1
|
Hatamifar Y, Shojaeifard Z, Hemmateenejad B. Discrimination of bottled mineral water from tap water using a Dip-Type colorimetric paper-based sensor array and chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124719. [PMID: 38959690 DOI: 10.1016/j.saa.2024.124719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Mineral water is a natural water that originated from an underground water table, a well, or a natural spring which is considered microbiologically intact. The revenue from the bottled mineral water industry will be USD 342.40 billion in 2023, and it is expected to grow at a compound annual growth rate (CAGR) of 5.24 %. Consequently, the discrimination of original bottled mineral water from tap water is an important issue that requires designing sensors for simple and portable identification of these two types of water. In this work, we have developed a Dip-Type colorimetric paper-based sensor array with three organic dyes (Bromothymol Blue, Bromophenol Blue, and Methyl Red) followed by chemometrics' pattern recognition methods (PCA and LDA) for discrimination of original bottled mineral waters from tap waters based on differences in ion variety and ion quantity. Forty brands of mineral water and twenty-six Tap water samples from different regions of Shiraz and other Iranian cities were analyzed by this sensor array. Moreover, these experiments were performed in two consecutive years to check the versatility of the sensor with seasonal changes in waters. This sensor array was able to discriminate these two water types from each other with an accuracy of > 95 % based on the analysis of 85 water samples.
Collapse
|
2
|
Sun Z, Zhao Y, Liu Y, Chen C, Chen H. Designing a novel paper-based microfluidic disc for rapid and simultaneous determination of multiple nutrient salts in water. Analyst 2024; 149:5563-5571. [PMID: 39465676 DOI: 10.1039/d4an01127a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In the face of worsening water quality and escalating water environmental emergencies, this study developed a paper-based microfluidic disk for rapid, on-site determination of ammonia nitrogen, nitrates, nitrites, and phosphates in water. The method utilizes centrifugal microfluidics and paper-based technology, thus simplifying the operation while eliminating the need for on-site reagent preparation. Experimental results demonstrate that the disk requires only 80 microliters of a water sample and 2 minutes to complete the quantitative analysis of the four nutrients, with a coefficient of variation below 1.72% and spike recoveries ranging from 92% to 113%. The development of the disk provides an effective and rapid, on-site testing tool for water quality analysis.
Collapse
Affiliation(s)
- Zhentao Sun
- School of Precision Instrument and Optoelectronic Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China
| | - Youquan Zhao
- Medical School of Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China
- School of Precision Instrument and Optoelectronic Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China
| | - Yameng Liu
- School of Precision Instrument and Optoelectronic Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China
| | - Chen Chen
- School of Precision Instrument and Optoelectronic Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China
| | - Hao Chen
- School of Precision Instrument and Optoelectronic Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China
- Georgia Tech Shenzhen College, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China
| |
Collapse
|
3
|
Zhang T, Tang M, Yang S, Fa H, Wang Y, Huo D, Hou C, Yang M. Development of a novel ternary MOF nanozyme-based smartphone-integrated colorimetric and microfluidic paper-based analytical device for trace glyphosate detection. Food Chem 2024; 464:141780. [PMID: 39486279 DOI: 10.1016/j.foodchem.2024.141780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Given the significant and potential fatal implications of glyphosate (GLY) residues on human health and the integrity of ecosystems, their presence has garnered substantial global concern and scrutiny. Herein, we introduced a pioneering colorimetric sensing platform, the first of its kind, based on ternary metal-organic frameworks (ZnCo-ZIFs@MIL-101(Fe)). This innovative platform enabled ultra-sensitive, affordable, portable and rapid on-site detection of GLY. This platform achieved a wider linear range for GLY of 0.02-40 μg/mL with an exhibiting remarkable detection limit of 1 ng/mL, which was attributed to the electronic hybridization of the Fe3+, Co2+, and Zn2+ metal centers of ZnCo-ZIFs@MIL-101(Fe), significantly enhancing the composite's catalytic performance. The assay was successfully employed to detect GLY in food and herb samples. Moreover, to meet the demand of in-field detection for GLY, a smartphone detection method based on ZnCo-ZIFs@MIL-101(Fe) with visual, intelligent, and portable features was fabricated. This detection concentration range of GLY was 0-1 μg/mL, and the limit of smartphone detection was 23 ng/mL. Furthermore, this sensor seamlessly integrated with smartphones and paper-based microfluidic chips (μPADs), which constructed a portable test strips-smartphone sensing platform for facilitating real-time and on-site visual quantitative detection of GLY. The detection concentration range was 0-1 μg/mL, and the limit was calculated as low as 75 ng/mL. The assay was highly adaptable in practical applications. In summary, our study paved a novel pathway for the design and utilization of multi-metal MOF nanozymes in on-site pesticide monitoring.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Miao Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - SiYi Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Huanbao Fa
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yongzhong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Danqun Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
4
|
Bastami KD, Manbohi A, Mehdinia A, Hamzehpour A, Haghparast S, Taheri M. Distribution of hydrogen sulfide, nitrogen and phosphorous species in inshore and offshore sediments of the south Caspian Sea. MARINE POLLUTION BULLETIN 2024; 202:116330. [PMID: 38636340 DOI: 10.1016/j.marpolbul.2024.116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/20/2024]
Abstract
This study aimed to geochemically investigate the sediments of the south Caspian Sea at different depths in summer and winter 2020. Sampling was conducted in 5 transects along the south coastline of the Caspian Sea and sediment grain size, hydrogen sulfide, Oxidation-reduction potential (Eh), total nitrogen, nitrite, nitrate, ammonium, total phosphorus, organic and inorganic phosphorous were measured. Eh values showed significant differences between seasons and between different transects (p < 0.05). Hydrogen sulfide ranged from 1.87 to 307.00 ppm. No significant difference was observed in hydrogen sulfide between seasons and among depths (p > 0.05). Total, inorganic and organic phosphorus contents were 782.96-1335.79 ppm, 639.66-1183.60 ppm, and 42.58-205.46 ppm, respectively. Total nitrogen revealed significant differences among transects (p < 0.05). Based on sediment quality guidelines, most sampling sites had alerting conditions for organic matter, and phosphorous contamination was detected at all stations. Anoxic condition was seen at most sites according to sedimentary Eh.
Collapse
Affiliation(s)
- Kazem Darvish Bastami
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), No. 3, Etemadzadeh St., Fatemi Ave., 1411813389 Tehran, Iran
| | - Ahmad Manbohi
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), No. 3, Etemadzadeh St., Fatemi Ave., 1411813389 Tehran, Iran.
| | - Ali Mehdinia
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), No. 3, Etemadzadeh St., Fatemi Ave., 1411813389 Tehran, Iran
| | - Ali Hamzehpour
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), No. 3, Etemadzadeh St., Fatemi Ave., 1411813389 Tehran, Iran
| | - Sarah Haghparast
- Department of Fisheries, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Km 9 Darya Boulevard, P.O. Box, 578 Sari, Iran
| | - Mehrshad Taheri
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), No. 3, Etemadzadeh St., Fatemi Ave., 1411813389 Tehran, Iran
| |
Collapse
|
5
|
Motahari S, Morgan S, Hendricks A, Sonnichsen C, Sieben V. Continuous Flow with Reagent Injection on an Inlaid Microfluidic Platform Applied to Nitrite Determination. MICROMACHINES 2024; 15:519. [PMID: 38675330 PMCID: PMC11052183 DOI: 10.3390/mi15040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
A continuous flow with reagent injection method on a novel inlaid microfluidic platform for nitrite determination has been successfully developed. The significance of the high-frequency monitoring of nutrient fluctuations in marine environments is crucial for understanding our impacts on the ecosystem. Many in-situ systems face limitations in high-frequency data collection and have restricted deployment times due to high reagent consumption. The proposed microfluidic device employs automatic colorimetric absorbance spectrophotometry, using the Griess assay for nitrite determination, with minimal reagent usage. The sensor incorporates 10 solenoid valves, four syringes, two LEDs, four photodiodes, and an inlaid microfluidic technique to facilitate optical measurements of fluid volumes. In this flow system, Taylor-Aris dispersion was simulated for different injection volumes at a constant flow rate, and the results have been experimentally confirmed using red food dye injection into a carrier stream. A series of tests were conducted to determine a suitable injection frequency for the reagent. Following the initial system characterization, seven different standard concentrations ranging from 0.125 to 10 µM nitrite were run through the microfluidic device to acquire a calibration curve. Three different calibrations were performed to optimize plug length, with reagent injection volumes of 4, 20, and 50 µL. A straightforward signal processing method was implemented to mitigate the Schlieren effect caused by differences in refractive indexes between the reagent and standards. The results demonstrate that a sampling frequency of at least 10 samples per hour is achievable using this system. The obtained attenuation coefficients exhibited good agreement with the literature, while the reagent consumption was significantly reduced. The limit of detection for a 20 µL injection volume was determined to be 94 nM from the sample intake, and the limit of quantification was 312 nM. Going forward, the demonstrated system will be packaged in a submersible enclosure to facilitate in-situ colorimetric measurements in marine environments.
Collapse
Affiliation(s)
- Shahrooz Motahari
- Department of Electrical & Computer Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS B3H 4R2, Canada; (S.M.); (A.H.); (C.S.)
| | - Sean Morgan
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada;
| | - Andre Hendricks
- Department of Electrical & Computer Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS B3H 4R2, Canada; (S.M.); (A.H.); (C.S.)
| | - Colin Sonnichsen
- Department of Electrical & Computer Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS B3H 4R2, Canada; (S.M.); (A.H.); (C.S.)
| | - Vincent Sieben
- Department of Electrical & Computer Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS B3H 4R2, Canada; (S.M.); (A.H.); (C.S.)
| |
Collapse
|
6
|
AlMashrea BA, Almehdi AM, Damiati S. Simple microfluidic devices for in situ detection of water contamination: a state-of-art review. Front Bioeng Biotechnol 2024; 12:1355768. [PMID: 38371420 PMCID: PMC10869488 DOI: 10.3389/fbioe.2024.1355768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Water security is an important global issue that is pivotal in the pursuit of sustainable resources for future generations. It is a multifaceted concept that combines water availability with the quality of the water's chemical, biological, and physical characteristics to ensure its suitability and safety. Water quality is a focal aspect of water security. Quality index data are determined and provided via laboratory testing using expensive instrumentation with high maintenance costs and expertise. Due to increased practices in this sector that can compromise water quality, innovative technologies such as microfluidics are necessary to accelerate the timeline of test procedures. Microfluidic technology demonstrates sophisticated functionality in various applications due to the chip's miniaturization system that can control the movement of fluids in tiny amounts and be used for onsite testing when integrated with smart applications. This review aims to highlight the basics of microfluidic technology starting from the component system to the properties of the chip's fabricated materials. The published research on developing microfluidic sensor devices for monitoring chemical and biological contaminants in water is summarized to understand the obstacles and challenges and explore future opportunities for advancement in water quality monitoring.
Collapse
Affiliation(s)
- Buthaina A. AlMashrea
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Chemical Analysis Laboratories Section, Dubai Central Laboratory Department, Dubai, United Arab Emirates
| | - Ahmed M. Almehdi
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Samar Damiati
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
7
|
Bahavarnia F, Kohansal F, Hasanzadeh M. One-drop chemosensing of dapoxetine hydrochloride using opto-analysis by multi-channel μPAD decorated silver nanoparticles: introducing a paper-based microfluidic portable device/sensor toward naked-eye pharmaceutical analysis by lab-on-paper technology. RSC Adv 2024; 14:2610-2620. [PMID: 38226144 PMCID: PMC10788682 DOI: 10.1039/d3ra06752a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
Dapoxetine (DPX) belongs to the selective serotonin reuptake inhibitor (SSRI) class and functions by blocking the serotonin transporter and increasing serotonin activity, thereby delaying ejaculation. Therefore, monitoring of the concentration of DPX in human biofluids is important for clinicians. In this study, application of silver nanoparticles with the morphology of prisms (AgNPrs) for the sensitive measurement of DPX using colorimetric chemosensing and the spectrophotometric method was investigated. Also, DPX was determined in real samples using the spectrophotometry method. Based on the obtained results, all of the detection process in colorimetric assay is related to morphological reform of AgNPrs after it's specific electrostatic and covalent interaction with DPX as analyte. The UV-vis results indicate that the proposed AgNPrs-based chemosensing system has a wide range of linearity (0.01 μM to 1 mM) with a low limit of quantification of 0.01 μM in human urine samples, which is suitable for clinical analysis of this drug in human urine samples. It is important to point out that, this chemosensing strategy showed inappropriate analytical results for the detection of DPX in human urine samples which is a novelty of this platform. Finally, the optimized microfluidic paper-based analytical device (μPAD) was integrated with the colorimetric analysis of DPX to provide a time/color system for estimating analyte concentration by a portable substrate toward in situ and on-site biomedical analysis. Interestingly, the analytical validation tests showed appropriate results with great stability, which may facilitate commercialization of the engineered substrate. For the first time, in order to provide a simple and portable colorimetric/spectrophotometric recognition system to sensitive determination of DPX, an optimized pump-less microfluidic paper-based colorimetric device (μPCD) was introduced and validated for the real-time biomedical analysis of this analyte. According to the obtained results, this alternative approach is suitable for therapeutic drug monitoring (TDM) and biomedical analysis by miniaturized and cost-beneficial devices.
Collapse
Affiliation(s)
- Farnaz Bahavarnia
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Fereshteh Kohansal
- Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
8
|
Ogawa M, Katoh A, Matsubara R, Kondo H, Otsuka M, Sawatsubashi T, Hiruta Y, Citterio D. Semi-quantitative microfluidic paper-based analytical device for ionic silica detection. ANAL SCI 2023:10.1007/s44211-023-00345-1. [PMID: 37186078 DOI: 10.1007/s44211-023-00345-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
Silicate ions (SiO32-), or ionic silica, are known to cause silica scaling in industrial water applications when excess amounts are present; hence, concentrations must be monitored and kept at a constant low level. Ionic silica is conventionally measured by spectrophotometry in the form of its silicomolybdic complex based on the molybdenum blue reaction, but the operation process is complicated and not suitable for on-site detection. To solve these issues, microfluidic paper-based analytical devices (µPADs) have been gaining attention as portable, low-cost analytical devices suitable for on-site detection. The foldable origami type device described in this work enabled silica detection based on the molybdenum blue reaction, in the range of 50-1000 mg/L, with a practically detectable lowest concentration of 50 mg/L. The device showed selectivity for silicate ions and stability over 21 days when stored at 4 °C. The semi-quantitative analytical performance makes the proposed paper-based device attractive for on-site industrial monitoring.
Collapse
Affiliation(s)
- Mami Ogawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Aya Katoh
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Ryuichi Matsubara
- Chemical Research Department, Research and Innovation Center, Mitsubishi Heavy Industries Ltd., 2-1-1 Shinhama, Arai-Cho, Takasago, Hyogo, Japan
| | - Haruka Kondo
- Chemical Research Department, Research and Innovation Center, Mitsubishi Heavy Industries Ltd., 2-1-1 Shinhama, Arai-Cho, Takasago, Hyogo, Japan
| | - Mizuki Otsuka
- Chemical Research Department, Research and Innovation Center, Mitsubishi Heavy Industries Ltd., 5-717-1 Fukahori-Machi, Nagasaki, Japan
| | - Tetsuya Sawatsubashi
- Chemical Research Department, Research and Innovation Center, Mitsubishi Heavy Industries Ltd., 5-717-1 Fukahori-Machi, Nagasaki, Japan
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
9
|
Li Z, Liu H, Wang D, Zhang M, Yang Y, Ren TL. Recent advances in microfluidic sensors for nutrients detection in water. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|