1
|
Aguilar-Rangel EJ, Savin-Gámez A, García-Maldonado JQ, Prado B, Vásquez-Murrieta MS, Siebe C, Alcántara-Hernández RJ. Increases in the soil ammonia oxidizing phylotypes and their rechange due to long-term irrigation with wastewater. PLoS One 2024; 19:e0299518. [PMID: 38603769 PMCID: PMC11008854 DOI: 10.1371/journal.pone.0299518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/13/2024] [Indexed: 04/13/2024] Open
Abstract
Wastewater irrigation is a common practice for agricultural systems in arid and semiarid zones, which can help to overcome water scarcity and contribute with nutrient inputs. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are key in the transformation of NH4+-N in soil and can be affected by variations in soil pH, EC, N and C content, or accumulation of pollutants, derived from wastewater irrigation. The objective of this study was to determine the changes in the ammonia oxidizing communities in agricultural soils irrigated with wastewater for different periods of time (25, 50, and 100 years), and in rainfed soils (never irrigated). The amoA gene encoding for the catalytic subunit of the ammonia monooxygenase was used as molecular reporter; it was quantified by qPCR and sequenced by high throughput sequencing, and changes in the community composition were associated with the soil physicochemical characteristics. Soils irrigated with wastewater showed up to five times more the abundance of ammonia oxidizers (based on 16S rRNA gene relative abundance and amoA gene copies) than those under rainfed agriculture. While the amoA-AOA: amoA-AOB ratio decreased from 9.8 in rainfed soils to 1.6 in soils irrigated for 100 years, indicating a favoring environment for AOB rather than AOA. Further, the community structure of both AOA and AOB changed during wastewater irrigation compared to rainfed soils, mainly due to the abundance variation of certain phylotypes. Finally, the significant correlation between soil pH and the ammonia oxidizing community structure was confirmed, mainly for AOB; being the main environmental driver of the ammonia oxidizer community. Also, a calculated toxicity index based on metals concentrations showed a correlation with AOB communities, while the content of carbon and nitrogen was more associated with AOA communities. The results indicate that wastewater irrigation influence ammonia oxidizers communities, manly by the changes in the physicochemical environment.
Collapse
Affiliation(s)
- Eduardo J. Aguilar-Rangel
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Alba Savin-Gámez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - José Q. García-Maldonado
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Merida 97310, Yucatán, México
| | - Blanca Prado
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510, Ciudad de México, México
| | - María Soledad Vásquez-Murrieta
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Del. Miguel Hidalgo, 11340, Ciudad de México, México
| | - Christina Siebe
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510, Ciudad de México, México
| | - Rocío J. Alcántara-Hernández
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510, Ciudad de México, México
| |
Collapse
|
2
|
Wang Y, Zeng X, Zhang Y, Zhang N, Xu L, Wu C. Responses of potential ammonia oxidation and ammonia oxidizers community to arsenic stress in seven types of soil. J Environ Sci (China) 2023; 127:15-29. [PMID: 36522049 DOI: 10.1016/j.jes.2022.02.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 06/17/2023]
Abstract
Soil arsenic contamination is of great concern because of its toxicity to human, crops, and soil microorganisms. However, the impacts of arsenic on soil ammonia oxidizers communities remain unclear. Seven types of soil spiked with 0 or 100 mg arsenic per kg soil were incubated for 180 days and sampled at days 1, 15, 30, 90 and 180. The changes in the community composition and abundance of ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) were analyzed by terminal restriction fragment length polymorphism (T-RFLP) analysis, clone library sequencing, and quantitative PCR (qPCR) targeting amoA gene. Results revealed considerable variations in the potential ammonia oxidation (PAO) rates in different soils, but soil PAO was not consistently significantly inhibited by arsenic, probably due to the low bioavailable arsenic contents or the existence of functional redundancy between AOB and AOA. The variations in AOB and AOA communities were closely associated with the changes in arsenic fractionations. The amoA gene abundances of AOA increased after arsenic addition, whereas AOB decreased, which corroborated the notion that AOA and AOB might occupy different niches in arsenic-contaminated soils. Phylogenetic analysis of amoA gene-encoded proteins revealed that all AOB clone sequences belonged to the genus Nitrosospira, among which those belonging to Nitrosospira cluster 3a were dominant. The main AOA sequence detected belonged to Thaumarchaeal Group 1.1b, which was considered to have a high ability to adapt to environmental changes. Our results provide new insights into the impacts of arsenic on the soil nitrogen cycling.
Collapse
Affiliation(s)
- Yanan Wang
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China
| | - Xibai Zeng
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China.
| | - Yang Zhang
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China
| | - Nan Zhang
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China
| | - Liyang Xu
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China
| | - Cuixia Wu
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China
| |
Collapse
|
3
|
Kumar A, Subrahmanyam G, Mondal R, Cabral-Pinto MMS, Shabnam AA, Jigyasu DK, Malyan SK, Fagodiya RK, Khan SA, Kumar A, Yu ZG. Bio-remediation approaches for alleviation of cadmium contamination in natural resources. CHEMOSPHERE 2021; 268:128855. [PMID: 33199107 DOI: 10.1016/j.chemosphere.2020.128855] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) is a harmful heavy metal that can cause potent environmental and health hazards at different trophic levels through food chain. Cd is relatively non-biodegradable and persists for a long time in the environment. Considering the potential toxicity and non-biodegradability of Cd in the environment as well as its health hazards, this is an urgent issue of international concern that needs to be addressed by implicating suitable remedial approaches. The current article specifically attempts to review the different biological approaches for remediation of Cd contamination in natural resources. Further, bioremediation mechanisms of Cd by microbes such as bacteria, fungi, algae are comprehensively discussed. Studies indicate that heavy metal resistant microbes can be used as suitable biosorbents for the removal of Cd (up to 90%) in the natural resources. Soil-to-plant transfer coefficient (TC) of Cd ranges from 3.9 to 3340 depending on the availability of metal to plants and also on the type of plant species. The potential phytoremediation strategies for Cd removal and the key factors influencing bioremediation process are also emphasized. Studies on molecular mechanisms of transgenic plants for Cd bioremediation show immense potential for enhancing Cd phytoremediation efficiency. Thus, it is suggested that nano-technological based integrated bioremediation approaches could be a potential futuristic path for Cd decontamination in natural resources. This review would be highly useful for the biologists, chemists, biotechnologists and environmentalists to understand the long-term impacts of Cd on ecology and human health so that potential remedial measures could be taken in advance.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, China.
| | - Gangavarapu Subrahmanyam
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - Raju Mondal
- Central Sericultural Germplasm Resources Centre (CSGRC), Central Silk Board, Ministry of Textiles, Thally Road, Hosur, Tamil Nadu, 635109, India.
| | - M M S Cabral-Pinto
- Geobiotec Research Centre, Department of Geosciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Aftab A Shabnam
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - Dharmendra K Jigyasu
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - Sandeep K Malyan
- Research Management and Outreach Division, National Institute of Hydrology, Jalvigyan Bhawan, Roorkee, Uttarakhand, 247667, India.
| | - Ram Kishor Fagodiya
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India.
| | - Shakeel A Khan
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Amit Kumar
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - Zhi-Guo Yu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, China.
| |
Collapse
|
4
|
Liu X, Shao Y, Dong Y, Dong M, Xu Z, Hu X, Liu A. Response of ammonia-oxidizing archaea and bacteria to sulfadiazine and copper and their interaction in black soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11357-11368. [PMID: 33123879 DOI: 10.1007/s11356-020-11356-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
The large-scale development of animal husbandry and the wide agricultural application of livestock manure lead to more and more serious co-pollution of heavy metals and antibiotics in soil. In this study, two common feed additives, copper (Cu) and sulfadiazine (SDZ), were selected as target pollutants to evaluate the toxicity and interaction of antibiotics and heavy metals on ammonia oxidizers diversity, potential nitrification rate (PNR), and enzymatic activity in black soils. The results showed that soil enzyme activity was significantly inhibited by single Cu pollution, but the toxicity could be reduced by introducing low-concentration SDZ (5 mg · kg-1), which showed an antagonistic effect between Cu and SDZ (5 mg · kg-1), while the combined toxicity of high-concentration SDZ (10 mg · kg-1) and Cu were strengthened compared with the single Cu contamination on soil enzymes. In contrast, soil PNR was more sensitive to single Cu pollution and its combined pollution with SDZ than the enzyme activity. Real-time fluorescence quota PCR and Illumina Hiseq/Miseq sequencing results showed that ammonia-oxidizing archaea (AOA) was decreased in C2 (200 mg · kg-1 Cu treatment) and ammonia-oxidizing bacteria (AOB) was obviously stimulated in soil contaminated in C2, while in S5 (5 mg · kg-1 SDZ treatment), AOB was decreased; both AOA and AOB were significantly decreased at gene level in soils with combined pollutants (C2S5, 200 mg · kg-1 Cu combined with 5 mg · kg-1 SDZ). So, it can be concluded that combined pollution can cause more serious toxicity on the enzymatic activity, PNR, and ammonia-oxidizing microorganisms in soil through the synergistic effect between heavy metals and antibiotics pollutants.
Collapse
Affiliation(s)
- Xijuan Liu
- College of Agricultural engineering and Food science, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Yifei Shao
- College of Agricultural engineering and Food science, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Yuanpeng Dong
- College of Agricultural engineering and Food science, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Mengyang Dong
- College of Agricultural engineering and Food science, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Ziwen Xu
- College of Agricultural engineering and Food science, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Xinxin Hu
- College of Resources and Environmental engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Aiju Liu
- College of Resources and Environmental engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China.
| |
Collapse
|
5
|
Liu J, Cao W, Jiang H, Cui J, Shi C, Qiao X, Zhao J, Si W. Impact of Heavy Metal Pollution on Ammonia Oxidizers in Soils in the Vicinity of a Tailings Dam, Baotou, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:110-116. [PMID: 29744521 DOI: 10.1007/s00128-018-2345-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Soil heavy metal pollution has received increasing attention due to their toxicity to soil microorganisms. We have analyzed the effects of heavy metal pollution on ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in soils in the vicinity of a tailings dam of Baotou region, China. Results showed that AOB were dominated with Nitrosomonas-like clusters, while AOA was dominated by group1.1b (Nitrososphaera cluster). Single Cd and Cr contents, as well as compound heavy metal pollution levels, had a significant negative impact on soil potential nitrification rate and both diversities of AOA and AOB. No clear relationship was found between any single heavy metal and abundance of AOA or AOB. But compound pollution could significantly decrease AOA abundance. The results indicated that heavy metal pollution had an obviously deleterious effect on the abundance, diversity, activity and composition of ammonia oxidizers in natural soils.
Collapse
Affiliation(s)
- Jumei Liu
- School of Life Sciences, Inner Mongolia University, Huhhot, 010021, China
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Weiwei Cao
- School of Ecology and Environment, Inner Mongolia University, Huhhot, 010021, China
| | - Haiming Jiang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Jing Cui
- School of Life Sciences, Inner Mongolia University, Huhhot, 010021, China
| | - Chunfang Shi
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Xiaohui Qiao
- School of Ecology and Environment, Inner Mongolia University, Huhhot, 010021, China
| | - Ji Zhao
- School of Ecology and Environment, Inner Mongolia University, Huhhot, 010021, China.
| | - Wantong Si
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
| |
Collapse
|
6
|
Khan S, Malik A. Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4446-4458. [PMID: 29185221 DOI: 10.1007/s11356-017-0783-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Water pollution caused by the discharge of hazardous textile effluents is a serious environmental problem worldwide. In order to assess the pollution level of the textile effluents, various physico-chemical parameters were analyzed in the textile wastewater and agricultural soil irrigated with the wastewater (contaminated soil) using atomic absorption spectrophotometer and gas chromatography-mass spectrometry (GC-MS) analysis that demonstrated the presence of several toxic heavy metals (Ni, Cu, Cr, Pb, Cd, and Zn) and a large number of organic compounds. Further, in order to get a comprehensive idea about the toxicity exerted by the textile effluent, mung bean seed germination test was performed that indicated the reduction in percent seed germination and radicle-plumule growth. The culturable microbial populations were also enumerated and found to be significantly lower in the wastewater and contaminated soil than the ground water irrigated soil, thus indicating the biotic homogenization of indigenous microflora. Therefore, the study was aimed to develop a cost effective and ecofriendly method of textile waste treatment using native soil bacterium, identified as Arthrobacter soli BS5 by 16S rDNA sequencing that showed remarkable ability to degrade a textile dye reactive black 5 with maximum degradation of 98% at 37 °C and pH in the range of 5-9 after 120 h of incubation.
Collapse
Affiliation(s)
- Sana Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Abdul Malik
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
7
|
Wang P, Di HJ, Cameron KC, Tan Q, Podolyan A, Zhao X, McLaren RG, Hu C. The response of ammonia-oxidizing microorganisms to trace metals and urine in two grassland soils in New Zealand. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:2476-2483. [PMID: 27817146 DOI: 10.1007/s11356-016-8030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
An incubation experiment was conducted to investigate the response of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), and the nitrification rate to the contamination of Cu, Zn, and Cd in two New Zealand grassland soils. The soils spiked with different concentrations of Cu (20 and 50 mg kg-1), Zn (20 and 50 mg kg-1), and Cd (2 and 10 mg kg-1) were incubated for 14 days and then treated with 500 mg kg-1 urine-N before continuing incubation for a total of 115 days. Soils were sampled at intervals throughout the incubation. The nitrification rate in soils at each sampling period was determined, and the abundance of AOB and AOA was measured by real-time quantification polymerase chain reaction (qPCR) assay of the amoA gene copy numbers. The results revealed that moderate trace metal stress did not significantly affect the abundance of AOB and AOA in the two soils, probably due to the high organic matter content of the soils which would have reduced the toxic effect of the metals. Nitrification rates were much greater and the observable nitrification period was much shorter in the dairy farm (DF) soil, in which the AOB and AOA abundances were greater than those of the mixed cropping farm (MF) soil. AOB were shown to grow under high nitrogen conditions, whereas AOA were shown to grow under low N environments, with different metal concentrations. Therefore, nitrogen status rather than metal applications was the main determining factor for AOB and AOA growth in the two soils studied.
Collapse
Affiliation(s)
- Pengcheng Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hong J Di
- Centre for Soil and Environmental Research, Lincoln University, Christchurch, New Zealand.
| | - Keith C Cameron
- Centre for Soil and Environmental Research, Lincoln University, Christchurch, New Zealand
| | - Qiling Tan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Andriy Podolyan
- Centre for Soil and Environmental Research, Lincoln University, Christchurch, New Zealand
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Ron G McLaren
- Centre for Soil and Environmental Research, Lincoln University, Christchurch, New Zealand
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China.
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
8
|
Huang C, Wu F, Yang W, Tan B, He W, Zhang J. Effects of snow thickness on the abundance of archaeal and bacterial amoA genes and gene transcripts during dwarf bamboo litter decomposition in an alpine forest on the eastern Tibetan Plateau. RUSS J ECOL+ 2016. [DOI: 10.1134/s106741361604010x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Subrahmanyam G, Shen JP, Liu YR, Archana G, Zhang LM. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:112. [PMID: 26803661 DOI: 10.1007/s10661-016-5099-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils.
Collapse
Affiliation(s)
- Gangavarapu Subrahmanyam
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
- Central Muga Eri Research and Training Institute, Lahdoigarh, Jorhat, 785700, Assam, India
| | - Ju-Pei Shen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Yu-Rong Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Gattupalli Archana
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Li-Mei Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China.
| |
Collapse
|
10
|
Isolation of Ammonia Oxidizing Bacteria (AOB) from Fish Processing Effluents. NATIONAL ACADEMY SCIENCE LETTERS 2015. [DOI: 10.1007/s40009-015-0363-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Detection of ammonia-oxidizing archaea in fish processing effluent treatment plants. Indian J Microbiol 2014; 54:434-8. [PMID: 25320442 DOI: 10.1007/s12088-014-0484-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022] Open
Abstract
Ammonia oxidation is the rate limiting step in nitrification and thus have an important role in removal of ammonia in natural and engineered systems with participation of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, their relative distribution and activity in fish processing effluent treatment plants (FPETPs) though significant, is hitherto unreported. Presence of AOA in sludge samples obtained from FPETPs was studied by amplification and sequencing of thaumarchaeal ammonia monooxygenase subunit A (AOA-amoA) gene. Different primer sets targeting 16S rRNA and AOA-amoA gene were used for the detection of AOA in FPETPs. Phylogenetic analysis of the gene revealed that the AOA was affiliated with thaumarchaeal group 1.1a lineage (marine cluster). Quantitative real time PCR of amoA gene was used to study the copy number of AOA and AOB in FPETPs. The AOA-amoA and AOB-amoA gene copy numbers of sludge samples ranged from 2.2 × 10(6) to 4.2 × 10(8) and 1.1 × 10(7) to 8.5 × 10(8) mg(-1) sludge respectively. Primer sets Arch-amoAF/Arch-amoAR and 340F/1000R were found to be useful for the sensitive detection of AOA-amoA and Archaeal 16S rRNA genes respectively in FPETPs. Their presence suggests the widespread occurrence and possible usefulness in removing ammonia from FPETPs which is in line with reports from other waste water treatment plants.
Collapse
|