1
|
Zhang H, Sun H, Liu L, Liao Y, Lu Y, Xia Q. Antioxidant response fail to rescue growth of Hermetia illucens L. larvae induced by copper accumulated during long-term exposure. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110074. [PMID: 39522854 DOI: 10.1016/j.cbpc.2024.110074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Antioxidant indices and hemocytes apoptosis in the 6th instar larvae of Hermetia illucens., and their correlation with larval growth were evaluated by exposing larvae to different concentrations of Cu2+ for 1, 3 and 5 generations. Cu2+ accumulated in larval hemolymph showed significant dose-dependent relationship with Cu2+ concentrations in diets within a generation. Larval growth was only promoted after low concentrations of Cu2+ exposure for 1 generation, while seriously affected after high concentrations of Cu2+ exposure. Though total antioxidant capacity activity in larval hemolymph in treatment groups was all higher than that in control, it was increased at lower levels of Cu2+, while decreased with increasing Cu2+ concentrations at higher levels of Cu2+ exposure. The catalase (CAT) activity and metallothioneins (MTs) levels were also characterized as improved at lower levels of Cu2+, and inhibited at higher levels of Cu2+ exposure. However, CAT activity and MTs levels at higher Cu2+ treatments were significantly lower than that in control. Apoptosis rate of hemocytes was increased with increasing Cu2+ concentrations. Annexin V - fluorescein isothiocyanate (FITC)/ propidium iodide (PI) staining was in accordance with the results exhibited in flow cytometer. Results from transmission electron microscope and comet assay further confirmed that membrane blebbing, nuclear condensation, and DNA fragmentation were gradually apparent with increasing Cu2+ concentration. All parameters in different generation had similar dose-dependent trends, but the effects were strongest in the fifth generation. This study indicated that at some extent growth of H. illucens were associated with antioxidant responses and apoptosis induced by Cu2+.
Collapse
Affiliation(s)
- Huijie Zhang
- Department of Immunology, School of Basic Medicine, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Hongxia Sun
- Department of Immunology, School of Basic Medicine, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Lin Liu
- Department of Immunology, School of Basic Medicine, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Ye Liao
- Department of Immunology, School of Basic Medicine, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Yanxin Lu
- Department of Immunology, School of Basic Medicine, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Qiang Xia
- Department of Immunology, School of Basic Medicine, Zunyi Medical University, Zhuhai Campus, Zhuhai, China.
| |
Collapse
|
2
|
Wang Y, Yu Z, Cao Q, Liu C, Qin Y, Wang T, Wang C. A new approach to biotransformation and value of kitchen waste oil driven by gut microorganisms in Hermetia illucens. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123046. [PMID: 39447358 DOI: 10.1016/j.jenvman.2024.123046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Hermetia illucens larvae are known for their ability to recycle organic waste, but their capacity to recover waste oils and the role of gut microorganisms in this process are not fully understood. To gain further insights, the biological recovery of waste frying oil into valuable lipids and the influence of gut bacteria on this biotransformation were investigated. The larvae efficiently digested and absorbed waste frying oil, demonstrating their potential for converting various oils into insect fat. The presence of different fatty acids in their diet significantly altered gut bacterial communities, enriching certain genera such as Actinomyces, Enterococcus, and Providencia. Redundancy analysis revealed that the composition and structure of these bacterial communities were predictive of their function in the biotransformation of fatty acids and the lipid biosynthesis in the larvae. Specific bacteria, including Corynebacterium_1, Providencia, Actinomyces, Escherichia-Shigella, and others, were identified to play specialized roles in the digestion and absorption of fatty acids, contributing to lipid synthesis and storage. These findings highlight the potential of Hermetia illucens in the biological recovery of waste frying oil and underscore the crucial role of gut microbiota in this process, offering a sustainable approach to waste management and bioenergy production.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Zuojian Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Yuanhang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
3
|
Zandi-Sohani N, Tomberlin JK. Comparison of Growth and Composition of Black Soldier Fly ( Hermetia illucens L.) Larvae Reared on Sugarcane By-Products and Other Substrates. INSECTS 2024; 15:771. [PMID: 39452347 PMCID: PMC11508635 DOI: 10.3390/insects15100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Black soldier fly larvae (BSFL) can convert organic waste into high-quality biomass. In this study, we tested the potential of sugarcane by-products as a food source for BSFL and compared larval development and nutritional value with some other organic substrates. Seven different substrates were used, including carrot pomace (C), carrot pomace and leftover bread (CB) (50/50), bagasse and vinasse (BV), bagasse and molasses (BM), bagasse, vinasse, and molasses (BVM), a mixture of all the above treatments (MX), and university canteen leftovers (UCLs). The larval weight and length were measured for two weeks from day 5 to 19. Then, the BSFL were harvested and analyzed for dry matter, crude protein, oil, ash, mineral, and fatty acid composition. Larval weight and length varied depending on the feeding substrate provided. University canteen leftovers resulted in the BSFL having at least 18% greater length (17.00 mm) and 56% greater weight (3.15 g) compared to other treatments. The highest amounts of protein (38.9%) and oil (39.06%) were observed in the UCL treatment, while the BV treatment larvae had the highest quantities of ash (28.9%) and dry matter (28.0%). The fatty acid profile of the BSFL revealed three-times-higher levels of saturated fatty acids than unsaturated fatty acids in the UCL treatment and was at least twice as high in other treatments. Overall, the BSFL had the best growth on the UCL substrate, and the combination of bagasse and vinasse (BV) was the most appropriate substrate for BSFL development among the sugarcane by-products.
Collapse
Affiliation(s)
- Nooshin Zandi-Sohani
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani 63417-73637, Iran
| | | |
Collapse
|
4
|
Wang X, Tian X, Liu Z, Liu Z, Shang S, Li H, Qu J, Chen P. Rearing of Black Soldier Fly Larvae with Corn Straw and the Assistance of Gut Microorganisms in Digesting Corn Straw. INSECTS 2024; 15:734. [PMID: 39452310 PMCID: PMC11508837 DOI: 10.3390/insects15100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Corn straw is considered a renewable biomass energy source, and its unreasonable disposal leads to resource waste and environmental pollution. Black soldier fly (Hermetia illucens L.) larvae (BSFL) facilitate the bioconversion of various types of organic wastes. In this study, we found that 88% of BSFL survived, and 37.4% of corn straw was digested after 14 days of feeding with corn straw. Contrary to expectations, the pretreatment of corn straw with alkaline hydrogen peroxide did not promote its digestion but rather reduced the growth and survival rates of BSFL. Acinetobacter, Dysgonomonas, and unclassified Enterobacteriaceae were the abundant genera in the BSFL gut fed with corn straw. Compared with the standard diet, the relative abundances of carbohydrate metabolism genes, such as the gene abundances of β-glucosidase and α-glucosidase, were higher with corn straw as the substrate. These results suggested that the gut microbial community could regulate suitable and functional microorganisms in response to the substrates. Furthermore, four cellulase-producing strains, namely Klebsiella pneumoniae, Proteus mirabilis, Klebsiella oxytoca, and Providencia rettgeri, were isolated from the guts of corn straw BSFL. These four strains helped increase the conversion rates of corn straw, the weights of BSFL, and survival rates. In summary, we reared BSFL with corn straw and discovered the functions of gut microorganisms in adapting to the substrates. We also isolated four cellulase-producing strains from the BSFL guts and declared the benefits of BSFL digesting corn straw.
Collapse
Affiliation(s)
- Xifeng Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.T.); (Z.L.); (Z.L.); (S.S.); (H.L.); (J.Q.)
| | - Xiangru Tian
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.T.); (Z.L.); (Z.L.); (S.S.); (H.L.); (J.Q.)
| | - Zhi Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.T.); (Z.L.); (Z.L.); (S.S.); (H.L.); (J.Q.)
| | - Zhihua Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.T.); (Z.L.); (Z.L.); (S.S.); (H.L.); (J.Q.)
| | - Shuying Shang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.T.); (Z.L.); (Z.L.); (S.S.); (H.L.); (J.Q.)
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Haifeng Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.T.); (Z.L.); (Z.L.); (S.S.); (H.L.); (J.Q.)
| | - Jianhang Qu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.T.); (Z.L.); (Z.L.); (S.S.); (H.L.); (J.Q.)
| | - Pengxiao Chen
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China;
| |
Collapse
|
5
|
Shelomi M. Mitigation Strategies against Food Safety Contaminant Transmission from Black Soldier Fly Larva Bioconversion. Animals (Basel) 2024; 14:1590. [PMID: 38891637 PMCID: PMC11171339 DOI: 10.3390/ani14111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The black soldier fly larva, Hermetia illucens, can efficiently convert organic waste into biomatter for use in animal feed. This circularity comes with a risk of contaminating downstream consumers of the larval products with microbes, heavy metals, and other hazards potentially present in the initial substrate. This review examines research on mitigation techniques to manage these contaminants, from pretreatment of the substrate to post-treatment of the larvae. While much research has been done on such techniques, little of it focused on their effects on food safety contaminants. Cheap and low-technology heat treatment can reduce substrate and larval microbial load. Emptying the larval gut through starvation is understudied but promising. Black soldier fly larvae accumulate certain heavy metals like cadmium, and their ability to process certain hazards is unknown, which is why some government authorities are erring on the side of caution regarding how larval bioconversion can be used within feed production. Different substrates have different risks and some mitigation strategies may affect larval rearing performance and the final products negatively, so different producers will need to choose the right strategy for their system to balance cost-effectiveness with sustainability and safety.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology, National Taiwan University, 106319 Taipei, Taiwan
| |
Collapse
|
6
|
Wang J, Liu C, Cao Q, Li Y, Chen L, Qin Y, Wang T, Wang C. Enhanced biodegradation of microplastic and phthalic acid ester plasticizer: The role of gut microorganisms in black soldier fly larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171674. [PMID: 38479533 DOI: 10.1016/j.scitotenv.2024.171674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Hermetia illucens larvae are recognized for their ability to mitigate or eliminate contaminants by biodegradation. However, the biodegradation characteristics of microplastics and phthalic acid esters plasticizers, as well as the role of larval gut microorganisms, have remained largely unrevealed. Here, the degradation kinetics of plasticizers, and biodegradation characteristics of microplastics were examined. The role of larval gut microorganisms was investigated. For larval development, microplastics slowed larval growth significantly (P < 0.01), but the effect of plasticizer was not significant. The degradation kinetics of plasticizers were enhanced, resulting in an 8.11 to 20.41-fold decrease in degradation half-life and a 3.34 to 3.82-fold increase in final degradation efficiencies, compared to degradation without larval participation. The depolymerization and biodeterioration of microplastics were conspicuously evident, primarily through a weight loss of 17.63 %-25.52 %, variation of chemical composition and structure, bio-oxidation and bioerosion of microplastic surface. The synergistic effect driven by larval gut microorganisms, each with various functions, facilitated the biodegradation. Specifically, Ignatzschineria, Paenalcaligenes, Moheibacter, Morganella, Dysgonomonas, Stenotrophomonas, Bacteroides, Sphingobacterium, etc., appeared to be the key contributors, owing to their xenobiotic biodegradation and metabolism functions. These findings offered a new perspective on the potential for microplastics and plasticizers biodegradation, assisted by larval gut microbiota.
Collapse
Affiliation(s)
- Jiaqing Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| | - Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yun Li
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Li Chen
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yuanhang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| |
Collapse
|
7
|
Ruan L, Ye K, Wang Z, Xiong A, Qiao R, Zhang J, Huang Z, Cai M, Yu C. Characteristics of gut bacterial microbiota of black soldier fly (Diptera: Stratiomyidae) larvae effected by typical antibiotics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115861. [PMID: 38154153 DOI: 10.1016/j.ecoenv.2023.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
As agents in an emerging technology, Hermetia illucens (Linnaeus, 1758) (Diptera: Stratiomyidae) larvae, black soldier fly, have shown exciting potential for degrading antibiotics in organic solid waste, a process for which gut microorganisms play an important role. This study investigated the characteristics of larval gut bacterial communities effected by typical antibiotics. Initially, antibiotics significantly reduced the diversity of gut bacterial species. After 8 days, diversity recovered to similar to that of the control group in the chlortetracycline, tylosin, and sulfamethoxazole groups. Proteobacteria, Firmicutes, and Actinobacteriota were the dominant phyla at the initial BSFL gut. However, after 4 days treatment, the proportion of Actinobacteriota significantly decreased, but Bacteroidota notably increased. During the conversion process, 18, 18, 17, 21, and 19 core genera were present in the chlortetracycline, sulfamethoxazole, tylosin, norfloxacin, and gentamicin groups, respectively. Pseudomonas, Actinomyces, Morganella, Providencia and Klebsiella might be the important genera with extraordinary resistance and degradation to antibiotics. Statistical analyses of COGs showed that antibiotics changed the microbial community functions of BSFL gut. Compared with the control group, (i) the chlortetracycline, sulfamethoxazole, and tylosin groups showed significant increase in the classification functions of transcription, RNA processing and modification,and so on, (ii) the norfloxacin and gentamicin groups showed significant increase in defense mechanisms and other functions. Note that we categorized the response mechanisms of these classification functions to antibiotics into resistance and degradation. This provides a new perspective to deeply understand the joint biodegradation behavior of antibiotics in environments, and serves as an important reference for further development and utilization of microorganisms-assisted larvae for efficient degradation of antibiotics.
Collapse
Affiliation(s)
- Linsen Ruan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Kaiyu Ye
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhicheng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Anqi Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Rong Qiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Centre of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Centre of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|