1
|
Spatio-temporal assessment of the impacts of the trends in physical and biogeochemical parameters on the primary production of the Gulf of Guinea. Heliyon 2023; 9:e13047. [PMID: 36747934 PMCID: PMC9898682 DOI: 10.1016/j.heliyon.2023.e13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
This study applied ocean models data from Copernicus Marine Environment Monitoring Service (CMEMS) in assessing the impacts of the trends in key ocean parameters on the primary production of the Gulf of Guinea (GoG). Trend analyses, from 1993 to 2020, were done using linear regression and Mann-Kendall significance test methods to ascertain inter-annual and inter-seasonal variations and check the significance of the trends, respectively. Results affirm that temperature, salinity, nutrients, and oxygen play significant roles in the primary production of the GoG. Also, parameters such as temperature, salinity, chlorophyll-A, net primary production, phosphate, and dissolved oxygen have been experiencing increases between the study duration while silicate and nitrate have been declining in the GoG. However, there are regions and years with contrary values to the average trends. The varying level of significance of the trend showed that the impacts of the climate on the primary production of the GoG vary basin-wide.
Collapse
|
2
|
Sharma D, Biswas H, Chowdhury M, Silori S, Pandey M, Ray D. Phytoplankton community shift in response to experimental Cu addition at the elevated CO 2 levels (Arabian Sea, winter monsoon). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7325-7344. [PMID: 36038690 DOI: 10.1007/s11356-022-22709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Understanding phytoplankton community shifts under multiple stressors is becoming increasingly important. Among other combinations of stressors, the impact of trace metal toxicity on marine phytoplankton under the ocean acidification scenario is an important aspect to address. Such multiple stressor studies are rare from the Arabian Sea, one of the highest productive oceanic provinces within the North Indian Ocean. We studied the interactive impacts of copper (Cu) and CO2 enrichment on two natural phytoplankton communities from the eastern and central Arabian Sea. Low dissolved silicate (DSi < 2 µM) favoured smaller diatoms (e.g. Nitzschia sp.) and non-diatom (Phaeocystis). CO2 enrichment caused both positive (Nitzschia sp. and Phaeocystis sp.) and negative (Cylindrotheca closterium, Navicula sp., Pseudo-nitzschia sp., Alexandrium sp., and Gymnodinium sp.) growth impacts. The addition of Cu under the ambient CO2 level (A-CO2) hindered cell division in most of the species, whereas Chla contents were nearly unaffected. Interestingly, CO2 enrichment seemed to alleviate Cu toxicity in some species (Nitzschia sp., Cylindrotheca closterium, Guinardia flaccida, and Phaeocystis) and increased their growth rates. This could be related to the cellular Cu demand and energy budget at elevated CO2 levels. Dinoflagellates were more sensitive to Cu supply compared to diatoms and prymnesiophytes and could be related to the unavailability of prey. Such community shifts in response to the projected ocean acidification, oligotrophy, and Cu pollution may impact trophic transfer and carbon cycling in this region.
Collapse
Affiliation(s)
- Diksha Sharma
- Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, Goa, 403004, India
- Affiliated for PhD Under Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Haimanti Biswas
- Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, Goa, 403004, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Mintu Chowdhury
- Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, Goa, 403004, India
- School of Oceanographic Studies, Jadavpur University, Kolkata, 700032, India
| | - Saumya Silori
- Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, Goa, 403004, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Medhavi Pandey
- Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, Goa, 403004, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Durbar Ray
- Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, Goa, 403004, India
| |
Collapse
|