1
|
Zhang Y, Guo C, Wu R, Hou S, Liu Y, Zhao J, Jiang M, Xu J, Wu F. Global occurrence, distribution, and ecological risk assessment of psychopharmaceuticals and illicit drugs in surface water environment: A meta-analysis. WATER RESEARCH 2024; 263:122165. [PMID: 39084090 DOI: 10.1016/j.watres.2024.122165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Psychopharmaceuticals and illicit drugs (PIDs) in aquatic environments can negatively impact ecosystem and human health. However, data on the sources, distribution, drivers, and risks of PIDs in global surface waters are limited. We compiled a dataset of 331 records spanning 23 PIDs in surface waters and sediments across 100 countries by conducting a systematic review and meta-analysis of 108 studies published between 2005 and 2022. Most PIDs were sewage-derived, as wastewater treatment rarely achieved complete removal. The highest total PID levels were in Ethiopia, Australia, and Armenia, with many highly contaminated samples from low- and middle-income countries with minimal prior monitoring. Socioeconomic factors (population, GDP) and environmental variables (water stress) influenced the distribution of PIDs. 3,4-Methylenedioxy amphetamine hydrochloride (MDA), Δ9-tetrahydrocannabinol (THC), and 11- Δ9‑hydroxy-tetrahydrocannabinol (THCOH) posed the greatest ecological risks, especially in Oceania and North America. PIDs in surface waters present risks to aquatic organisms. Our findings elucidate the current status and future directions of PID research in surface waters and provide a scientific foundation for evaluating ecological risks and informing pollution control policies.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rongshan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Song Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianglu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Minyu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
2
|
Ahmad A, Amin KA, Ashraf SS. Biological effects of culture medium on Tetraselmis chuii and Dunaliella tertiolecta: Implications for emerging pollutants degradation. CHEMOSPHERE 2024; 363:142868. [PMID: 39025305 DOI: 10.1016/j.chemosphere.2024.142868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
In this study, laboratory-scale cultivation of T. chuii and D. tertiolecta was conducted using Conway, F/2, and TMRL media to evaluate their biochemical composition and economic costs. The highest cell density (30.36 × 106 cells/mL) and dry weight (0.65 g/L) for T. chuii were achieved with Conway medium. This medium also produced biomass with maximum lipid content (25.65%), proteins (27.84%), and total carbohydrates (8.45%) compared with F/2 and TMRL media. D. tertiolecta reached a maximum cell density of 17.50 × 106 cells/mL in F/2 medium, which was notably lower than that of T. chuii. Furthermore, the media cost varied from US$0.23 to US$0.74 for each 1 L of media, primarily due to the addition of Na3PO4, KNO3, and cyanocobalamin. Thus, biomass production rates varied between US$38.81 and US$128.80 per kg on a dry weight basis. These findings comprehensively compare laboratory conditions and the costs associated with biomass production in different media. Additionally, this study explored the potential of T. chuii and D. tertiolecta strains, as well as their consortia with bacteria, for the degradation of various emerging pollutants (EPs), including caffeine, salicylic acid, DEET, imidacloprid, MBT, cimetidine, venlafaxine, methylparaben, thiabendazole, and paracetamol. Both microalgal strains demonstrated effective degradation of EPs, with enhanced degradation observed in microalgae-bacterial consortia. These results suggest that the symbiotic relationship between microalgae and bacteria can be harnessed for the bioremediation of EPs, thereby offering valuable insights into the environmental applications of microalgal cultivation.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| | - Khadije Ahmad Amin
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Syed Salman Ashraf
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membranes and Advanced Water Technology (CMAT), Khalifa University Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
3
|
Nantaba F, Wasswa J, Kylin H, Bouwman H, Palm WU, Kümmerer K. Spatial trends and ecotoxic risk assessment of selected pharmaceuticals in sediments from Lake Victoria, Uganda, East Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167348. [PMID: 37769731 DOI: 10.1016/j.scitotenv.2023.167348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Pharmaceutical residues in the aquatic environment are an emerging issue of global concern because of their effects on ecosystems including; antibacterial resistance development and endocrine disruption. Lake Victoria is the largest freshwater lake in Africa, and the second largest lake in the world. It is also the main source of the White Nile River, arguably the longest river in the world, flowing through South Sudan, Sudan, Ethiopia and Egypt, discharging into the Mediterranean Sea. However, its ecology is threatened by rapid industrialisation, urbanization, and increased agricultural activities, which have led to increased pollution via polluted runoffs. In this study, the occurrence of twenty-five pharmaceutical compounds (14 antibiotics, four anti-epileptic and antidepressant drugs, three analgesic and anti-inflammatory drugs, three beta-blockers, and one lipid regulator) was studied in 55 sediment samples obtained from the Ugandan sector of Lake Victoria, and their ecotoxic risk assessed. All the target compounds were quantifiable with levofloxacin (2-120 ng g-1 dm; dry mass), ciprofloxacin (3-130 ng g-1 dm) enoxacin (9-75 ng g-1 dm), ibuprofen (6-50 ng g-1 dm), metoprolol (1-92 ng g-1 dm) and propranolol (1-52 ng g-1 dm) being predominant. Murchison Bay, being the chief recipient of sewage effluents, municipal and industrial waste from Kampala city and its suburbs, had the highest levels. Ecotoxic risk assessment revealed that ciprofloxacin, levofloxacin, sulfamethoxazole, sulfamethazine, oxytetracycline, tetracycline, erythromycin, norfloxacin, ibuprofen, diclofenac, carbamazepine, atenolol, and metoprolol posed high toxic risks to sediment-dwelling organisms (risk quotients, RQ >1). This is the first study reporting concentrations and ecotoxic risks of pharmaceuticals in sediments of Lake Victoria, Uganda, and the whole of East Africa. Detection, identification and quantification of pharmaceuticals in Lake Victoria sediments is essential for gaining knowledge on their occurrence and fate which can ultimately be used to assist in constructing relevant policy and management recommendations.
Collapse
Affiliation(s)
- Florence Nantaba
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda; Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.
| | - John Wasswa
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Henrik Kylin
- Department of Thematic Research - Environmental Change, Linköping University, SE-58183 Linköping, Sweden; Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Hindrik Bouwman
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Wolf-Ulrich Palm
- Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| | - Klaus Kümmerer
- Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| |
Collapse
|
4
|
Schilling Costello MC, Asad N, Haris M, Yousefi P, Khan B, Lee LS. Reconnaissance Survey of Organic Contaminants of Emerging Concern in the Kabul and Swat Rivers of Pakistan. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2599-2613. [PMID: 37750569 DOI: 10.1002/etc.5750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 09/16/2023] [Indexed: 09/27/2023]
Abstract
The Swat and Kabul rivers of northern Pakistan are within an important regional watershed that supports river-based livelihoods and is impacted by untreated effluent discharges and municipal solid waste. Evidence indicates that fish populations are decreasing in these rivers. One potential cause of poor aquatic health is pollution; therefore, we investigated the presence of contaminants of emerging concern (CECs) in the river systems. Water samples were collected in the Kabul River (n = 9) and Swat River (n = 10) during seasons of high (summer 2018) and low (winter 2019) river flow. Agrochemicals, pharmaceuticals, plasticizers, chemicals in personal care products, and hormones were quantified via liquid chromatography high-resolution mass spectrometry. In the Swat River, caffeine (18-8452 ng/L), N,N-diethyl-meta-toluamide (DEET; 16-56 ng/L), and plasticizers (13-7379 ng/L) were detected at all sites during both seasons, while butachlor (16-98 ng/L) was detected only during high flow. In the Kabul River, caffeine (12-2081 ng/L) and several plasticizers (91-722 ng/L) were detected at all sites during both seasons, while DEET (up to 97 ng/L) was detected only during high flow. During low flow, pharmaceuticals (analgesics and nonsteroidal anti-inflammatory drugs) were quantified in both rivers (up to 823 ng/L), with detection frequencies from 70% to 100% and 0% to 78% in the Swat and Kabul Rivers, respectively. Intermittent-use and natural seasonal processes (increased runoff and dilution from rainfall and snowmelt) yielded higher agrochemical concentrations and lower concentrations of continuous-use compounds (e.g., caffeine) during high flow. The present study provides the first insight into CEC concentrations in the Swat River, additional insight into the Kabul River stressors, and, overall, contaminant risks to aquatic life. Environ Toxicol Chem 2023;42:2599-2613. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Maria Christina Schilling Costello
- Ecological Sciences and Engineering IGP, Purdue University, West Lafayette, Indiana, USA
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Neelam Asad
- Department of Environmental Sciences, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Haris
- Department of Environmental Sciences, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Peyman Yousefi
- Ecological Sciences and Engineering IGP, Purdue University, West Lafayette, Indiana, USA
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Bushra Khan
- Department of Environmental Sciences, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Linda S Lee
- Ecological Sciences and Engineering IGP, Purdue University, West Lafayette, Indiana, USA
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
5
|
Shafi M, Jan R, Gani KM. Selection of priority emerging contaminants in surface waters of India, Pakistan, Bangladesh, and Sri Lanka. CHEMOSPHERE 2023; 341:139976. [PMID: 37657704 DOI: 10.1016/j.chemosphere.2023.139976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The challenge of emerging contaminants (ECs) in global surface water bodies and particularly in low- and middle-income countries such as India, Pakistan, Bangladesh, and Sri Lanka, is evident from the literature. The complexity arises from the high costs involved in EC analysis and the extensive list of ECs, which complicates the selection of essential compounds for scientific and regulatory investigations. Consequently, monitoring programs often include ECs that may have minimal significance within a region and do not pose known or suspected ecological or human health risks. This study aims to address this issue by employing a multi-risk assessment approach to identify priority ECs in the surface waters of the aforementioned countries. Through an analysis of occurrence levels and frequency data gathered from published literature, an optimized risk quotient (RQ) was derived. The findings reveal a priority list of 38 compounds that exhibit potential environmental risks and merit consideration in future water quality monitoring programs. Furthermore, the majority of antibiotics in India (12 out of 17) and Pakistan (7 out of 17) exhibit a risk quotient for antimicrobial resistance selection (RQAMR) greater than 1, highlighting the need for devising effective strategies to mitigate the escalation of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Mozim Shafi
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India; Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Ruby Jan
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India.
| |
Collapse
|
6
|
Ionic Liquid-Based Green Emulsion Liquid Membrane for the Extraction of the Poorly Soluble Drug Ibuprofen. Molecules 2023; 28:molecules28052345. [PMID: 36903590 PMCID: PMC10005223 DOI: 10.3390/molecules28052345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Ibuprofen (Ibf) is a biologically active drug (BADs) and an emerging contaminant of concern (CECs) in aqueous streams. Due to its adverse effects upon aquatic organisms and humans, the removal and recovery of Ibf are essential. Usually, conventional solvents are employed for the separation and recovery of ibuprofen. Due to environmental limitations, alternative green extracting agents need to be explored. Ionic liquids (ILs), emerging and greener alternatives, can also serve this purpose. It is essential to explore ILs that are effective for recovering ibuprofen, among millions of ILs. The conductor-like screening model for real solvents (COSMO-RS) is an efficient tool that can be used to screen ILs specifically for ibuprofen extraction. The main objective of this work was to identify the best IL for the extraction of ibuprofen. A total of 152 different cation-anion combinations consisting of eight aromatic and non-aromatic cations and nineteen anions were screened. The evaluation was based upon activity coefficients, capacity, and selectivity values. Furthermore, the effect of alkyl chain length was studied. The results suggest that quaternary ammonium (cation) and sulfate (anion) have better extraction ability for ibuprofen than the other combinations tested. An ionic liquid-based green emulsion liquid membrane (ILGELM) was developed using the selected ionic liquid as the extractant, sunflower oil as the diluent, Span 80 as the surfactant, and NaOH as the stripping agent. Experimental verification was carried out using the ILGELM. The experimental results indicated that the predicted COSMO-RS and the experimental results were in good agreement. The proposed IL-based GELM is highly effective for the removal and recovery of ibuprofen.
Collapse
|
7
|
Khan HK, Rehman MYA, Junaid M, Lv M, Yue L, Haq IU, Xu N, Malik RN. Occurrence, source apportionment and potential risks of selected PPCPs in groundwater used as a source of drinking water from key urban-rural settings of Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151010. [PMID: 34662624 DOI: 10.1016/j.scitotenv.2021.151010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Pharmaceuticals and personal care products (PPCPs) are emerging contaminants that have been extensively used in present time to improve the living standards. Their persistence in water resources due to various anthropogenic sources such as wastewater treatment plants, pharmaceutical industries, and runoff from agricultural and livestock farms has not only threaten aquatic life but their occurrence in groundwater has also raised concerns related to humans' wellbeing. METHODS Considering this as a neglected area of research in Pakistan, a systematic monitoring study was designed to investigate their occurrence, sources, and potential environmental and human health risks in groundwater from urban-rural areas of six cities. Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS) was used to analyze the collected samples preceded by solid-phase extraction. RESULTS Overall, 8 out of 11 selected PPCPs were detected in groundwater samples with detection frequency ranging from 5.5-65%. Their concentrations ranged from below limit of detection (<LOD) to 1961 ng/L. The overall mean concentrations of detected PPCPs were found below 100 ng/L. The highest mean concentration was reported for Ibuprofen (154 ng/L) in Rawalpindi/Islamabad. Results of PCA-MLR revealed that domestic wastewater discharge (76.4%) was the dominant source contributing to PPCPs contamination in groundwater. Followed by mixed source (pharmaceutical & hospital waste) 17.8%, and rural discharge/animal husbandry 5.8%. No appreciable risk to human health upon exposure to detected PPCPs via drinking water was anticipated. However, environmental risk assessment indicated moderate risk posed to P. subcapitata (RQ = 0.98) and D. magna (RQ = 0.2) by ibuprofen. CONCLUSION The current study reports the first evidence of PPCPs occurrence in groundwater in Pakistan. Reporting their occurrence in groundwater is a fundamental initial step to inform public-health decisions concerning sewage systems and drinking water quality. Hence, comprehensive monitoring programs are required to further investigate contamination of emerging contaminants in groundwater and their associated risks.
Collapse
Affiliation(s)
- Hudda Khaleeq Khan
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Yasir Abdur Rehman
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ming Lv
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Linxia Yue
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ihsan-Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Riffat Naseem Malik
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
8
|
Khan HK, Rehman MYA, Malik RN. Fate and toxicity of pharmaceuticals in water environment: An insight on their occurrence in South Asia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:111030. [PMID: 32778310 DOI: 10.1016/j.jenvman.2020.111030] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 05/05/2023]
Abstract
Pharmaceutically active compounds are newly recognized micropollutants which are ubiquitous in aquatic environment mainly due to direct discharge of treated and untreated wastewater from wastewater treatment plants. These contaminants have attracted mounted attention due to their toxic effects on aquatic life. They disrupt biological processes in non-target lower organisms upon exposure. Biodegradation, photo-degradation, and sorption are key processes which determine their fate in the environment. A variety of conventional and advanced treatment processes had been extensively investigated for the removal of pharmaceuticals from wastewater. However, due to structural complexity and varying operating parameters, complete removal seems ideal. Generally, due to high energy requirement of advanced treatment technology, it is considered cost ineffective. Transport of pharmaceutical compounds occurs via aquatic channels whereas sediments and aquatic colloids play a significant role as sinks for these contaminants. The current review provides a critical understanding of fate and toxicity of pharmaceutical compounds and highlights their vulnerability and occurrence in South Asia. Antibiotics, analgesics, and psychiatric drugs were found predominantly in the water environment of South Asian regions. Despite significant advances in understanding pharmaceuticals fate, toxicity, and associated risks since the 1990s, still substantial data gaps in terms of monitoring, human health risks, and legislation exist which presses the need to develop a more in-depth and interdisciplinary understanding of the subject.
Collapse
Affiliation(s)
- Hudda Khaleeq Khan
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Yasir Abdur Rehman
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Riffat Naseem Malik
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
9
|
Wielens Becker R, Wilde ML, Salmoria Araújo D, Seibert Lüdtke D, Sirtori C. Proposal of a new, fast, cheap, and easy method using DLLME for extraction and preconcentration of diazepam and its transformation products generated by a solar photo-Fenton process. WATER RESEARCH 2020; 184:116183. [PMID: 32702571 DOI: 10.1016/j.watres.2020.116183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
This work evaluated the formation of transformation products (TPs) during the degradation of diazepam (DZP) by a solar photo-Fenton process. Six TPs were identified, three of them for the first time. After elucidation of the TPs, a new, cheap, fast, and easy method was employed to extract and preconcentrate DZP and its TPs, using dispersive liquid-liquid microextraction (DLLME). The method was optimized using factorial and Doehlert designs, with the best results obtained using acetonitrile as disperser solvent and chloroform as extraction solvent, with volumes of 1000 and 650 µL, respectively. When DZP degradation was performed in ultrapure water, the extraction/preconcentration of DZP and its TPs by DLLME was very similar to the results obtained using a traditional SPE method. However, when hospital wastewater was used as the matrix, more limited extraction efficiency was obtained using DLLME, compared to SPE. Meanwhile, all the TPs extracted by SPE were also extracted by the DLLME technique. Furthermore, DLLME was much less expensive than SPE, besides being faster, easier, and requiring only small amounts of organic solvents. This work reports a new and very important tool for the extraction and preconcentration of TPs formed during degradation using techniques such as advanced oxidation processes (AOPs), since without this step it would not be possible to identify all the TPs formed in some complex wastewater matrices.
Collapse
Affiliation(s)
- Raquel Wielens Becker
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP: 91501-970, Porto Alegre-RS, Brazil
| | - Marcelo Luís Wilde
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP: 91501-970, Porto Alegre-RS, Brazil
| | - Débora Salmoria Araújo
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP: 91501-970, Porto Alegre-RS, Brazil
| | - Diogo Seibert Lüdtke
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP: 91501-970, Porto Alegre-RS, Brazil
| | - Carla Sirtori
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP: 91501-970, Porto Alegre-RS, Brazil.
| |
Collapse
|
10
|
Nantaba F, Wasswa J, Kylin H, Palm WU, Bouwman H, Kümmerer K. Occurrence, distribution, and ecotoxicological risk assessment of selected pharmaceutical compounds in water from Lake Victoria, Uganda. CHEMOSPHERE 2020; 239:124642. [PMID: 31521936 DOI: 10.1016/j.chemosphere.2019.124642] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
The occurrence of 24 pharmaceuticals (including 15 antibiotics, three analgesic/anti-inflammatory drugs, three anti-epileptic/antidepressant drugs, two beta blockers, and one lipid regulator) was investigated in 75 water samples collected from four bays in the Ugandan part of Lake Victoria. In addition, the potential environmental risk of the target pharmaceutical compounds to aquatic organisms in the aquatic ecosystem of Lake Victoria was assessed. Water samples were extracted using solid phase extraction and analyzed for pharmaceuticals using high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (LC/MS/MS). Eighteen of the 24 pharmaceuticals occurred at quantifiable concentrations. Sulfamethoxazole (1-5600 ng L-1), trimethoprim (1-89 ng L-1), tetracycline (3-70 ng L-1), sulfacetamide (1-13 ng L-1), and ibuprofen (6-780 ng L-1) occurred at quantifiable concentrations in all water samples. Sulfamethazine (2-50 ng L-1), erythromycin (10-66 ng L-1), diclofenac (2-160 ng L-1), and carbamazepine (5-72 ng L-1) were only quantifiable in water samples from Murchison Bay. The highest concentrations of pharmaceuticals were found in Murchison Bay, the main recipient of sewage effluents, industrial and municipal waste from Kampala city via the Nakivubo channel. Ecotoxicological risk assessment showed that sulfamethoxazole, oxytetracycline, erythromycin, and diclofenac pose a high toxic risk to aquatic organisms in the lake, while ciprofloxacin, norfloxacin, and ibuprofen pose a medium risk. This study is the first of its kind to report the levels and ecotoxic risks of pharmaceutical compounds in Lake Victoria waters, of Uganda, and East Africa as a whole.
Collapse
Affiliation(s)
- Florence Nantaba
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda; Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| | - John Wasswa
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Henrik Kylin
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Department of Thematic Research - Environmental Change, Linköping University, SE-58183, Linköping, Sweden
| | - Wolf-Ulrich Palm
- Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Hindrik Bouwman
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Klaus Kümmerer
- Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany.
| |
Collapse
|
11
|
Safdar M, Qumar GM, Saravanan M, Khailany RA, Ozaslan M, Gondal MA, Deekonda K, Shahzad Q, Junejo Y. Synthesis and Characterization of Cefditoren Capped Silver Nanoparticles and Their Antimicrobial and Catalytic Degradation of Ibuprofen. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01612-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|