally, there is growing concern over the environmental contamination of coastal ecosystems caused by anthropogenic activities. Here,we performed a study to evaluate the degree of heavy metal contamination in 5 different sediment samples collected from five sites along the Southeastern coast of India. Additionally, the research aims to explore the potential ecological implications of heavy metal contamination on the bacterial diversity, a crucial factor in upholding a sustainable ecosystem. A total of seven heavy metals, i.e., chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), mercury (Hg), cadmium (Cd) and arsenic (As), were assessed and quantified using inductively coupled plasma mass spectrometry. Targeted amplicon sequencing revealed that phylum Proteobacteria (36.9%) was the most dominating followed by Halobacterota (25.5%), Actinobacteriota (15%), Firmicutes (6.7%), Bacteroidota (4.0%), Thermoplasmatota (2.3%), Acidobacteriota (2.0%), Chloroflexi (1.6%), Planctomycetota (1.2%) and Crenarchaeota (1.1%). According to the alpha diversity estimate, lesser bacterial diversity was observed in areas with high pollution levels. Moreover, the physicochemical parameters of the sediments were analyzed. The contamination levels of the sediments were evaluated using the geo-accumulation index (Igeo), contamination factor (CF) and pollution loading index (PLI) to ascertain the comprehensive toxicity status of the sediments. The Igeo values revealed sediment pollution with metals such as Hg and Cd. The sediments obtained from the sampling site PU-01 showed the highest concentration of Hg pollution. Considering the ecotoxicological aspect, the estimated risk index (RI) values indicated a range from low to significant ecological risk.
Collapse
Affiliation(s)
- Chandra Veluchamy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Avinash Sharma
- National Centre for Microbial Resource, BRIC-National Centre for Cell Science, Pune, India.
- School of Agriculture, Graphic Era Hill University, Dehradun, India.
| | - Kalaivani Thiagarajan
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
2
|
Zhang X, Lan T, Jiang H, Ye K, Dai Z. Bacterial community driven nitrogen cycling in coastal sediments of intertidal transition zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168299. [PMID: 37926266 DOI: 10.1016/j.scitotenv.2023.168299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Microorganisms inhabiting in coastal sediments significantly affect the nitrogen cycling in coastal waters and ecosystems. However, the bacterial community that related to the key active nitrogen transformation processes in intertidal transition zone are still not understood. Across a long flat intertidal zone at depths from 0 to 3 m in Daya Bay, China, the bacterial communities in sediments and their driven nitrogen cycling potential were evaluated with environmental factors and 16S rRNA sequencing. The results showed that the intertidal zone is a divide for environmental factors as pH, salinity and C/N ratio, instead of an average shift from freshwater to salt water. At the same time, the environmental factors influenced the abundance of bacterial community related to nitrogen cycling. Across the intertidal zone, the dominant nitrogen transformation processes were different. At the high tide and middle tide sites, the primary nitrogen cycling process was nitrification that worked with Nitrosomonadaceae, Nitrospiraceae, 0319-6A21, and wb1-A12. At the low tide sites, nitrogen fixation was the dominant function conducted by Bradyrhizobiaceae. The reduction of nitrate was carried out with the help of Xanthomonadales but relatively weak in all sampling sites especially for low tide sites. This was mostly because the richness and evenness of bacterial community were the lowest at the low tide sites. Meanwhile, the pH, Cl-, salinity, NH4+, NO3- and C/N ratio were the important factors that shaped the composition of local bacterial community. Further, the nonmetric multidimensional scaling results indicated that there were significant statistical differences in the composition of bacterial community among samples at different layers. The dominant nitrogen cycling processes in coastal sediments at different tide levels were revealed in this study, which offered an extended concept of nitrogen transformation along the groundwater discharge path in the intertidal transition zone. The distributions and compositions of bacterial communities and predicted functions provided a new insight for coastal environment and ecosystem management.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Institute of Intelligent Simulation and Early Warning for Subsurface Environment, Jilin University, Changchun 130026, China; College of Construction Engineering, Jilin University, Changchun 130026, China
| | - Tianshan Lan
- Institute of Intelligent Simulation and Early Warning for Subsurface Environment, Jilin University, Changchun 130026, China.
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Kexin Ye
- Institute of Intelligent Simulation and Early Warning for Subsurface Environment, Jilin University, Changchun 130026, China
| | - Zhenxue Dai
- Institute of Intelligent Simulation and Early Warning for Subsurface Environment, Jilin University, Changchun 130026, China; College of Construction Engineering, Jilin University, Changchun 130026, China.
| |
Collapse
|
3
|
Liu CHM, Dahms HU, Hsieh CY, Lin ZY, Lin TY, Huang XQ. Bacterial heavy metal resistance related to environmental conditions. CHEMOSPHERE 2024; 347:140539. [PMID: 37951402 DOI: 10.1016/j.chemosphere.2023.140539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
Contaminated water bodies such as rivers provide reservoirs for bacterial resistance. This field study tested the water quality and the bacterial resistance to heavy metals of Qishan River water pollution. Wastewater discharged to environmental surface waters is a major pathway of heavy metals and heavy metal-resistant bacteria. Contaminated water bodies such as rivers provide reservoirs for bacterial resistance. This field study tested the water quality and bacterial resistance to heavy metals of Qishan River water pollution. Guided by our research hypothesis that an overall increase in downstream heavy metal resistance levels was following an increase in human settlements were eight sites sampled along the Qishan River. These were situated upstream and downstream to the confluence of the Qishan River with the Kaoping River. In the laboratory bacterial heavy metal resistance was bio-assayed by disk diffusion and micro-dilution with six widely used heavy metals. The comparison of bacterial resistance was among Qishan River upstream sites (sites 1-6) and downstream sites (sites 7-9). Multi-drug-resistant bacteria and co-resistance against heavy metals and antibacterials appeared at site 8. This research discusses the correlation between environmental factors, and antibacterial and heavy metal resistance. The results provide stakeholders and authorities responsible for environmental pollution with a reference for risk assessment and management of bacterial resistance.
Collapse
Affiliation(s)
- Cheng-Han Michael Liu
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; University Social Responsibility Project Team, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; University Social Responsibility Project Team, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan, ROC; Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC.
| | - Chi-Ying Hsieh
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC; Water Resources Education and Research Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC.
| | - Zong-Ying Lin
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; University Social Responsibility Project Team, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC
| | - Tai-Yan Lin
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; University Social Responsibility Project Team, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC
| | - Xiao-Qian Huang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC
| |
Collapse
|
4
|
de Paula M, da Costa TA, Silva, Soriano AAB, Lacorte GA. Spatial distribution of sediment bacterial communities from São Francisco River headwaters is influenced by human land-use activities and seasonal climate shifts. Braz J Microbiol 2023; 54:3005-3019. [PMID: 37910306 PMCID: PMC10689647 DOI: 10.1007/s42770-023-01150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Riverbed sediments are dynamic freshwater environments colonized by a great diversity of microorganisms which play important roles in supporting freshwater ecosystem by performing a vast array of metabolic functions. Recent evidence generated by HTS approaches has revealed that the structure of sediment microbial communities is influenced by natural seasonal variations in water such as temperature or streamflow as well by disturbances caused by local human activities. Here, a spatiotemporal analysis of sediment microbial distribution from São Francisco River headwaters section was conducted using Illumina 16S rRNA-V4 region amplicon sequencing in order to accomplish three major goals: (i) to investigate whether the diversity and composition of bacterial communities accessed in riverbed sediments vary in response to distinct land-use activities; (ii) to estimate whether the diversity patterns vary between the dry and wet seasons; and (iii) to evaluate whether the diversity of bacterial metabolic functions, predicted by PICRUSt2 approach, varies similarly to the estimated taxonomic diversity. Our findings revealed that bacterial communities in the sediment show differences in diversity and taxonomic composition according to the anthropic activities performed in the local environment. However, the patterns in which this taxonomic diversity is spatially structured show differences between the dry and wet seasons. On the other hand, the most changes in predicted bacterial metabolic functions were verified between sediment samples accessed in portions of the river located in protected and unprotected areas. Our findings contributed with new evidence about the impact of typical land-use practices conducted in countryside landscapes from developing countries on riverbed bacterial communities, both in their taxonomic and functional structure.
Collapse
Affiliation(s)
- Marcos de Paula
- Bambuí Campus, Federal Institute of Minas Gerais, Bambuí, Minas Gerais State, Brazil
| | | | - Silva
- Bambuí Campus, Federal Institute of Minas Gerais, Bambuí, Minas Gerais State, Brazil
| | | | | |
Collapse
|
5
|
Periasamy J, Krishnamoorthy S, Nagarethinam B, Sivanandham V. Food wastes as a potential hotspot of antibiotic resistance: synergistic expression of multidrug resistance and ESBL genes confer antibiotic resistance to microbial communities. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:783. [PMID: 37261634 DOI: 10.1007/s10661-023-11335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 05/03/2023] [Indexed: 06/02/2023]
Abstract
This study investigated antibiotic resistance (ABR) and extended-spectrum ß-lactamases (ESBL) patterns in bacterial isolates collected from the dairy, hotel, meat, and canteen food waste samples. A total of 144 bacterial strains were collected and screened for resistance against 9 standard antibiotics belonging to three generations and ESBL production. The ABR profile of the bacterial isolates was observed against all four major antibiotic groups (aminoglycosides, β-lactams, quinolone, and others), where resistance against cefotaxime (> 70%) and methicillin (> 50%) was high. Though the ABR pattern of strains from dairy waste (> 50%) was high against first-generation antibiotics, the strains from meat waste (> 50%) showed considerable resistance against second- and third-generation antibiotics. ESBL-producing isolates were screened (> 60%, n = 144) through primary identification tests (combined disk test and double disk synergy tests) and further confirmed through Hexa G-minus 23 and 24 and MIC E-stripe following CLSI guidelines. Genes conferring ESBL resistance blaCTX-M, blaSHV, blaOXA, blaTEM, blaKPC genes and multidrug resistance (MDR) mexF gene were detected in the selected isolates with ABR and ESBL traits. Isolates with multidrug ABR and ESBL phenotype were further genotypically identified through 16 s rRNA gene sequencing. The synergy of ABR was detected through the co-expression of ESBL and MDR in isolates with a high occurrence of ABR and ESBL. The results demonstrate the significance of food waste as a natural reservoir of ABR and ESBL-producing pathogens, highlighting the importance of resistance monitoring and its interventions.
Collapse
Affiliation(s)
- Jenifer Periasamy
- National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM-T), Pudukkottai Road, Thanjavur, Tamil Nadu, 613005, India
| | - Srinivasan Krishnamoorthy
- National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM-T), Pudukkottai Road, Thanjavur, Tamil Nadu, 613005, India
| | - Baskaran Nagarethinam
- National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM-T), Pudukkottai Road, Thanjavur, Tamil Nadu, 613005, India
| | - Vignesh Sivanandham
- National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM-T), Pudukkottai Road, Thanjavur, Tamil Nadu, 613005, India.
| |
Collapse
|
6
|
Yashwant CP, Rajendran V, Krishnamoorthy S, Nagarathinam B, Rawson A, Anandharaj A, Sivanandham V. Antibiotic resistance profiling and valorization of food waste streams to starter culture biomass and exopolysaccharides through fed-batch fermentations. Food Sci Biotechnol 2023; 32:863-874. [PMID: 37041804 PMCID: PMC10082887 DOI: 10.1007/s10068-022-01222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
The present study evaluated antibiotic resistance (ABR) in bacteria isolated from different food wastes viz., meat slaughterhouses, dairy and restaurants. About 120 strains isolated from the food waste were subjected to ABR screening. More than 50% of all the strains were resistant to Vancomycin, Neomycin and Methicilin, which belong to third-generation antibiotics. Two lactic acid bacteria (LAB) free of ABR were chosen to be used as starter cultures in media formulated from food waste. Food waste combination (FWC-4) was found to be on par with the nutrient broth in biomass production. The non-ABR LAB strains showed excellent probiotic properties, and in the fed-batch fermentation process, adding a nitrogen source (soya protein) enhanced the microbial biomass (3.7 g/l). Additionally, exopolysaccharide production was found to be 2.3 g/l. This study highlights the ABR incidence in food waste medium and its economic advantage for starter culture biomass production. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01222-9.
Collapse
Affiliation(s)
- Chavan Priyanka Yashwant
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Vijay Rajendran
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Srinivasan Krishnamoorthy
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Baskaran Nagarathinam
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Ashish Rawson
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Arunkumar Anandharaj
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Vignesh Sivanandham
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| |
Collapse
|
7
|
Liu CH, Chuang YL, Gurunathan R, Hsieh CY, Dahms HU. Riverine antibacterial resistance gradient determined by environmental factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53685-53701. [PMID: 36864342 DOI: 10.1007/s11356-023-25529-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2023] [Indexed: 06/19/2023]
Abstract
Polluted waterbodies such as rivers provide a pathway or reservoir for bacterial resistance. We studied water quality and bacterial antibacterial resistance along the subtropical Qishan River in Taiwan as a case study of environmental resistance spread in a pristine rural area. Human settlement densities increased generally from pristine mountain sites to the more polluted lowlands. Accordingly, as a working hypothesis, we expected the antibacterial resistance level to increase downstream. We collected sediment samples from 8 stations along the Qishan river and where the Qishan river reaches the Kaoping river. The samples were processed in the lab for bacteriological and physicochemical analysis. Antibacterial resistance was tested with common antibacterial. A comparison was made among the sites where isolates began to occur at the upstream (sites 1-6) with the downstream, including site 7 (Qishan town), site 8 (wastewater treatment plant), and site 9 (Kaoping river). The results of multivariate analysis for bacteriological and physicochemical parameters showed increasing water pollution levels downstream of the Qishan river. Bacterial isolates including Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, Enterobacter sp., Acinetobacter sp., Staphylococcus spp., and Bacillus spp. were analyzed and tested in the study. Their percentage of occurrence varied at each site. The resistance level was determined from the growth inhibition zone diameter (disk diffusion) and the minimum inhibitory concentration (micro-dilution). The results indicated that antibacterial resistance was related to certain environmental factors. Besides, the usage pattern of different classes of antibacterial in different sections could alter trends of their resistance. Bacteria were found with increased resistance to antibacterial used in agriculture through the downstream sites. The WWTP discharging wastewater was demonstrated to be a hotspot of resistance in aquatic environments. In conclusion, bacterial resistance against antibacterial from the Qishan river has become a potential public health threat. This study could assist authorities by providing a reference for risk assessment and management of water quality in Kaohsiung city and southern Taiwan.
Collapse
Affiliation(s)
- Cheng-Han Liu
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China
- University Social Responsibility Team, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China
| | - Yi-Lynne Chuang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China
| | - Revathi Gurunathan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China
| | - Chi-Ying Hsieh
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, Republic of China.
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China.
- University Social Responsibility Team, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China.
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan, Republic of China.
| |
Collapse
|
8
|
Perliński P, Mudryk ZJ, Zdanowicz M, Kubera Ł. Abundance of Live and Dead Bacteriopsammon Inhabiting Sandy Ecosystems of Recreational Marine Beaches of the Southern Baltic Sea. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02079-5. [PMID: 35876854 DOI: 10.1007/s00248-022-02079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The study was carried out on four non-tidal sandy marine beaches located on the Polish part of the southern Baltic Sea coast. We applied a LIVE/DEAD™ BacLight™ Bacterial Viability Kit (Invitrogen™) method to determine the abundance of live and dead bacteriopsammon. Live psammon bacteria cells constituted 31-53% of the total number of bacteria inhabiting sand of the studied beaches. Abundance of live and dead psammon bacteria generally differed along the horizontal profile in all beaches. The maximum density of bacteria was noted in the dune and the middle part of the beach (dry zones) and the minimum in wet zones, i.e., under seawater surface and at the swash zone. Generally along the vertical profile, the highest numbers of two studied bacterial groups were noted in the surface sand layer, while with increasing sediment depth their numbers significantly decreased. The abundance of live and dead bacteria showed a distinct seasonal variation.
Collapse
Affiliation(s)
- Piotr Perliński
- Department of Experimental Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22B str, 76-200, Słupsk, Poland.
| | - Zbigniew Jan Mudryk
- Department of Experimental Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22B str, 76-200, Słupsk, Poland
| | - Marta Zdanowicz
- Department of Experimental Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22B str, 76-200, Słupsk, Poland
| | - Łukasz Kubera
- Department of Microbiology and Immunobiology, Faculty of Biological Sciences, Kazimierz Wielki University, Al. Powstańców Wielkopolskich 10, 85-090, Bydgoszcz, Poland
| |
Collapse
|
9
|
Chettri U, Joshi SR. A first calibration of culturable bacterial diversity and their dual resistance to heavy metals and antibiotics along altitudinal zonation of the Teesta River. Arch Microbiol 2022; 204:241. [PMID: 35378604 DOI: 10.1007/s00203-022-02858-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022]
Abstract
Culturable bacterial diversity and co-occurrence of heavy metal and antibiotic resistance were investigated from the water and sediments along the course of the Teesta River, in the Eastern Himalayas. Water and sediment samples collected from six sampling points during the monsoon and winter seasons were subjected to analysis of physico-chemical parameters, heavy metal contamination and antibiotic tolerance. The culturable bacterial diversity established by application of bacterial culture and 16S rRNA gene sequencing, ascertained the majority belonged to Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes and Deinococcus-Thermus. Among the 5 phyla, Proteobacteria and Actinobacteria were the dominant phyla present in both water and sediment samples, whereas Bacteroidetes, Firmicutes and Deinococcus-Thermus were unique to particular sites. The Shannon index indicated that the bacterial richness was more in the water column as compared to sediment. From the total of 245 isolates, 69 genera were identified. Heavy metal tolerance and antibiotic resistance profiles showed some isolates to be tolerant to high levels of heavy metals and multiple antibiotics indicating a major concern in terms of river ecosystem serving as a pool for dissemination of such resistant genes. The antibiotic resistance and heavy metal contamination diversified along the human-impacted downstream sites, endorsing the contribution of anthropogenic factors. The present report on bacterial diversity and the associated metal and antibiotics tolerance among bacteria is the first of its kind on Teesta River, the only major river system flowing through the state of Sikkim and parts of North Bengal.
Collapse
Affiliation(s)
- Upashna Chettri
- Microbiology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - S R Joshi
- Microbiology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
10
|
Toraskar AD, Manohar CS, Fernandes CL, Ray D, Gomes AD, Antony A. Seasonal variations in the water quality and antibiotic resistance of microbial pollution indicators in the Mandovi and Zuari estuaries, Goa, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:71. [PMID: 34994862 DOI: 10.1007/s10661-021-09679-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The two adjacent estuaries of the rivers Mandovi and Zuari, along the Goa coast in the central west coast of India, are a large complex aquatic system hosting diverse natural habitats. The water quality in these habitats is affected by various anthropogenic activities as they are extensively used for transportation, fisheries and various recreational activities. In the present study, changes in the water quality and levels of microbial pollution during the pre-monsoon, monsoon and post-monsoon seasons were determined. The water quality index was estimated based on the parameters: temperature, salinity, pH, dissolved oxygen, biochemical oxygen demand and nutrients. The seasonal changes in the microbial pollution load were also assessed based on the abundance of pollution indicator organisms and their resistivity towards multiple antibiotics. Results show that the water quality index status was 'poor' in the pre-monsoon and post-monsoon seasons and it was 'good' only in the monsoon period. Levels of pollution indicator organisms determined show that the counts were the highest in the pre-monsoon season, which reduced in the monsoon and further declined during the post-monsoon season. However, the estimated multiple antibiotic resistance (MAR) index suggests that bacterial isolates in monsoonal water and sediment samples have maximum resistance towards antibiotics. This shows that, though the basic water quality improved during the monsoon, possibly due to substantial dilution, the increased terrestrial inputs brought harmful pathogens into these estuarine waters, which may be of potential health risk. Understanding the ecological status of the estuarine habitats is important for successful environmental management and sustainable development.
Collapse
|
11
|
Begum M, Kumar CS, Naik S, Pradhan U, Panda US, Mishra P. Indian coastal waters: a concoction of sewage indicator bacteria! An assessment on recreational beaches. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:455. [PMID: 34212216 DOI: 10.1007/s10661-021-09244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Coastal water quality assessment is important to maintain a healthy environment for various uses including fisheries and recreation. Microbial populations are used as biological indicators of contamination to monitor water quality and are considered by the government to be one of the critical features for issuing safety guidelines. Different bacterial groups (pathogenic, vibrio and faecal) from five major recreational beaches of Chennai, India, were monitored for the assessment of coastal water quality. Faecal coliforms (FC) were high at all the beaches, with up to 4.2 × 105 CFU/mL and exceeding the normal standard limits of 100 CFU/100 mL set by the Central Pollution Control Board (CPCB) of India. Rainfall was found to have a role in the variability and distribution of indicator and pathogenic bacteria. The seasonal dry period witnessed elevated FC, while dilution in the wet period reduced Escherichia coli-like organisms (ECLO). High microbial counts were detected near the beach situated close to the river mouth, mainly due to discharges of untreated domestic sewage and industrial wastes. Similarly, the biological oxygen demand (BOD) was also high, 0.32 to 10.32 mg/L. Dissolved inorganic nitrogen (DIN) ranged from 2.21 to 134.53 μmol/L and inorganic phosphate (IP) ranged from 0 to 57.53 μmol/L. These values indicated the presence of significant untreated sewage in the coastal water. This study revealed that Chennai coastal waters carry high levels of faecal and pathogenic bacteria, detrimental for recreational and other contact activities. The quantitative and qualitative analyses will be useful for modelling and prediction of coastal water quality and management of other recreational beaches in India.
Collapse
Affiliation(s)
- Mehmuna Begum
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, NIOT Campus, Pallikaranai, Chennai, 600 100, Tamil Nadu, India
| | - C Saravana Kumar
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Guindy, Chennai, 600 025, India
| | - Subrat Naik
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, NIOT Campus, Pallikaranai, Chennai, 600 100, Tamil Nadu, India
| | - Umakanta Pradhan
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, NIOT Campus, Pallikaranai, Chennai, 600 100, Tamil Nadu, India
| | - Uma Sankar Panda
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, NIOT Campus, Pallikaranai, Chennai, 600 100, Tamil Nadu, India
| | - Pravakar Mishra
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, NIOT Campus, Pallikaranai, Chennai, 600 100, Tamil Nadu, India.
| |
Collapse
|
12
|
Vasudevan U, Gantayat RR, Chidambaram S, Prasanna MV, Venkatramanan S, Devaraj N, Nepolian M, Ganesh N. Microbial contamination and its associations with major ions in shallow groundwater along coastal Tamil Nadu. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1069-1088. [PMID: 32940833 DOI: 10.1007/s10653-020-00712-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Microbes in groundwater play a key role in determining the drinking water quality of the water. The study aims to interpret the sources of microbes in groundwater and its relationship to geochemistry. The study was carried out by collecting groundwater samples and analyzed to obtain various cations and anions, where HCO3-, Cl- and NO3- found to be higher than permissible limits in few samples. Microbial analysis, like total coliform (TC), total viable counts (TVC), fecal coliforms (FC), Vibrio cholera (V. cholerae) and total Streptococci (T. streptococci) were analyzed, and the observations reveal that most of the samples were found to be above the permissible limits adopted by EU, BIS, WHO and USEPA standards. Correlation analysis shows good correlation between Mg2+-HCO3-, K+-NO3-, TVC- V. cholerae and T. streptococci-FC. Major ions like Mg+, K+, NO3, Ca2+ and PO4 along with TS and FC were identified to control the geochemical and microbial activities in the region. The magnesium hardness in the groundwater is inferred to influence the TVC and V. cholerae. The mixing of effluents from different sources reflected the association of Cl with TC. Population of microbes T. streptococci and FC was mainly associated with Ca and Cl content in groundwater, depicting the role of electron acceptors and donors. The sources of the microbial population were observed with respect to the land use pattern and the spatial distribution of hydrogeochemical factors in the region. The study inferred that highest microbial activity in the observed in the residential areas, cultivated regions and around the landfill sites due to the leaching of sewage water and fertilizers runoff into groundwater. The concentrations of ions and microbes were found to be above the permissible limits of drinking water quality standards. This may lead to the deterioration in the health of particular coastal region.
Collapse
Affiliation(s)
- U Vasudevan
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, 608002, India
| | - Rakesh Roshan Gantayat
- Department of Applied Geology, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - S Chidambaram
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, 608002, India
- Water Research Centre, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - M V Prasanna
- Department of Applied Geology, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - S Venkatramanan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - N Devaraj
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, 608002, India
| | - M Nepolian
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, 608002, India
| | - N Ganesh
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, 608002, India
| |
Collapse
|
13
|
Krishnan M, Subramanian H, Dahms HU, Sivanandham V, Seeni P, Gopalan S, Mahalingam A, Rathinam AJ. Biogenic corrosion inhibitor on mild steel protection in concentrated HCl medium. Sci Rep 2018; 8:2609. [PMID: 29422634 PMCID: PMC5805700 DOI: 10.1038/s41598-018-20718-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 01/19/2018] [Indexed: 12/13/2022] Open
Abstract
Turbinaria ornata (TO) extract was tested as green corrosion inhibitor on mild steel (MS) coupons in conc. HCl medium with an efficiency of 100% at 25 g l-1 during 5 min exposure. Antibacterial efficacy performed against 16 S rDNA identified marine biofilming bacteria (MBB) and human pathogenic bacteria (HPB). Maximum inhibition growth was 16 mm on MBB observed in Bacillus megaterium (MBF14 - AB894827) and 20 mm on HPB in Escherichia coli (B5 - NCIM 2931). Similarly, minimum of 10 mm on MBB witnessed in Pseudomonas sp., (MBF9 - AB894829). Toxicity studies proved 50.0% LC50 at 500 μg ml-1 in 24 hrs, whereas Balanus amphitrite resulted in 100% mortality within 12 hrs. Results including weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy, FT-IR and GC-MS confirm 10-Octadecaonic acid as a major corrosion inhibitor from T. ornata and is discovered as a novel antifoulant. Anticorrosion formulation will become available soon.
Collapse
Affiliation(s)
- Muthukumar Krishnan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
- Department of Physics, National Institute of Technology (NIT), Tiruchirappalli, 620 015, Tamil Nadu, India
- Offshore Platform and Marine Electrochemistry Center (OPMEC), Unit of Central, Electrochemical Research Institute (CECRI), New Harbour Area, Tuticorin, 628 004, Tamil Nadu, India
| | - Harinee Subramanian
- Department of Physics, National Institute of Technology (NIT), Tiruchirappalli, 620 015, Tamil Nadu, India
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, KMU - Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Kaohsiung, 80708, Taiwan, Republic of China.
- Research Center of Environmental Medicine, KMU - Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Kaohsiung, 80708, Taiwan, Republic of China.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan, Republic of China.
| | - Vignesh Sivanandham
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Palanichamy Seeni
- Offshore Platform and Marine Electrochemistry Center (OPMEC), Unit of Central, Electrochemical Research Institute (CECRI), New Harbour Area, Tuticorin, 628 004, Tamil Nadu, India
| | - Subramanian Gopalan
- Offshore Platform and Marine Electrochemistry Center (OPMEC), Unit of Central, Electrochemical Research Institute (CECRI), New Harbour Area, Tuticorin, 628 004, Tamil Nadu, India
| | - Ashok Mahalingam
- Department of Physics, National Institute of Technology (NIT), Tiruchirappalli, 620 015, Tamil Nadu, India
| | - Arthur James Rathinam
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
14
|
Vignesh S, Dahms HU, Muthukumar K, Vignesh G, James RA. Biomonitoring along the Tropical Southern Indian Coast with Multiple Biomarkers. PLoS One 2016; 11:e0154105. [PMID: 27941969 PMCID: PMC5152820 DOI: 10.1371/journal.pone.0154105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/09/2016] [Indexed: 12/04/2022] Open
Abstract
We assessed the spatial and temporal variations of pollution indicators and geochemical and trace metal parameters (23 in total) from water and sediment (144 samples) of three different eco-niches (beach, fishing harbor, and estuary) in larger coastal cities of southern India (Cuddalore and Pondicherry) for one year. A total of 120 marine Pseudomonas isolates were challenged against different concentrations of copper solutions and 10 different antibiotics in heavy metal and antibiotic resistance approaches, respectively. The study shows that 4.16% of the isolates could survive in 250 mM of copper; 70% were resistant to minimum concentrations. Strains were resistant (98.4%) to at least one antibiotic in Cuddalore compared to the Pondicherry (78.4%) region. Pollution index (PI) (0-14.55) and antibiotic resistance index (ARI) (0.05-0.10) ratio indicated that high bacterial and antibiotic loads were released into the coastal environment. The degree of trace metal contamination in sediments were calculated by enrichment factor (EF), contamination factor (CF), pollution load index (PLI), and geo-accumulation index (Igeo). Statistical parameters like two-way analysis of variance (ANOVA), correlation, factor analysis and scatter matrix tools were employed between the 23 parameters in order to find sources, pathways, disparities and interactions of environmental pollutants. It indicates that geochemical and biological parameters were not strongly associated with each other (except a few) and were affected by different sources. Factor analysis elucidated, 'microbe-metal' interaction (Factor 1-48.86%), 'anthropogenic' factor (Factor 2-13.23%) and 'Pseudomonas-Cadmium' factor (Factor 3-11.74%), respectively.
Collapse
Affiliation(s)
- Sivanandham Vignesh
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Hans-Uwe Dahms
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, Taiwan, R.O.C.; NSYSU
| | - Krishnan Muthukumar
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Gopalaswamy Vignesh
- Department of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Rathinam Arthur James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, Taiwan, R.O.C.; NSYSU
| |
Collapse
|
15
|
Krishnan M, Sivanandham V, Hans-Uwe D, Murugaiah SG, Seeni P, Gopalan S, Rathinam AJ. Antifouling assessments on biogenic nanoparticles: A field study from polluted offshore platform. MARINE POLLUTION BULLETIN 2015; 101:816-25. [PMID: 26581814 DOI: 10.1016/j.marpolbul.2015.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 06/05/2023]
Abstract
Turbinaria ornata mediated silver nanoparticles (TOAg-NPs) were evaluated for antibacterial activity against 15 biofilm forming bacterial isolates. A field study in natural seawater for 60 days showed antifouling activity of TOAg-NPs on stainless steel coupons (SS-304) coated with Apcomin zinc chrome (AZC) primer. Though TOAg-NPs showed broad spectrum of antibacterial activity, the maximum zone of inhibition was with Escherichiacoli (71.9%) and a minimum with Micrococcus sp. (40%) due to the EPS secretion from Gram-positive bacteria. Compared to control coupons (18.9 [ × 10(3)], 67.0 [× 10(3)], 13.5 [ × 10(4)] and 24.7 [ × 10(4)]CFU/cm(2)), experimental biocide coupons (71.0 [ × 10(2)], 32.0 [ × 10(3)], 82.0 [ × 10(3)] and 11.3 [ × 10(4)]CFU/cm(2)) displayed lesser bacterial population density. Toxicity studies revealed 100% mortality for Balanus amphitrite larvae at 250 μg ml(-1) concentration within 24h, while 56.6% recorded for Artemia marina at the same concentration indicating less toxicity to non target species. It proved that AZC+TOAg-NPs prevent biofouling by its Ag-NS affinity and antimicrobial effectivity.
Collapse
Affiliation(s)
- Muthukumar Krishnan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Vignesh Sivanandham
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Dahms Hans-Uwe
- Department of Biomedical Science and Environmental Biology, KMU - Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Kaohsiung 80708, Taiwan, ROC; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung 80424, Taiwan, ROC
| | - Santhosh Gokul Murugaiah
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Palanichamy Seeni
- Offshore Platform and Marine Electrochemistry Center (OPMEC), Unit of Central Electrochemical Research Institute (CECRI), New Harbour Area, Tuticorin 628 004, Tamil Nadu, India
| | - Subramanian Gopalan
- Offshore Platform and Marine Electrochemistry Center (OPMEC), Unit of Central Electrochemical Research Institute (CECRI), New Harbour Area, Tuticorin 628 004, Tamil Nadu, India
| | - Arthur James Rathinam
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|