1
|
Lin J, Yang L, Zhuang WE, Wang Y, Chen X, Niu J. Tracking the changes of dissolved organic matter throughout the city water supply system with optical indices. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120911. [PMID: 38631164 DOI: 10.1016/j.jenvman.2024.120911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Dissolved organic matter (DOM) is important in determining the drinking water treatment and the supplied water quality. However, a comprehensive DOM study for the whole water supply system is lacking and the potential effects of secondary water supply are largely unknown. This was studied using dissolved organic carbon (DOC), absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). Four fluorescent components were identified, including humic-like C1-C2, tryptophan-like C3, and tyrosine-like C4. In the drinking water treatment plants, the advanced treatment using ozone and biological activated carbon (O3-BAC) was more effective in removing DOC than the conventional process, with the removals of C1 and C3 improved by 17.7%-25.1% and 19.2%-27.0%. The absorption coefficient and C1-C4 correlated significantly with DOC in water treatments, suggesting that absorption and fluorescence could effectively track the changes in bulk DOM. DOM generally remained stable in each drinking water distribution system, suggesting the importance of the treated water quality in determining that of the corresponding network. The optical indices changed notably between distribution networks of different treatment plants, which enabled the identification of changing water sources. A comparison of DOM in the direct and secondary water supplies suggested limited impacts of secondary water supply, although the changes in organic carbon and absorption indices were detected in some locations. These results have implications for better understanding the changes of DOM in the whole water supply system to help ensure the supplied water quality.
Collapse
Affiliation(s)
- Jinjin Lin
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China
| | - Liyang Yang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China.
| | - Wan-E Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yue Wang
- Fuzhou Water Group Company, Ltd, Fuzhou, Fujian, PR China
| | - Xiaochen Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China
| | - Jia Niu
- Fujian Engineering Research Center of Water Pollution Control and System Intelligence Technology, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, PR China.
| |
Collapse
|
2
|
Murdock A, Bashar S, White D, Uyaguari-Diaz M, Farenhorst A, Kumar A. Bacterial diversity and resistome analysis of drinking water stored in cisterns from two First Nations communities in Manitoba, Canada. Microbiol Spectr 2024; 12:e0314123. [PMID: 38305192 PMCID: PMC10913478 DOI: 10.1128/spectrum.03141-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
The microbiological content of water is an ongoing concern in First Nations communities in Canada. Many communities lack water treatment plants and continue to be under drinking water advisories. However, lack of access to treatment plants is only a part of the problem as poor water distribution systems also contribute to the failure to provide safe drinking water. Here, we studied the microbial diversity and antibiotic resistome from water stored in cisterns from two First Nations communities in Manitoba, Canada. We found that the cistern water contained a high number of bacteria and showed the presence of diverse antimicrobial resistance genes. Interestingly, the bacterial diversity and antimicrobial resistance genes varied considerably from that of the untreated source water, indicating that the origin of contamination in the cistern water came from within the treatment plant or along the delivery route to the homes. Our study highlights the importance of proper maintenance of the water distribution system in addition to access to water treatment facilities to ensure a supply of safe water to First Nations communities in Canada.IMPORTANCEThe work described addresses a critical issue in First Nations communities in Canada-the microbiological content of water. Many of these communities lack access to water treatment plants and frequently experience drinking water advisories. This study focused on the microbial diversity and antibiotic resistome in water stored in cisterns within two First Nations communities in Manitoba, Canada. These findings reveal that cistern water, a common source of drinking water in these communities, contains a high number of bacteria and a wide range of antimicrobial resistance genes. This highlights a serious health risk as exposure to such water can lead to the spread of drug-resistant infections, posing a threat to the well-being of the residents.
Collapse
Affiliation(s)
- Anita Murdock
- Departments of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Sabrin Bashar
- Departments of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Dawn White
- Departments of Microbiology, University of Manitoba, Winnipeg, Canada
| | | | | | - Ayush Kumar
- Departments of Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
3
|
Khan IUH, Murdock A, Mahmud M, Cloutier M, Benoit T, Bashar S, Patidar R, Mi R, Daneshfar B, Farenhorst A, Kumar A. Quantitative Assessment of First Nations Drinking Water Distribution Systems for Detection and Prevalence of Thermophilic Campylobacter Species. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10466. [PMID: 36078183 PMCID: PMC9518054 DOI: 10.3390/ijerph191710466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Water is considered a major route for transmitting human-associated pathogens. Although microbial water quality indicators are used to test for the presence of waterborne pathogens in drinking water, the two are poorly correlated. The current study investigates the prevalence of thermophilic DNA markers specific for Campylobacter spp. (C. jejuni and C. coli) in source water and throughout the water distribution systems of two First Nations communities in Manitoba, Canada. A total of 220 water samples were collected from various points of the drinking water distribution system (DWDS) between 2016 and 2018. Target Campylobacter spp. were always (100%) detected in a home with a fiberglass (CF) cistern, as well as the community standpipe (SP). The target bacteria were also frequently detected in treated water at the Water Treatment Plant (WTP) (78%), homes with polyethylene (CP) (60%) and concrete (CC) (58%) cisterns, homes with piped (P) water (43%) and water truck (T) samples (20%), with a maximum concentration of 1.9 × 103 cells 100 mL-1 (C. jejuni) and 5.6 × 105 cells 100 mL-1 (C. coli). Similarly, target bacteria were detected in 68% of the source water samples with a maximum concentration of 4.9 × 103 cells 100 mL-1 (C. jejuni) and 8.4 × 105 cells 100 mL-1 (C. coli). Neither target Campylobacter spp. was significantly associated with free and total chlorine concentrations in water. The study results indicate that there is an immediate need to monitor Campylobacter spp. in small communities of Canada and, particularly, to improve the DWDS in First Nations communities to minimize the risk of Campylobacter infection from drinking water sources. Further research is warranted in improving/developing processes and technologies to eliminate microbial contaminants from water.
Collapse
Affiliation(s)
- Izhar U. H. Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Anita Murdock
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Maria Mahmud
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Michel Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Thomas Benoit
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sabrin Bashar
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Rakesh Patidar
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ruidong Mi
- Department of Soil Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Bahram Daneshfar
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Annemieke Farenhorst
- Department of Soil Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|