1
|
Pratap Singh Raman A, Thakur G, Pandey G, Kumari K, Singh P. An Updated Review on Functionalized Graphene as Sensitive Materials in Sensing of Pesticides. Chem Biodivers 2024; 21:e202302080. [PMID: 38578653 DOI: 10.1002/cbdv.202302080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
Numerous chemical pesticides were employed for a long time to manage pests, but their uncontrolled application harmed the health and the environment. Accurately quantifying pesticide residues is essential for risk evaluation and regulatory purposes. Numerous analytical methods have been developed and utilized to achieve sensitive and specific detection of pesticides in intricate sampl es like water, soil, food, and air. Electrochemical sensors based on amperometry, potentiometry, or impedance spectroscopy offer portable, rapid, and sensitive detection suitable for on-site analysis. This study examines the potential of electrochemical sensors for the accurate evaluation of various effects of pesticides. Emphasizing the use of Graphene (GR), Graphene Oxide (GO), Reduced Graphene Oxide (rGO), and Graphdiyne composites, the study highlights their enhanced performance in pesticide sensing by stating the account of many actual sensors that have been made for specific pesticides. Computational studies provide valuable insights into the adsorption kinetics, binding energies, and electronic properties of pesticide-graphene complexes, guiding the design and optimization of graphene-based sensors with improved performance. Furthermore, the discussion extends to the emerging field of biopesticides. While the GR/GO/rGO based sensors hold immense future prospects, and their existing limitations have also been discussed, which need to be solved with future research.
Collapse
Affiliation(s)
- Anirudh Pratap Singh Raman
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| | - Gauri Thakur
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Indian Institute of Technology, Madras, India
| | - Garima Pandey
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| |
Collapse
|
2
|
Han J, Yu Y, Wen H, Chen T, Chen Y, Chen G, Qiu J, Zhu F, Ouyang G. Sea-urchin-like covalent organic framework as solid-phase microextraction fiber coating for sensitive detection of trace pyrethroid insecticides in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169129. [PMID: 38097077 DOI: 10.1016/j.scitotenv.2023.169129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Pyrethroid insecticides residues in water pose a critical threat to the environment from widespread production and overuse. Therefore, it is of major relevance to develop a sensitive and efficient method to detect pyrethroid insecticides in water. In this paper, a covalent organic framework (COF) with NHCO as the structural unit was synthesized using a simple condensation reaction of TTL (NH2) and TDBA (COOH). Various characterization results and density functional theory (DFT) calculations demonstrated that multiple interactions synergistically promoted the adsorption of pyrethroid insecticides on COFTDBA-TTL. Based on the excellent extraction capability of COFTDBA-TTL, efficient detection of 11 pyrethroid insecticides in water was achieved using COFTDBA-TTL-coated SPME fiber and gas chromatography-tandem mass spectrometry (GC-MS). The results showed that the extraction enhancement factors (EFs) of pyrethroid insecticides were as high as 2584-7199, and the extraction efficiencies were 3.28-446 times higher than that of commercial fiber, which reflected its high adsorption property. Meanwhile, the limits of detection (LODs) of the COFTDBA-TTL coated fiber were as low as 0.170-1.68 ng/L under the optimal conditions, and the recoveries of 11 pyrethroid insecticides in the actual water samples were 88.5-108 %. In conclusion, the SPME-GC-MS method based on COFTDBA-TTL coated fiber was simple, rapid, and efficient, and should have a promising application in trace detection of pyrethroid insecticides in the environment.
Collapse
Affiliation(s)
- Jiajia Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongyu Wen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianning Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuemei Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Junlang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, School of Environmental Science and Engineering, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
3
|
Sicupira LC, Freitas LVP, de Pinho GP, Silvério FO. Simultaneous Determination of a Polychlorinated Dibenzo-p-Dioxin and Dibenzo-p-Furan in Environmental Water by Dispersive Liquid-Liquid Microextraction (DLLME) and a Modified QuEChERS Procedure with High-Performance Liquid Chromatography – Diode Array Detection (HPLC-DAD). ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2166521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lázaro C. Sicupira
- Institute of Engineering, Science and Technology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Janaúba, Minas Gerais, Brazil
| | - Lucas V. P. Freitas
- School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gevany P. de Pinho
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Montes Claros, Minas Gerais, Brazil
| | - Flaviano O. Silvério
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
4
|
Bhattu M, Kathuria D, Billing BK, Verma M. Chromatographic techniques for the analysis of organophosphate pesticides with their extraction approach: a review (2015-2020). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:322-358. [PMID: 34994766 DOI: 10.1039/d1ay01404h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In agriculture, a wide range of OPPs has been employed to boost crop yield, quality, and storage life. However, due to the ever-increasing population and rapid urbanization, pesticide use has surged in recent years. These compounds are exceedingly poisonous to humans, and despite the fact that specific legislation prohibits their use, the frequency of toxic and/or fatal incidents, as well as current statistics, suggest that they are currently accessible. As a result, determining the exposure to these substances as well as their detection (and that of their metabolites) in different types of exposed samples has become a hot issue in terms of quality and safety concerns. However, developing tools for the evaluation of these substances is a critical challenge for laboratories. Various chromatographic-based methods reported in the period of 2015-2020 have been developed, which are summarized and critically reviewed in this article, including the extraction of the target OPPs from different kinds of matrices. A comparison among the extraction and analysis techniques has been made in the current review article.
Collapse
Affiliation(s)
- Monika Bhattu
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India. niperdeepika12@gmail
| | - Deepika Kathuria
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India. niperdeepika12@gmail
| | - Beant Kaur Billing
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India. niperdeepika12@gmail
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India. niperdeepika12@gmail
| |
Collapse
|
5
|
da Silva Sousa J, do Nascimento HO, de Oliveira Gomes H, do Nascimento RF. Pesticide residues in groundwater and surface water: recent advances in solid-phase extraction and solid-phase microextraction sample preparation methods for multiclass analysis by gas chromatography-mass spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106359] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Yao Y, Bai L, Tian H, Wu X, Zhang N, Wu L, Jia Y, Ren X. A fluorinated chitosan-based QuEChERS method for simultaneous determination of 20 organophosphorus pesticide residues in ginseng using GC-MS/MS. Biomed Chromatogr 2021; 35:e5209. [PMID: 34216008 DOI: 10.1002/bmc.5209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/19/2021] [Accepted: 06/29/2021] [Indexed: 11/06/2022]
Abstract
In this study, a new fluorinated methacrylamide (MACF) was synthesized and evaluated as an adsorbent in the dispersive solid-phase extraction for the effective determination and extraction of 20 organophosphorus pesticides (OPPs) from ginseng samples using the QuEChERS (quick, easy, cheap, effective, rugged, safe) method coupled with GC-MS/MS. The properties of MACF were characterized using Fourier-transform infrared spectroscopy, elemental analysis, and high-resolution 19 F NMR. MACF, chitosan, primary and secondary amine, octadecylsilane, graphitized carbon black, Z-Sep, Z-Sep+ , and EMR-Lipid were compared in terms of extraction efficiency. The best results were obtained when MACF was used. Matrix-matched calibration was employed for quantification. All the OPPs exhibited good linearity (r2 > 0.9969) with the concentration at their respective concentration ranges. The limits of detection were 1.5-3.0 μg/kg, and the limits of quantification were 5.0-10.0 μg/kg. The trueness of the 20 pesticides at four spiked levels ranged from 86.1 to 111.1%, and the relative standard deviation was less than 11.3%. The modified QuEChERS method using MACF as the adsorbent was sensitive, reliable, and cost-effective and could be used for the determination of 20 OPP residues in ginseng.
Collapse
Affiliation(s)
- Yunheng Yao
- Product Quality Inspection Institute of Yanbian Korean Autonomous Prefecture, Yanji, China
| | - Longlv Bai
- Product Quality Inspection Institute of Yanbian Korean Autonomous Prefecture, Yanji, China
| | - Haifeng Tian
- Product Quality Inspection Institute of Yanbian Korean Autonomous Prefecture, Yanji, China
| | - Xinzi Wu
- Product Quality Inspection Institute of Yanbian Korean Autonomous Prefecture, Yanji, China
| | - Nianjie Zhang
- Product Quality Inspection Institute of Yanbian Korean Autonomous Prefecture, Yanji, China
| | - Lunpeng Wu
- National Ginseng Products Quality Supervision Inspection Center, Yanji, China
| | - Yifan Jia
- Polymer Materials and Engineering, College of Engineering, Yanbian University, Yanji, China
| | - Xiuli Ren
- Polymer Materials and Engineering, College of Engineering, Yanbian University, Yanji, China
| |
Collapse
|
7
|
Schulz R, Bub S, Petschick LL, Stehle S, Wolfram J. Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science 2021; 372:81-84. [PMID: 33795455 DOI: 10.1126/science.abe1148] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/19/2021] [Indexed: 12/27/2022]
Abstract
Pesticide impacts are usually discussed in the context of applied amounts while disregarding the large but environmentally relevant variations in substance-specific toxicity. Here, we systemically interpret changes in the use of 381 pesticides over 25 years by considering 1591 substance-specific acute toxicity threshold values for eight nontarget species groups. We find that the toxicity of applied insecticides to aquatic invertebrates and pollinators has increased considerably-in sharp contrast to the applied amount-and that this increase has been driven by highly toxic pyrethroids and neonicotinoids, respectively. We also report increasing applied toxicity to aquatic invertebrates and pollinators in genetically modified (GM) corn and to terrestrial plants in herbicide-tolerant soybeans since approximately 2010. Our results challenge the claims of a decrease in the environmental impacts of pesticide use.
Collapse
Affiliation(s)
- Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany.
- Eusserthal Ecosystem Research Station, University Koblenz-Landau, 76857 Eusserthal, Germany
| | - Sascha Bub
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Lara L Petschick
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Sebastian Stehle
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
- Eusserthal Ecosystem Research Station, University Koblenz-Landau, 76857 Eusserthal, Germany
| | - Jakob Wolfram
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| |
Collapse
|