1
|
Hopkins BR, Angus-Henry A, Kim BY, Carlisle JA, Thompson A, Kopp A. Decoupled evolution of the Sex Peptide gene family and Sex Peptide Receptor in Drosophilidae. Proc Natl Acad Sci U S A 2024; 121:e2312380120. [PMID: 38215185 PMCID: PMC10801855 DOI: 10.1073/pnas.2312380120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024] Open
Abstract
Across internally fertilising species, males transfer ejaculate proteins that trigger wide-ranging changes in female behaviour and physiology. Much theory has been developed to explore the drivers of ejaculate protein evolution. The accelerating availability of high-quality genomes now allows us to test how these proteins are evolving at fine taxonomic scales. Here, we use genomes from 264 species to chart the evolutionary history of Sex Peptide (SP), a potent regulator of female post-mating responses in Drosophila melanogaster. We infer that SP first evolved in the Drosophilinae subfamily and has since followed markedly different evolutionary trajectories in different lineages. Outside of the Sophophora-Lordiphosa, SP exists largely as a single-copy gene with independent losses in several lineages. Within the Sophophora-Lordiphosa, the SP gene family has repeatedly and independently expanded. Up to seven copies, collectively displaying extensive sequence variation, are present in some species. Despite these changes, SP expression remains restricted to the male reproductive tract. Alongside, we document considerable interspecific variation in the presence and morphology of seminal microcarriers that, despite the critical role SP plays in microcarrier assembly in D. melanogaster, appears to be independent of changes in the presence/absence or sequence of SP. We end by providing evidence that SP's evolution is decoupled from that of its receptor, Sex Peptide Receptor, in which we detect no evidence of correlated diversifying selection. Collectively, our work describes the divergent evolutionary trajectories that a novel gene has taken following its origin and finds a surprisingly weak coevolutionary signal between a supposedly sexually antagonistic protein and its receptor.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Aidan Angus-Henry
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Bernard Y. Kim
- Department of Biology, Stanford University, Stanford, CA94305
| | - Jolie A. Carlisle
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Ammon Thompson
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, CA95616
| |
Collapse
|
2
|
Hopkins BR, Perry JC. The evolution of sex peptide: sexual conflict, cooperation, and coevolution. Biol Rev Camb Philos Soc 2022; 97:1426-1448. [PMID: 35249265 PMCID: PMC9256762 DOI: 10.1111/brv.12849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
A central paradigm in evolutionary biology is that the fundamental divergence in the fitness interests of the sexes (‘sexual conflict’) can lead to both the evolution of sex‐specific traits that reduce fitness for individuals of the opposite sex, and sexually antagonistic coevolution between the sexes. However, clear examples of traits that evolved in this way – where a single trait in one sex demonstrably depresses the fitness of members of the opposite sex, resulting in antagonistic coevolution – are rare. The Drosophila seminal protein ‘sex peptide’ (SP) is perhaps the most widely cited example of a trait that appears to harm females while benefitting males. Transferred in the ejaculate by males during mating, SP triggers profound and wide‐ranging changes in female behaviour and physiology. Early studies reported that the transfer of SP enhances male fitness while depressing female fitness, providing the foundations for the widespread view that SP has evolved to manipulate females for male benefit. Here, we argue that this view is (i) a simplification of a wider body of contradictory empirical research, (ii) narrow with respect to theory describing the origin and maintenance of sexually selected traits, and (iii) hard to reconcile with what we know of the evolutionary history of SP's effects on females. We begin by charting the history of thought regarding SP, both at proximate (its production, function, and mechanism of action) and ultimate (its fitness consequences and evolutionary history) levels, reviewing how studies of SP were central to the development of the field of sexual conflict. We describe a prevailing paradigm for SP's evolution: that SP originated and continues to evolve to manipulate females for male benefit. In contrast to this view, we argue on three grounds that the weight of evidence does not support the view that receipt of SP decreases female fitness: (i) results from studies of SP's impact on female fitness are mixed and more often neutral or positive, with fitness costs emerging only under nutritional extremes; (ii) whether costs from SP are appreciable in wild‐living populations remains untested; and (iii) recently described confounds in genetic manipulations of SP raise the possibility that measures of the costs and benefits of SP have been distorted. Beyond SP's fitness effects, comparative and genetic data are also difficult to square with the idea that females suffer fitness costs from SP. Instead, these data – from functional and evolutionary genetics and the neural circuitry of female responses to SP – suggest an evolutionary history involving the evolution of a dedicated SP‐sensing apparatus in the female reproductive tract that is likely to have evolved because it benefits females, rather than harms them. We end by exploring theory and evidence that SP benefits females by functioning as a signal of male quality or of sperm receipt and storage (or both). The expanded view of the evolution of SP that we outline recognises the context‐dependent and fluctuating roles played by both cooperative and antagonistic selection in the origin and maintenance of reproductive traits.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology University of California – Davis One Shields Avenue Davis CA 95616 U.S.A
| | - Jennifer C. Perry
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ U.K
| |
Collapse
|
3
|
Stefanini MI, Gottschalk MS, Calvo NS, Soto IM. Evolution of male genitalia in the Drosophila repleta species group (Diptera: Drosophilidae). J Evol Biol 2021; 34:1488-1502. [PMID: 34378262 DOI: 10.1111/jeb.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022]
Abstract
The Drosophila repleta group comprises more than one hundred species that inhabit several environments in the Neotropics and use different hosts as rearing and feeding resources. Rather homogeneous in their external morphology, they are generally distinguished by the male genitalia, seemingly their fastest evolving morphological trait, constituting an excellent model to study patterns of genital evolution in the context of a continental adaptive radiation. Although much is known about the evolution of animal genitalia at population level, surveys on macroevolutionary scale of this phenomenon are scarce. This study used a suite of phylogenetic comparative methods to elucidate the macroevolutionary patterns of genital evolution through deep time and large continental scales. Our results indicate that male genital size and some aspects of shape have been evolving by speciational evolution, probably due to the microevolutionary processes involved in species mate recognition. In contrast, several features of the aedeagus shape seemed to have evolved in a gradual fashion, with heterogeneous evolutionary phenotypic rates among clades. In general, the tempo of the evolution of aedeagus morphology was constant from the origin of the group until the Pliocene, when it accelerated in some clades that diversified mainly in this period. The incidence of novel ecological conditions in the tempo of aedeagus evolution and the relationship between species mate recognition and speciation in the Drosophila repleta group are discussed.
Collapse
Affiliation(s)
- Manuel I Stefanini
- Departamento de Ecología, Genética y Evolución. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, Buenos Aires, Argentina
| | - Marco S Gottschalk
- Departamento de Ecología, Zoologia e Genética, Instituto de Biología, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Natalia S Calvo
- Instituto Nacional de Limnología (UNL-CONICET), Santa Fe, Argentina
| | - Ignacio M Soto
- Departamento de Ecología, Genética y Evolución. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, Buenos Aires, Argentina
| |
Collapse
|
4
|
Choi N, Bern M, Elias DO, McGinley RH, Rosenthal MF, Hebets EA. A mismatch between signal transmission efficacy and mating success calls into question the function of complex signals. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Stefanini MI, Milla Carmona P, Iglesias PP, Soto EM, Soto IM. Differential Rates of Male Genital Evolution in Sibling Species of Drosophila. Evol Biol 2018. [DOI: 10.1007/s11692-018-9444-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Kamimura Y. Significance of constraints on genital coevolution: Why do femaleDrosophilaappear to cooperate with males by accepting harmful matings? Evolution 2016; 70:1674-83. [DOI: 10.1111/evo.12955] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 04/28/2016] [Accepted: 05/07/2016] [Indexed: 02/05/2023]
|
7
|
Yamane T. Genetic variation in the effect of monoamines on female mating receptivity and oviposition in the adzuki bean beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). BMC Evol Biol 2014; 14:172. [PMID: 25098756 PMCID: PMC4360256 DOI: 10.1186/s12862-014-0172-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/23/2014] [Indexed: 12/16/2022] Open
Abstract
Background Female mate choice after mating is a strong force in sexual selection and could lead to coevolution of mating traits between the sexes. How females of different genotypes respond to substances in the male ejaculate should be mediated by females’ mate choices. Monoamines regulate animal physiology and behavior, including the post-mating behavior of females of the adzuki bean beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). This study examined differences in females’ response to four monoamines (dopamine, octopamine, tyramine, serotonin) between strains from different populations of C. chinensis. Results Injection with either octopamine or tyramine, two kinds of monoamines significantly reduced female receptivity in two strains with low remating frequencies. None of the four monoamines reduced female receptivity in one strain with high remating frequencies. However, all monoamines reduced it in another strain with high remating frequencies. Oviposition was activated by tyramine on days 1–5 or by serotonin on days 4 and 5 in the two strains with low remating frequencies, but only on day 1 or day 4 in the strains with high remating frequencies. Conclusion These differences in female response to monoamines, especially tyramine and serotonin, correspond with results of previous studies. They indicate differences in female response to male substances that reduce receptivity and activate oviposition. These findings suggest relationships between the differences in female response to male substances among populations and mutations in the pathways of monoamine biosynthesis or transmission, which in turn determine female mate choice in response to male substances.
Collapse
|
8
|
Budrienė A, Budrys E. COMPARISON OF MATING OF TEN EUMENINAE WASP SPECIES WITH A BRIEF REVIEW OF SEXUAL SELECTION THEORIES: A FRAMEWORK FOR FUTURE RESEARCH. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/13921657.2007.10512820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Anna Budrienė
- a Institute of Ecology of Vilnius University , Akademijos 2, LT-08412 , Vilnius-21 , Lithuania
| | - Eduardas Budrys
- a Institute of Ecology of Vilnius University , Akademijos 2, LT-08412 , Vilnius-21 , Lithuania
| |
Collapse
|
9
|
Intra-specific Variation in the Effect of Male Seminal Substances on Female Oviposition and Longevity in Callosobruchus chinensis. Evol Biol 2012. [DOI: 10.1007/s11692-012-9193-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Yamane T, Miyatake T. Evolutionary correlation between male substances and female remating frequency in a seed beetle. Behav Ecol 2012. [DOI: 10.1093/beheco/ars017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
The effect of mating on starvation resistance in natural populations of Drosophila melanogaster. Evol Ecol 2011. [DOI: 10.1007/s10682-011-9540-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Sánchez V, Hernández-Baños BE, Cordero C. The evolution of a female genital trait widely distributed in the Lepidoptera: comparative evidence for an effect of sexual coevolution. PLoS One 2011; 6:e22642. [PMID: 21857941 PMCID: PMC3157342 DOI: 10.1371/journal.pone.0022642] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 07/03/2011] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Sexual coevolution is considered responsible for the evolution of many male genital traits, but its effect on female genital morphology is poorly understood. In many lepidopterans, females become temporarily unreceptive after mating and the length of this refractory period is inversely related to the amount of spermatophore remaining in their genital tracts. Sperm competition can select for males that delay female remating by transferring spermatophores with thick spermatophore envelopes that take more time to be broken. These envelopes could select for signa, sclerotized sharp structures located within the female genital tract, that are used for breaking spermatophores. Thus, this hypothesis predicts that thick spermatophore envelopes and signa evolve in polyandrous species, and that these adaptations are lost when monandry evolves subsequently. Here we test the expected associations between female mating pattern and presence/absence of signa, and review the scant information available on the thickness of spermatophore envelopes. METHODOLOGY/PRINCIPAL FINDINGS We made a literature review and found information on female mating pattern (monandry/polyandry), presence/absence of signa and phylogenetic position for 37 taxa. We built a phylogenetic supertree for these taxa, mapped both traits on it, and tested for the predicted association by using Pagel's test for correlated evolution. We found that, as predicted by our hypothesis, monandry evolved eight times and in five of them signa were lost; preliminary evidence suggests that at least in two of the three exceptions males imposed monandry on females by means of specially thick spermatophore envelopes. Previously published data on six genera of Papilionidae is in agreement with the predicted associations between mating pattern and the characteristics of spermatophore envelopes and signa. CONCLUSIONS/SIGNIFICANCE Our results support the hypothesis that signa are a product of sexually antagonistic coevolution with spermatophore envelopes.
Collapse
Affiliation(s)
- Víctor Sánchez
- Posgrado en Ciencias Biológicas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Distrito Federal, Mexico
| | - Blanca Estela Hernández-Baños
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Distrito Federal, Mexico
| | - Carlos Cordero
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Distrito Federal, Mexico
| |
Collapse
|
13
|
Communication under sexual selection hypotheses: challenging prospects for future studies under extreme sexual conflict. Acta Ethol 2011. [DOI: 10.1007/s10211-011-0099-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Sato A, Shimoichi A, Karino K. Copulation Type Affects Parturition in the Guppy. Zoolog Sci 2011; 28:98-104. [DOI: 10.2108/zsj.28.98] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
van Lieshout E, Elgar MA. Longer exaggerated male genitalia confer defensive sperm-competitive benefits in an earwig. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9422-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Evolution of genitalia: theories, evidence, and new directions. Genetica 2010; 138:5-18. [PMID: 19308664 DOI: 10.1007/s10709-009-9358-y] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
Abstract
Many hypotheses have been proposed to explain why male intromittent genitalia consistently tend to diverge more rapidly than other body traits of the same individuals in a wide range of animal taxa. Currently the two most popular involve sexual selection: sexually antagonistic coevolution (SAC) and cryptic female choice (CFC). A review of the most extensive attempts to discriminate between these two hypotheses indicates that SAC is not likely to have played a major role in explaining this pattern of genital evolution. Promising lines for future, more direct tests of CFC include experimental modification of male genital form and female sensory abilities, analysis of possible male-female dialogues during copulation, and direct observations of genital behavior.
Collapse
|
17
|
Kuntner M, Coddington JA, Schneider JM. Intersexual arms race? Genital coevolution in nephilid spiders (Araneae, Nephilidae). Evolution 2009; 63:1451-63. [PMID: 19492993 DOI: 10.1111/j.1558-5646.2009.00634.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genital morphology is informative phylogenetically and strongly selected sexually. We use a recent species-level phylogeny of nephilid spiders to synthesize phylogenetic patterns in nephilid genital evolution that document generalized conflict between male and female interests. Specifically, we test the intersexual coevolution hypothesis by defining gender-specific indices of genital complexity that summarize all relevant and phylogenetically informative traits. We then use independent contrasts to show that male and female genital complexity indices correlate significantly and positively across the phylogeny rather than among sympatric sister species, as predicted by reproductive character displacement. In effect, as females respond to selection for fecundity-driven fitness via giantism and polyandry (perhaps responding to male-biased effective sex ratios), male mechanisms evolve to monopolize females (male monogamy) via opportunistic mating, pre- and postcopulatory mate guarding, and/or plugging of female genitalia to exclude subsequent suitors. In males morphological symptoms of these phenomena range from self-mutilated genitalia to total castration. Although the results are compatible with both recently favored sexual selection hypotheses, sexually antagonistic coevolution, and cryptic female choice, the evidence of strong intersexual conflict and genitalic damage in both sexes is more easily explained as sexually antagonistic coevolution due to an evolutionary arms race.
Collapse
Affiliation(s)
- Matjaz Kuntner
- Institute of Biology, Scientific Research Centre, Slovenian Academy of Sciences and Arts, Novi trg 2, P.O. Box 306, SI-1001 Ljubljana, Slovenia
| | | | | |
Collapse
|
18
|
Eberhard WG. Postcopulatory sexual selection: Darwin's omission and its consequences. Proc Natl Acad Sci U S A 2009; 106 Suppl 1:10025-32. [PMID: 19528642 PMCID: PMC2702800 DOI: 10.1073/pnas.0901217106] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In one of his few major oversights, Darwin failed to appreciate that male-male competition and sexual selection can continue even after copulation has begun. The postcopulatory equivalents of both direct male-male battles (sperm competition) and female choice (cryptic female choice) occur within the female's body. Recognition of this hidden, but intense, sexual competition provides new insights into a variety of fields. These include the hyperdiverse and paradoxically elaborate morphology of both sperm and male genitalia, the equally puzzling and elaborate morphology of nongenitalic male structures that are specialized to grasp and stimulate females, powerful manipulative effects of substances in male semen on female reproductive physiology, paradoxical male courtship behavior that occurs after copulation has already begun, variability in parental investments, and the puzzlingly complex and diverse interactions between sperm and female products that surround animal eggs and between male gametophytes and female tissues in flowering plants. Many bizarre traits are involved, including male genitalia that are designed to explode or fall apart during copulation leaving behind parts within the female, male genitalia that "sing" during copulation, potent seminal products that invade the female's body cavity and her nervous system to influence her behavior, and a virtual Kama Sutra of courtship behavior performed after rather than before genital coupling, including male-female dialogues during copulation.
Collapse
Affiliation(s)
- William G Eberhard
- Smithsonian Tropical Research Institute and Escuela de Biologia, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
19
|
Rodríguez-Márquez IA, Peretti AV. Intersexual cooperation during male clasping of external female genitalia in the spider Physocyclus dugesi (Araneae, Pholcidae). J ETHOL 2009. [DOI: 10.1007/s10164-009-0168-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Cordero C. On the function of cornuti, sclerotized structures of the endophallus of Lepidoptera. Genetica 2009; 138:27-35. [DOI: 10.1007/s10709-009-9363-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 04/06/2009] [Indexed: 11/30/2022]
|
21
|
POLIHRONAKIS MAXI. Hierarchical comparative analysis of genetic and genitalic geographical structure: testing patterns of male and female genital evolution in the scarab beetle Phyllophaga hirticula (Coleoptera: Scarabaeidae). Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2008.01111.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
McPeek M, Shen L, Torrey J, Farid H. The Tempo and Mode of Three‐Dimensional Morphological Evolution in Male Reproductive Structures. Am Nat 2008; 171:E158-78. [DOI: 10.1086/587076] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Anthes N, Schulenburg H, Michiels NK. EVOLUTIONARY LINKS BETWEEN REPRODUCTIVE MORPHOLOGY, ECOLOGY AND MATING BEHAVIOR IN OPISTHOBRANCH GASTROPODS. Evolution 2008; 62:900-16. [DOI: 10.1111/j.1558-5646.2008.00326.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Vahed K. Comparative evidence for a cost to males of manipulating females in bushcrickets. Behav Ecol 2007. [DOI: 10.1093/beheco/arm021] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Koshio C, Muraji M, Tatsuta H, Kudo SI. Sexual selection in a moth: effect of symmetry on male mating success in the wild. Behav Ecol 2007. [DOI: 10.1093/beheco/arm017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
26
|
Vahed K. All that Glisters is not Gold: Sensory Bias, Sexual Conflict and Nuptial Feeding in Insects and Spiders. Ethology 2007. [DOI: 10.1111/j.1439-0310.2006.01312.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Peretti A, Córdoba-Aguilar A. On the value of fine-scaled behavioural observations for studies of sexual coercion. ETHOL ECOL EVOL 2007. [DOI: 10.1080/08927014.2007.9522583] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Eberhard W. Sexually antagonistic coevolution in insects is associated with only limited morphological diversity. J Evol Biol 2006; 19:657-81. [PMID: 16674564 DOI: 10.1111/j.1420-9101.2005.01057.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Morphological traits involved in male-female sexual interactions, such as male genitalia, often show rapid divergent evolution. This widespread evolutionary pattern could result from sustained sexually antagonistic coevolution, or from other types of selection such as female choice or selection for species isolation. I reviewed the extensive but under-utilized taxonomic literature on a selected subset of insects, in which male-female conflict has apparently resulted in antagonistic coevolution in males and females. I checked the sexual morphology of groups comprising 500-1000 species in six orders for three evolutionary trends predicted by the sexually antagonistic coevolution hypothesis: males with species-specific differences and elaborate morphology in structures that grasp or perforate females in sexual contexts; corresponding female structures with apparently coevolved species-specific morphology; and potentially defensive designs of female morphology. The expectation was that the predictions were especially likely to be fulfilled in these groups. A largely qualitative overview revealed several surprising patterns: sexually antagonistic coevolution is associated with frequent, relatively weak species-specific differences in males, but male designs are usually relatively simple and conservative (in contrast to the diverse and elaborate designs common in male structures specialized to contact and hold females in other species, and also in weapons such as horns and pincers used in intra-specific battles); coevolutionary divergence of females is not common; and defensive female divergence is very uncommon. No cases were found of female defensive devices that can be facultatively deployed. Coevolutionary morphological races may have occurred between males and females of some bugs with traumatic insemination, but apparently as a result of female attempts to control fertilization, rather than to reduce the physical damage and infections resulting from insertion of the male's hypodermic genitalia. In sum, the sexually antagonistic coevolution that probably occurs in these groups has generally not resulted in rapid, sustained evolutionary divergence in male and female external sexual morphology. Several limitations of this study, and directions for further analyses are discussed.
Collapse
Affiliation(s)
- W Eberhard
- Smithsonian Tropical Research Institute and Escuela de Biología, Universidad de Costa Rica, Ciudad Universitaria, San Jose, Costa Rica.
| |
Collapse
|