1
|
Tian Y, Hao Y, Qu C, Yang F, Iwata H, Guo J. Biodiversity of multi-trophic biological communities within riverine sediments impacted by PAHs contamination and land use changes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124884. [PMID: 39236841 DOI: 10.1016/j.envpol.2024.124884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
River ecosystems currently face a significant threat of degradation and loss of biodiversity resulting from continuous emissions of persistent organic pollutants and human activities. In this study, multi-trophic communities were assessed using DNA metabarcoding in a relatively stable riverine sediment compartment to investigate the biodiversity dynamics in the Beiluo River, followed by an evaluation of their response to polycyclic aromatic hydrocarbons (PAHs) and land use changes. A total of 48 bacterial phyla, 4 fungal phyla, 4 protist phyla, 9 algal phyla, 31 metazoan phyla, and 12 orders of fish were identified. The total concentration of PAHs in the Beiluo River sediments ranged from 25.95 to 1141.35 ng/g, with low molecular weight PAHs constituting the highest proportion (68.67%), followed by medium (22.19%) and high (9.14%) molecular weight PAHs. Notably, in contrast to lower trophic level aquatic communities such as bacteria, algae, and metazoans, PAHs exhibited a significant inhibitory effect on fish. Furthermore, the diversity of aquatic communities displayed obvious heterogeneity across distinct land use groups. A high proportion of cultivated land reduced the biodiversity of fish communities but increased that of metazoans. Conversely, an elevated proportion of built-up land reduced metazoan biodiversity, while simultaneously enhancing that of fungi and bacteria. Generally, land use changes exert both indirect and direct effects on aquatic communities. The direct effects primarily influence the abundance of aquatic communities rather than their diversity. Nevertheless, PAHs pollution may have limited potential to disrupt community structures through complex species interactions, as the hub species identified in the co-occurrence network did not align with those significantly affected by PAHs. This study indicates the potential of PAHs and land use changes to cause biodiversity losses. However, it also highlights the possibility of mitigating these negative effects in riverine sediments through optimal land use management and the promotion of enhanced species interactions.
Collapse
Affiliation(s)
- Yulu Tian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| | - Yongrong Hao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Fangshe Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime Prefecture, 790-8577, Japan
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
2
|
Zhao Q, Zhang Y, Li X, Hu X, Huang R, Xu J, Yin Z, Gu X, Xu Y, Yin J, Zhou Q, Li A, Shi P. Evaluating a river's ecological health: A multidimensional approach. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100423. [PMID: 38693993 PMCID: PMC11061703 DOI: 10.1016/j.ese.2024.100423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Evaluating the health of river surface water is essential, as rivers support significant biological resources and serve as vital drinking water sources. While the Water Quality Index (WQI) is commonly employed to evaluate surface water quality, it fails to consider biodiversity and does not fully capture the ecological health of rivers. Here we show a comprehensive assessment of the ecological health of surface water in the lower Yangtze River (LYR), integrating chemical and biological metrics. According to traditional WQI metrics, the LYR's surface water generally meets China's Class II standards. However, it also contains 43 high-risk emerging contaminants; nitrobenzenes are found at the highest concentrations, representing 25-90% of total detections, while polycyclic aromatic hydrocarbons present the most substantial environmental risks, accounting for 81-93% of the total risk quotient. Notably, the plankton-based index of biological integrity (P-IBI) rates the ecological health of the majority of LYR water samples (59.7%) as 'fair', with significantly better health observed in autumn compared to other seasons (p < 0.01). Our findings suggest that including emerging contaminants and P-IBI as additional metrics can enhance the traditional WQI analysis in evaluating surface water's ecological health. These results highlight the need for a multidimensional assessment approach and call for improvements to LYR's ecological health, focusing on emerging contaminants and biodiversity rather than solely on reducing conventional indicators.
Collapse
Affiliation(s)
- Qiuyun Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yangyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xiuwen Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaodong Hu
- Jiangsu Hydraulic Research Institute, Nanjing, 210023, China
| | - Rui Huang
- Jiangsu Hydraulic Research Institute, Nanjing, 210023, China
| | - Jixiong Xu
- Jiangsu Hydraulic Research Institute, Nanjing, 210023, China
| | - Zilong Yin
- Jiangsu Hydraulic Research Institute, Nanjing, 210023, China
| | - Xinjie Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yuncheng Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jinbao Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Tian W, Wang Z, Kong H, Tian Y, Huang T. Temporal-Spatial Fluctuations of a Phytoplankton Community and Their Association with Environmental Variables Based on Classification and Regression Tree in a Shallow Temperate Mountain River. Microorganisms 2024; 12:1612. [PMID: 39203454 PMCID: PMC11356651 DOI: 10.3390/microorganisms12081612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The effects of environmental factors on phytoplankton are not simply positive or negative but complex and dependent on the combination of their concentrations in a fluctuating environment. Traditional statistical methods may miss some of the complex interactions between the environment and phytoplankton. In this study, the temporal-spatial fluctuations of phytoplankton diversity and abundance were investigated in a shallow temperate mountain river. The machine learning method classification and regression tree (CART) was used to explore the effects of environmental variables on the phytoplankton community. The results showed that both phytoplankton species diversity and abundance varied fiercely due to environmental fluctuation. Microcystis aeruginosa, Amphiprora sp., Anabaena oscillarioides, and Gymnodinium sp. were the dominant species. The CART analysis indicated that dissolved oxygen, oxidation-reduction potential, total nitrogen (TN), total phosphorus (TP), and water temperature (WT) explained 36.00%, 13.81%, 11.35%, 9.96%, and 8.80%, respectively, of phytoplankton diversity variance. Phytoplankton abundance was mainly affected by TN, WT, and TP, with variance explanations of 39.40%, 15.70%, and 14.09%, respectively. Most environmental factors had a complex influence on phytoplankton diversity and abundance: their effects were positive under some conditions but negative under other combinations. The results and methodology in this study are important in quantitatively understanding and exploring aquatic ecosystems.
Collapse
Affiliation(s)
| | - Zhongyu Wang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China; (W.T.); (H.K.); (Y.T.); (T.H.)
| | | | | | | |
Collapse
|
4
|
Xiang Z, Niu H, Tang Q, Hu R. Non-Linear Response of Alpha and Beta Diversity of Taxonomic and Functional Groups of Phytoplankton to Environmental Factors in Subtropical Reservoirs. Microorganisms 2024; 12:1547. [PMID: 39203389 PMCID: PMC11356485 DOI: 10.3390/microorganisms12081547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 09/03/2024] Open
Abstract
Exploring the response of the diversity of phytoplankton species and functional groups to environmental variables is extremely important in maintaining biodiversity in aquatic ecosystems. Although there were more taxonomic units at the species level than at the functional group level, it remained unclear whether species diversity was more sensitive than functional group diversity to environmental variables. In this study, taxonomic composition and alpha-beta diversity of phytoplankton were investigated in 23 subtropical reservoirs located in the Han River Basin in South China during wet and dry seasons. Structural Equation Modelling (SEM) and Generalized Dissimilarity Modelling (GDM) were employed to validate the response of phytoplankton species and functional group alpha-beta diversities to environmental variables. The results indicated that the community compositions of phytoplankton in eutrophic reservoirs were similar between wet and dry seasons, while there were distinct differences for community composition in oligotrophic-mesotrophic reservoirs between the two seasons. Across all reservoirs, there were no significant differences in alpha and beta diversities of species and functional groups between wet and dry seasons. The SEM and GDM results revealed that total phosphorus was the primary driving factor influencing alpha and beta diversities of species and functional groups in the 23 reservoirs. Meanwhile, the non-linear results of species beta diversity were stronger than the non-linear results of functional group beta diversity, indicating that phytoplankton species exhibited a higher explanatory power in responding to environmental changes compared to that of functional groups. Compared to that of species beta diversity, the response of functional group beta diversity to environmental variables was significantly lower in the dry season. These research findings lead to re-evaluating the common practice relating to the use of phytoplankton functional groups to assess environmental conditions, which may overlook the explanatory power of subtle changes at the species level, especially during periods of habitat diversification in the dry season.
Collapse
Affiliation(s)
| | | | | | - Ren Hu
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China; (Z.X.); (H.N.); (Q.T.)
| |
Collapse
|
5
|
Wu L, Zhang L, Yuan L, Liao Q, Xiang J, Zhang D, Qiu T, Liu J, Guo J. Spatio-temporal variation of toxin-producing gene abundance in Microcystis aeruginosa from Poyang Lake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2930-2943. [PMID: 38079038 DOI: 10.1007/s11356-023-31284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Microcystis aeruginosa (M. aeruginosa) causes massive blooms in eutrophic freshwater and releases microcystin. Poyang Lake is the largest freshwater lake in China and has kept a mid-nutrient level in recent years. However, there is little research on microcystin production in Poyang Lake. In this study, water and sediment samples from ten sampling sites in Poyang Lake were collected from May to December in 2020, and from January to April in 2021 respectively. Microcystis genes (mcyA, mcyB, 16 s rDNA) were quantified by real-time fluorescence quantitative PCR analysis, and then the spatial and temporal variation of mcy genes, physicochemical factors, and bacterial population structure in the lake was analyzed. The relationship between the abundance of mcy genes and physicochemical factors in water column was also revealed. Results indicated that the microcystin-producing genes mcyA and mcyB showed significant differences in spatial and temporal levels as well, which is closely related to the physicochemical factors especially the water temperature (p < 0.05) and the nitrogen content (p < 0.05). The abundance of mcy genes in the sediment in December affected the abundance of mcy genes in the water column in the next year, while the toxic Microcystis would accumulate in the sediment. In addition to the toxic Microcystis, we also found a large number of non-toxic Microcystis in the water column and sediment, and the ratio of toxic to non-toxic species can also affect the toxicity production of M. aeruginosa. Overall, the results showed that M. aeruginosa toxin-producing genes in Poyang Lake distributed spatially and temporally which related to the physicochemical factors of Poyang Lake.
Collapse
Affiliation(s)
- Lin Wu
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China
- Institute WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Li Zhang
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China
| | - Lijuan Yuan
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China
| | - Qiegen Liao
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China
| | - Jianjun Xiang
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China
| | - Dawen Zhang
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China.
| | - Tong Qiu
- Institute WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Jutao Liu
- Jiangxi Provincial Institute of Water Sciences, Nanchang, 330200, Jiangxi, China
| | - Junhui Guo
- Institute WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
6
|
Wang B, Yin X. Homogenization of Functional Diversity of Rotifer Communities in Relation to Eutrophication in an Urban River of North China. BIOLOGY 2023; 12:1488. [PMID: 38132314 PMCID: PMC10740681 DOI: 10.3390/biology12121488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Rapid urbanization has triggered nutrient loading, which will inevitably lead to the eutrophication of water bodies and further affect the structure of aquatic populations. At present, eutrophication is a significant challenge for urban aquatic ecosystems. However, we still know little about the correlation between eutrophication in urban rivers and the composition of aquatic functional groups. The effects of urban river eutrophication on rotifer communities were investigated using an annual field survey of the Jinan section of the Xiaoqing River, a typical urban river in northern China. Using functional diversity (FD) and beta diversity, the spatiotemporal variation of the aquatic biological functional groups regime along stretches subject to different eutrophication was investigated. The functional evenness (FEve) and functional divergence (FDiv) decreased significantly with the increment of the trophic level index. Functional diversity exhibits an extremely low level across functional groups, with the richness difference (RichDiff) being an important component. The results indicate that eutrophication led to the homogenization of rotifer communities. This can be attributed to the functional homogenization of the rotifer community in the Jinan section of the Xiaoqing River. The observed homogenization may be due to widely distributed species complementing the ecological niche space. Our findings provide valuable information on the conservation of the urban river under the threat of eutrophication caused by high-intensity human activities.
Collapse
Affiliation(s)
| | - Xuwang Yin
- Liaoning Provincial Key Laboratory for Hydrobiology, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China;
| |
Collapse
|
7
|
Zhuo T, Wan Q, Chai B, Ren D, Lei X, He L, Chen B. Eutrophic water remediation efficiency of algicidal bacteria, Cellvibrio sp. G1 and Chitinimonas sp. G2, and their influence on microbial community structure. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
8
|
Hu Y, Zhang J, Huang J, Zhou M, Hu S. The biogeography of colonial volvocine algae in the Yangtze River basin. Front Microbiol 2023; 14:1078081. [PMID: 36778887 PMCID: PMC9910701 DOI: 10.3389/fmicb.2023.1078081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Colonial Volvocine Algae (CVA) are of great significance for biological evolution study, but little is presently known about their biogeographic distribution. Meanwhile, with the impact of climate change and human activities, their effects on the distribution and structures of CVA communities also remain largely unknown. Herein, the biogeography of CVA was investigated in the Yangtze River basin, 172 sampling sites were set up within a catchment area of 1,800,000 km2, and the distribution and community composition of CVA were studied using single-molecule real-time sequencing and metabarcoding technology based on the full-length 18S sequence. In 76 sampling sites, CVA was discovered in two families, eight genera, and nine species. Eudorina and Colemanosphaera were the main dominant genus. Based on the result of the random forest model and Eta-squared value, the distribution of CVA was significantly influenced by water temperature, altitude, and TP. CVA could be suitably distributed at an average water temperature of 22°C, an average TP concentration of 0.06 mg/L, and an altitude lower than 3,920 m. To assess the effects of anthropogenic pollution on the structures and co-occurrence patterns of CVA communities, we used a stress index calculated by 10 environmental factors to divide the CVA community into low and high pollution group. Network analysis showed that greater pollution levels would have a negative impact on the co-occurrence patterns and diversity of the CVA community. Finally, to study the scientific distribution of CVA under current and future climate change scenarios, we analyzed the climate suitability regionalization of CVA with the maximum entropy model based on 19 climatic factors and four climate scenarios from 2021 to 2040 published by CMIP6. Our results reveal the suitable areas of CVA, and temperature is an important environmental factor affecting the distribution of CVA. With the change of climate in the future, the Three Gorges Reservoir Area, Chaohu Lake, and Taihu Lake are still highly suitable areas for CVA, but the habitat of CVA may be fragmented, and more thorough temporal surveys and sampling of the sediment or mud are needed to investigate the fragmentation of CVA.
Collapse
|
9
|
Li Z, Ma C, Sun Y, Lu X, Fan Y. Ecological health evaluation of rivers based on phytoplankton biological integrity index and water quality index on the impact of anthropogenic pollution: A case of Ashi River Basin. Front Microbiol 2022; 13:942205. [PMID: 36090089 PMCID: PMC9459119 DOI: 10.3389/fmicb.2022.942205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Based on the phytoplankton community matrices in the Ashi River Basin (ASRB), Harbin city, we developed an evaluation method using the phytoplankton index of biotic integrity (P-IBI) to evaluate ecological health while investigating the response of P-IBI to anthropogenic activities. We compared the effectiveness of P-IBI with that of the water quality index (WQI) in assessing ecological health. Between April and October 2019, phytoplankton and water samples were collected at 17 sampling sites in the ASRB on a seasonal basis. Our results showed that seven phyla were identified, comprising 137 phytoplankton species. From a pool of 35 candidate indices, five critical ecological indices (Shannon–Wiener index, total biomass, percentage of motile diatoms, percentage of stipitate diatom, and diatom quotient) were selected to evaluate the biological integrity of phytoplankton in the ASRB. The ecological status of the ASRB as measured by the P-IBI and WQI exhibited a similar spatial pattern. It showed a spatial decline in ecological status in accordance with the flow of the river. These results highlighted that P-IBI was a reliable tool to indicate the interaction between habitat conditions and environmental factors in the ASRB. Our findings contribute to the ecological monitoring and protection of rivers impacted by anthropogenic pollution.
Collapse
|
10
|
Orlińska-Woźniak P, Szalińska E, Jakusik E, Bojanowski D, Wilk P. Biomass Production Potential in a River under Climate Change Scenarios. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11113-11124. [PMID: 34343428 PMCID: PMC8384234 DOI: 10.1021/acs.est.1c03211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Excessive production of biomass, in times of intensification of agriculture and climate change, is again becoming one of the biggest environmental issues. Identification of sources and effects of this phenomenon in a river catchment in the space-time continuum has been supported by advanced environmental modules combined on a digital platform (Macromodel DNS/SWAT). This tool enabled the simulation of nutrient loads and chlorophyll "a" for the Nielba River catchment (central-western Poland) for the biomass production potential (defined here as a TN:TP ratio) analysis. Major differences have been observed between sections of the Nielba River with low biomass production in the upper part, controlled by TN:TP ratios over 65, and high chlorophyll "a" concentrations in the lower part, affected by biomass transport for the flow-through lakes. Under the long and short-term RCP4.5 and RCP8.5 climate change scenarios, this pattern will be emphasized. The obtained results showed that unfavorable biomass production potential will be maintained in the upper riverine sections due to a further increase in phosphorus loads induced by precipitation growth. Precipitation alone will increase biomass production, while precipitation combined with temperature can even enhance this production in the existing hot spots.
Collapse
Affiliation(s)
- Paulina Orlińska-Woźniak
- Institute
of Meteorology and Water Management, National
Research Institute, Podleśna 61, Warsaw 01-673, Poland
| | - Ewa Szalińska
- Faculty
of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, A. Mickiewicza Av. 30, Krakow 30-059, Poland
| | - Ewa Jakusik
- Institute
of Meteorology and Water Management, National
Research Institute, Podleśna 61, Warsaw 01-673, Poland
| | - Damian Bojanowski
- Faculty
of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, A. Mickiewicza Av. 30, Krakow 30-059, Poland
| | - Paweł Wilk
- Institute
of Meteorology and Water Management, National
Research Institute, Podleśna 61, Warsaw 01-673, Poland
| |
Collapse
|
11
|
Tsybekmitova GT, Radnaeva LD, Tashlykova NA, Shiretorova VG, Bazarova BB, Tulokhonov AK, Matveeva MO. Phytocenosis biodiversity at various water levels in mesotrophic Lake Arakhley, Lake Baikal basin, Russia. PeerJ 2021; 9:e11628. [PMID: 34178479 PMCID: PMC8216174 DOI: 10.7717/peerj.11628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/26/2021] [Indexed: 11/22/2022] Open
Abstract
Small lakes have lower water levels during dry years as was the case in 2000–2020. We sought to show the biodiversity of plant communities at various water levels in Lake Arakhley. Changes in moisture content are reflected in the cyclical variations of the water level in the lake, which decreased approximately 2 m in 2017–2018. These variations affect the biological diversity of the aquatic ecosystems. We present the latest data on the state of the plant communities in this mesotrophic lake located in the drainage basin of Lake Baikal. Lake Arakhley is a freshwater lake with low mineral content and a sodium hydrocarbonate chemical composition. Changes in the nutrient concentration were related to precipitation; inflow volume and organic matter were autochtonous at low water levels. The most diverse groups of phytoplankton found in the lake were Bacillariophyta, Chlorophyta, and Chrysophyta. High biodiversity values indicate the complexity and richness of the lake’s phytoplankton community. A prevalence of Lindavia comta was observed when water levels were low and Asterionella formosa dominated in high-water years. The maximum growth depth of lacustrine vegetation decreased from 11.0 m to 4.0 m from 1967 to 2018. Decreasing water levels were accompanied by a reduction in the littoral zone, altering the communities of aquatic plants. The hydrophyte communities were monodominant in the dry years and were represented by Ceratophyllum demersum. The vegetation cover of the lake was more diverse in high-water years and variations in the lake’s water content altered the composition of biogenic substances. These changes were reflected in the lake’s phytocenosis.
Collapse
Affiliation(s)
- Gazhit Ts Tsybekmitova
- Laboratory of Aquatic Ecosystem, Institute of Natural Resources, Ecology and Cryology of the Siberian Branch of the Russian Academy of Sciences, Chita, Zabaykalskii krai, Russian Federation
| | - Larisa D Radnaeva
- Laboratory of Chemistry of Natural Systems, Baikal Institute of Nature Management of the Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Buryatia, Russian Federation
| | - Natalya A Tashlykova
- Laboratory of Aquatic Ecosystem, Institute of Natural Resources, Ecology and Cryology of the Siberian Branch of the Russian Academy of Sciences, Chita, Zabaykalskii krai, Russian Federation
| | - Valentina G Shiretorova
- Laboratory of Chemistry of Natural Systems, Baikal Institute of Nature Management of the Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Buryatia, Russian Federation
| | - Balgit B Bazarova
- Laboratory of Aquatic Ecosystem, Institute of Natural Resources, Ecology and Cryology of the Siberian Branch of the Russian Academy of Sciences, Chita, Zabaykalskii krai, Russian Federation
| | - Arnold K Tulokhonov
- Laboratory of Chemistry of Natural Systems, Baikal Institute of Nature Management of the Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Buryatia, Russian Federation
| | - Marina O Matveeva
- Laboratory of Aquatic Ecosystem, Institute of Natural Resources, Ecology and Cryology of the Siberian Branch of the Russian Academy of Sciences, Chita, Zabaykalskii krai, Russian Federation
| |
Collapse
|
12
|
Photocatalytic Selective Oxidation of Ammonia in a Semi-Batch Reactor: Unravelling the Effect of Reaction Conditions and Metal Co-Catalysts. Catalysts 2021. [DOI: 10.3390/catal11020209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Photocatalysis has been used for the oxidation of ammonia/ammonium in water. A semibatch photoreactor was developed for this purpose, and nanostructured TiO2-based materials, either commercial P25 or prepared by flame spray pyrolysis (FSP), were used as catalysts. In the present work, we investigated the effect of (i) metal co-catalysts, (ii) pH, and (iii) ammonia concentration on the efficiency of oxidation and on the selectivity to the undesired overoxidation byproduct, i.e., nitrites and nitrates. Several metals were added to both titania samples, and the physicochemical properties of every sample were studied by XRD, BET, and UV-Vis spectroscopy. The pH, which was investigated in the range of 2.5–11.5, was the most important parameter. The optimum pH values, resulted as 11.5 and 4.8 for P25 and FSP respectively, matching the best compromise between an acceptable conversion and a limited selectivity toward nitrite and nitrate formation. For both titania samples (P25 and FSP), ammonia conversion vs. nitrite and nitrate formation were highly dependent on the pH. At pH ≥ 9, the initial rate of photooxidation was high, with selective formation of overoxidized byproducts, whereas, at a more acidic pH, the conversion was lower, but the selectivity toward nitrogen formation was higher. P25 samples added with noble metal co-catalysts (0.1 mol% Ag, Au, Pd, Pt) at pH = 11.5 remarkably increased the selectivity to nitrite and nitrate, while, in the case of FSP samples (pH = 4.8), the co-catalysts increased the selectivity toward N2 with respect to the unpromoted catalyst and also the conversion in the case of Au and Pt. Reactivity was discussed, leading to the proposing of a mechanism that correlates the activity with either surface adsorption (depending of the surface charge of the catalyst and on pH) or the homogeneous reactivity of oxidizing species.
Collapse
|
13
|
Seasonal Succession of Phytoplankton Functional Groups and Driving Factors of Cyanobacterial Blooms in a Subtropical Reservoir in South China. WATER 2020. [DOI: 10.3390/w12041167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Freshwater phytoplankton communities can be classified into a variety of functional groups that are based on physiological, morphological, and ecological characteristics. This classification method was used to study the temporal and spatial changes in the phytoplankton communities of Gaozhou Reservoir, which is a large municipal water source in South China. Between January 2015 and December 2017, a total of 155 taxa of phytoplankton that belong to seven phyla were identified. The phytoplankton communities were classified into 28 functional groups, nine of which were considered to be representative functional groups (relative biomass > 10%). Phytoplankton species richness was greater in the summer and autumn than in the winter and spring; cyanobacterial blooms occurred in the spring. The seasonal succession of phytoplankton functional groups was characterized by the occurrence of functional groups P (Staurastrum sp. and Closterium acerosum) and Y (Cryptomonas ovata and Cryptomonas erosa) in the winter and spring, and functional groups NA (Cosmarium sp. and Staurodesmus sp.) and P (Staurastrum sp. and Closterium acerosum) in the summer and autumn. The temperature, nitrogen, and phosphorus levels were the main factors driving seasonal changes in the phytoplankton communities of Gaozhou Reservoir. The functional group M (Microcystis aeruginosa) dominated the community during the cyanobacterial blooms in spring 2016, with the maximum algal cell density of 3.12 × 108 cells L−1. Relatively low temperature (20.8 °C), high concentrations of phosphorus (0.080–0.110 mg L−1), suitable hydrological and hydrodynamic conditions (e.g., relatively long retention time), and relatively closed geographic location in the reservoir were the key factors that stimulated the cyanobacterial blooms during the early stages.
Collapse
|