1
|
Sengupta S, Leinaas HP. Phenotypic plasticity and thermal efficiency of temperature responses in two conspecific springtail populations from contrasting climates. J Therm Biol 2024; 123:103914. [PMID: 38981302 DOI: 10.1016/j.jtherbio.2024.103914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Temperature drives adaptation in life-history traits through direct effects on physiological processes. However, multiple life-history traits co-evolve as a life-history strategy. Therefore, physiological limitations constraining the evolution of trait means and phenotypic plasticity can be larger for some traits than the others. Comparisons of thermal responses across life-history traits can improve our understanding of the mechanisms determining the life-history strategies. In the present study, we focused on a soil microarthropod species abundant across the Northern Hemisphere, Folsomia quadrioculata (Collembola), with previously known effects of macroclimate. We selected an arctic and a temperate population from areas with highly contrasting climates - the arctic tundra and a coniferous forest floor, respectively - and compared them for thermal plasticity and thermal efficiency in growth, development, fecundity, and survival across four temperatures for a major part of their life cycle. We intended to understand the mechanisms by which temperature drives the evolution of life-history strategies. We found that the temperate population maximized performance at 10-15 °C, whereas the arctic population maintained its thermal efficiency across a wider temperature range (10-20 °C). Thermal plasticity varied in a trait-specific manner, and when considered together with differences in thermal efficiency, indicated that stochasticity in temperature conditions may be important in shaping the life-history strategies. Our study suggests that adopting a whole-organism approach and including physiological time considerations while analysing thermal adaptation will markedly improve our understanding of plausible links between thermal adaptation and responses to global climate change.
Collapse
Affiliation(s)
- Sagnik Sengupta
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway.
| | - Hans Petter Leinaas
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| |
Collapse
|
2
|
Chown SL, Janion-Scheepers C, Marshall A, Aitkenhead IJ, Hallas R, Amy Liu WP, Phillips LM. Indigenous and introduced Collembola differ in desiccation resistance but not its plasticity in response to temperature. CURRENT RESEARCH IN INSECT SCIENCE 2022; 3:100051. [PMID: 36591563 PMCID: PMC9800180 DOI: 10.1016/j.cris.2022.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Biological invasions have significant ecological and economic impacts. Much attention is therefore focussed on predicting establishment and invasion success. Trait-based approaches are showing much promise, but are mostly restricted to investigations of plants. Although the application of these approaches to animals is growing rapidly, it is rare for arthropods and restricted mostly to investigations of thermal tolerance. Here we study the extent to which desiccation tolerance and its phenotypic plasticity differ between introduced (nine species) and indigenous (seven species) Collembola, specifically testing predictions of the 'ideal weed' and 'phenotypic plasticity' hypotheses of invasion biology. We do so on the F2 generation of adults in a full factorial design across two temperatures, to elicit desiccation responses, for the phenotypic plasticity trials. We also determine whether basal desiccation resistance responds to thermal laboratory natural selection. We first show experimentally that acclimation to different temperatures elicits changes to cuticular structure and function that are typically associated with water balance, justifying our experimental approach. Our main findings reveal that basal desiccation resistance differs, on average, between the indigenous and introduced species, but that this difference is weaker at higher temperatures, and is driven by particular taxa, as revealed by phylogenetic generalised least squares approaches. By contrast, the extent or form of phenotypic plasticity does not differ between the two groups, with a 'hotter is better' response being most common. Beneficial acclimation is characteristic of only a single species. Laboratory natural selection had little influence on desiccation resistance over 8-12 generations, suggesting that environmental filtering rather than adaptation to new environments may be an important factor influencing Collembola invasions.
Collapse
Affiliation(s)
- Steven L Chown
- School of Biological Sciences, Monash University, Victoria 3800, Australia
- Securing Antarctica's Environmental Future, Monash University, Victoria 3800, Australia
| | - Charlene Janion-Scheepers
- Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Angus Marshall
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Ian J Aitkenhead
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Rebecca Hallas
- School of Biological Sciences, Monash University, Victoria 3800, Australia
- Securing Antarctica's Environmental Future, Monash University, Victoria 3800, Australia
| | - WP Amy Liu
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Laura M Phillips
- School of Biological Sciences, Monash University, Victoria 3800, Australia
- Securing Antarctica's Environmental Future, Monash University, Victoria 3800, Australia
| |
Collapse
|
3
|
Minnaar IA, Hui C, Clusella-Trullas S. Jack, master or both? The invasive ladybird Harmonia axyridis performs better than a native coccinellid despite divergent trait plasticity. NEOBIOTA 2022. [DOI: 10.3897/neobiota.77.91402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The plasticity of performance traits can promote the success of biological invasions and therefore, precisely estimating trait reaction norms can help to predict the establishment and persistence of introduced species in novel habitats. Most studies focus only on a reduced set of traits and rarely include trait variability that may be vital to predicting establishment success. Here, using a split-brood full-sib design, we acclimated the globally invasive ladybird Harmonia axyridis and a native co-occurring and competing species Cheilomenes lunata to cold, medium and warm temperature regimes, and measured critical thermal limits, life-history traits, and starvation resistance. We used the conceptual framework of “Jack, Master or both” to test predictions regarding performance differences of these two species. The native C. lunata had a higher thermal plasticity of starvation resistance and a higher upper thermal tolerance than H. axyridis. By contrast, H. axyridis had a higher performance than C. lunata for preoviposition period, fecundity and adult emergence from pupae. We combined trait responses, transport duration and propagule pressure to predict the size of the populations established in a novel site following cold, medium and warm scenarios. Although C. lunata initially had a higher performance than the invasive species during transport, more individuals of H. axyridis survived in all simulated environments due to the combined life-history responses, and in particular, higher fecundity. Despite an increased starvation mortality in the warm scenario, given a sufficient propagule size, H. axyridis successfully established. This study underscores how the combination and plasticity of multiple performance traits can strongly influence establishment potential of species introduced into novel environments.
Collapse
|
4
|
Coexistence with an invasive species in the context of global warming lead to behavioural changes via both hereditary and ontogenetic adjustments to minimise conflict. Acta Ethol 2022. [DOI: 10.1007/s10211-022-00402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Houghton M, Terauds A, Shaw J. Rapid range expansion of an invasive flatworm, Kontikia andersoni, on sub-Antarctic Macquarie Island. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02877-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Phillips LM, Aitkenhead I, Janion-Scheepers C, King CK, McGeoch MA, Nielsen UN, Terauds A, Liu WPA, Chown SL. Basal tolerance but not plasticity gives invasive springtails the advantage in an assemblage setting. CONSERVATION PHYSIOLOGY 2020; 8:coaa049. [PMID: 32577288 PMCID: PMC7294889 DOI: 10.1093/conphys/coaa049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
As global climates change, alien species are anticipated to have a growing advantage relative to their indigenous counterparts, mediated through consistent trait differences between the groups. These insights have largely been developed based on interspecific comparisons using multiple species examined from different locations. Whether such consistent physiological trait differences are present within assemblages is not well understood, especially for animals. Yet, it is at the assemblage level that interactions play out. Here, we examine whether physiological trait differences observed at the interspecific level are also applicable to assemblages. We focus on the Collembola, an important component of the soil fauna characterized by invasions globally, and five traits related to fitness: critical thermal maximum, minimum and range, desiccation resistance and egg development rate. We test the predictions that the alien component of a local assemblage has greater basal physiological tolerances or higher rates, and more pronounced phenotypic plasticity than the indigenous component. Basal critical thermal maximum, thermal tolerance range, desiccation resistance, optimum temperature for egg development, the rate of development at that optimum and the upper temperature limiting egg hatching success are all significantly higher, on average, for the alien than the indigenous components of the assemblage. Outcomes for critical thermal minimum are variable. No significant differences in phenotypic plasticity exist between the alien and indigenous components of the assemblage. These results are consistent with previous interspecific studies investigating basal thermal tolerance limits and development rates and their phenotypic plasticity, in arthropods, but are inconsistent with results from previous work on desiccation resistance. Thus, for the Collembola, the anticipated advantage of alien over indigenous species under warming and drying is likely to be manifest in local assemblages, globally.
Collapse
Affiliation(s)
- Laura M Phillips
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Ian Aitkenhead
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Charlene Janion-Scheepers
- Iziko South African Museum, Cape Town 8001, South Africa
- Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Catherine K King
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, 203 Channel Highway, Kingston, Tasmania 7050, Australia
| | - Melodie A McGeoch
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Uffe N Nielsen
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Aleks Terauds
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, 203 Channel Highway, Kingston, Tasmania 7050, Australia
| | - W P Amy Liu
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Steven L Chown
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| |
Collapse
|
7
|
Species-energy relationships of indigenous and invasive species may arise in different ways - a demonstration using springtails. Sci Rep 2019; 9:13799. [PMID: 31551483 PMCID: PMC6760167 DOI: 10.1038/s41598-019-48871-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 06/21/2019] [Indexed: 11/15/2022] Open
Abstract
Although the relationship between species richness and available energy is well established for a range of spatial scales, exploration of the plausible underlying explanations for this relationship is less common. Speciation, extinction, dispersal and environmental filters all play a role. Here we make use of replicated elevational transects and the insights offered by comparing indigenous and invasive species to test four proximal mechanisms that have been offered to explain relationships between energy availability, abundance and species richness: the sampling mechanism (a null expectation), and the more individuals, dynamic equilibrium and range limitation mechanisms. We also briefly consider the time for speciation mechanism. We do so for springtails on sub-Antarctic Marion Island. Relationships between energy availability and species richness are stronger for invasive than indigenous species, with geometric constraints and area variation playing minor roles. We reject the sampling and more individuals mechanisms, but show that dynamic equilibrium and range limitation are plausible mechanisms underlying these gradients, especially for invasive species. Time for speciation cannot be ruled out as contributing to richness variation in the indigenous species. Differences between the indigenous and invasive species highlight the ways in which deconstruction of richness gradients may usefully inform investigations of the mechanisms underlying them. They also point to the importance of population size-related mechanisms in accounting for such variation. In the context of the sub-Antarctic our findings suggest that warming climates may favour invasive over indigenous species in the context of changes to elevational distributions, a situation found for vascular plants, and predicted for springtails on the basis of smaller-scale manipulative field experiments.
Collapse
|
8
|
Sengupta S, Ergon T, Leinaas HP. Thermal plasticity in postembryonic life history traits of a widely distributed Collembola: Effects of macroclimate and microhabitat on genotypic differences. Ecol Evol 2017; 7:8100-8112. [PMID: 29043059 PMCID: PMC5632673 DOI: 10.1002/ece3.3333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/13/2017] [Indexed: 01/20/2023] Open
Abstract
Life history traits in many ectotherms show complex patterns of variation among conspecific populations sampled along wide latitudinal or climatic gradients. However, few studies have assessed whether these patterns can be explained better by thermal reaction norms of multiple life history traits, covering major aspects of the life cycle. In this study, we compared five populations of a Holarctic, numerically dominant soil microarthropod species, Folsomia quadrioculata, sampled from a wide latitudinal gradient (56-81°N), for growth, development, fecundity, and survival across four temperatures (10, 15, 20, and 25°C) in common garden experiments. We evaluated the extent to which macroclimate could explain differences in thermal adaptation and life history strategies among populations. The common garden experiments revealed large genotypic differences among populations in all the traits, which were little explained by latitude and macroclimate. In addition, the life history strategies (traits combined) hardly revealed any systematic difference related to latitude and macroclimate. The overall performance of the northernmost population from the most stochastic microclimate and the southernmost population, which remains active throughout the year, was least sensitive to the temperature treatments. In contrast, performance of the population from the most predictable microclimate peaked within a narrow temperature range (around 15°C). Our findings revealed limited support for macroclimate-based predictions, and indicated that local soil habitat conditions related to predictability and seasonality might have considerable influence on the evolution of life history strategies of F. quadrioculata. This study highlights the need to combine knowledge on microhabitat characteristics, and demography, with findings from common garden experiments, for identifying the key drivers of life history evolution across large spatial scales, and wide climate gradients. We believe that similar approaches may substantially improve the understanding of adaptation in many terrestrial ectotherms with low dispersal ability.
Collapse
Affiliation(s)
| | - Torbjørn Ergon
- Centre for Ecological and Evolutionary Synthesis Department of Biosciences University of Oslo Oslo Norway
| | | |
Collapse
|
9
|
Zając KS, Gaweł M, Filipiak A, Kramarz P. Arion vulgaris Moquin-Tandon, 1855 – the aetiology of an invasive species. FOLIA MALACOLOGICA 2017. [DOI: 10.12657/folmal.025.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Phillips L, Janion-Scheepers C, Houghton M, Terauds A, Potapov M, Chown SL. Range expansion of two invasive springtails on sub-Antarctic Macquarie Island. Polar Biol 2017. [DOI: 10.1007/s00300-017-2129-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Greve M, Mathakutha R, Steyn C, Chown SL. Terrestrial invasions on sub-Antarctic Marion and Prince Edward Islands. ACTA ACUST UNITED AC 2017. [DOI: 10.4102/abc.v47i2.2143] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Background: The sub-Antarctic Prince Edward Islands (PEIs), South Africa’s southernmost territories have high conservation value. Despite their isolation, several alien species have established and become invasive on the PEIs. Objectives: Here we review the invasion ecology of the PEIs. Methods: We summarise what is known about the introduction of alien species, what influences their ability to establish and spread, and review their impacts. Results: Approximately 48 alien species are currently established on the PEIs, of which 26 are known to be invasive. Introduction pathways for the PEIs are fairly well understood – species have mainly been introduced with ship cargo and building material. Less is known about establishment, spread and impact of aliens. It has been estimated that less than 5% of the PEIs is covered by invasive plants, but invasive plants have attained circuminsular distributions on both PEIs. Studies on impact have primarily focussed on the effects of vertebrate invaders, of which the house mouse, which is restricted to Marion Island, probably has the greatest impact on the biodiversity of the islands. Because of the risk of alien introductions, strict biosecurity regulations govern activities at the PEIs. These are particularly aimed at stemming the introduction of alien species, and are likely to have reduced the rates of new introductions. In addition, some effort is currently being made to eradicate selected range-restricted species. However, only one species that had established and spread on the PEIs, the cat, has been successfully eradicated from the islands. Conclusion: Given the ongoing threat of introductions, and the impacts of invaders, it is essential that future invasions to the PEIs are minimised, that the islands’ management policies deal with all stages of the invasion process and that a better understanding of the risks and impacts of invasions is obtained.
Collapse
|
12
|
Emiljanowicz LM, Hager HA, Newman JA. Traits related to biological invasion: A note on the applicability of risk assessment tools across taxa. NEOBIOTA 2017. [DOI: 10.3897/neobiota.32.9664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Global compositional variation among native and non-native regional insect assemblages emphasizes the importance of pathways. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1079-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Hoskins JL, Janion-Scheepers C, Chown SL, Duffy GA. Growth and reproduction of laboratory-reared neanurid Collembola using a novel slime mould diet. Sci Rep 2015; 5:11957. [PMID: 26153104 PMCID: PMC4495557 DOI: 10.1038/srep11957] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/30/2015] [Indexed: 11/20/2022] Open
Abstract
Although significant progress has been made using insect taxa as model organisms, non-tracheated terrestrial arthropods, such as Collembola, are underrepresented as model species. This underrepresentation reflects the difficulty in maintaining populations of specialist Collembola species in the laboratory. Until now, no species from the family Neanuridae have been successfully reared. Here we use controlled growth experiments to provide explicit evidence that the species Neanura muscorum can be raised under laboratory conditions when its diet is supplemented with slime mould. Significant gains in growth were observed in Collembola given slime mould rather than a standard diet of algae-covered bark. These benefits are further highlighted by the reproductive success of the experimental group and persistence of laboratory breeding stocks of this species and others in the family. The necessity for slime mould in the diet is attributed to the ‘suctorial’ mouthpart morphology characteristic of the Neanuridae. Maintaining laboratory populations of neanurid Collembola species will facilitate their use as model organisms, paving the way for studies that will broaden the current understanding of the environmental physiology of arthropods.
Collapse
Affiliation(s)
- Jessica L Hoskins
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Grant A Duffy
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
15
|
Jarošík V, Kenis M, Honěk A, Skuhrovec J, Pyšek P. Invasive Insects Differ from Non-Invasive in Their Thermal Requirements. PLoS One 2015; 10:e0131072. [PMID: 26090826 PMCID: PMC4475049 DOI: 10.1371/journal.pone.0131072] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/28/2015] [Indexed: 12/01/2022] Open
Abstract
We tested whether two basic thermal requirements for insect development, lower developmental thresholds, i.e. temperatures at which development ceases, and sums of effective temperatures, i.e. numbers of day degrees above the lower developmental thresholds necessary to complete development, differ among insect species that proved to be successful invaders in regions outside their native range and those that did not. Focusing on species traits underlying invasiveness that are related to temperature provides insights into the mechanisms of insect invasions. The screening of thermal requirements thus could improve risk-assessment schemes by incorporating these traits in predictions of potentially invasive insect species. We compared 100 pairs of taxonomically-related species originating from the same continent, one invasive and the other not reported as invasive. Invasive species have higher lower developmental thresholds than those never recorded outside their native ranges. Invasive species also have a lower sum of effective temperatures, though not significantly. However, the differences between invasive and non-invasive species in the two physiological measures were significantly inversely correlated. This result suggests that many species are currently prevented from invading by low temperatures in some parts of the world. Those species that will overcome current climatic constraints in regions outside their native distribution due to climate change could become even more serious future invaders than present-day species, due to their potentially faster development.
Collapse
Affiliation(s)
- Vojtěch Jarošík
- Department of Ecology, Charles University in Prague, Prague 2, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | | | - Alois Honěk
- Crop Research Institute, Prague 6-Ruzyně, Czech Republic
| | - Jiří Skuhrovec
- Crop Research Institute, Prague 6-Ruzyně, Czech Republic
| | - Petr Pyšek
- Department of Ecology, Charles University in Prague, Prague 2, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| |
Collapse
|
16
|
Lyons CL, Coetzee M, Chown SL. Stable and fluctuating temperature effects on the development rate and survival of two malaria vectors, Anopheles arabiensis and Anopheles funestus. Parasit Vectors 2013; 6:104. [PMID: 23590860 PMCID: PMC3637585 DOI: 10.1186/1756-3305-6-104] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/11/2013] [Indexed: 01/18/2023] Open
Abstract
Background Understanding the biology of malaria vector mosquitoes is crucial to understanding many aspects of the disease, including control and future outcomes. The development rates and survival of two Afrotropical malaria vectors, Anopheles arabiensis and Anopheles funestus, are investigated here under conditions of constant and fluctuating temperatures. These data can provide a good starting point for modelling population level consequences of temperature change associated with climate change. For comparative purposes, these data were considered explicitly in the context of those available for the third African malaria vector, Anopheles gambiae. Methods Twenty five replicates of 20–30 eggs were placed at nine constant and two fluctuating temperatures for development rate experiments and survival estimates. Various developmental parameters were estimated from the data, using standard approaches. Results Lower development threshold (LDT) for both species was estimated at 13-14°C. Anopheles arabiensis developed consistently faster than An. funestus. Optimum temperature (Topt) and development rate at this temperature (μmax) differed significantly between species for overall development and larval development. However, Topt and μmax for pupal development did not differ significantly between species. Development rate and survival of An. funestus was negatively influenced by fluctuating temperatures. By contrast, development rate of An. arabiensis at fluctuating temperatures either did not differ from constant temperatures or was significantly faster. Survival of this species declined by c. 10% at the 15°C to 35°C fluctuating temperature regime, but was not significantly different between the constant 25°C and the fluctuating 20°C to 30°C treatment. By comparison, previous data for An. gambiae indicated fastest development at a constant temperature of 28°C and highest survival at 24°C. Conclusions The three most important African malaria vectors all differ significantly in development rates and survival under different temperature treatments, in keeping with known distribution data, though differences among M and S molecular forms of An. gambiae likely complicate the picture. Increasing temperatures associated with climate change favour all three species, but fluctuations in temperatures are detrimental to An. funestus and may also be for An. gambiae. This may have significant implications for disease burden in areas where each species is the main malaria vector.
Collapse
Affiliation(s)
- Candice L Lyons
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | | | |
Collapse
|
17
|
Chown SL. Trait-based approaches to conservation physiology: forecasting environmental change risks from the bottom up. Philos Trans R Soc Lond B Biol Sci 2012; 367:1615-27. [PMID: 22566671 DOI: 10.1098/rstb.2011.0422] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Trait-based approaches have long been a feature of physiology and of ecology. While the latter fields drifted apart in the twentieth century, they are converging owing at least partly to growing similarities in their trait-based approaches, which have much to offer conservation biology. The convergence of spatially explicit approaches to understanding trait variation and its ecological implications, such as encapsulated in community assembly and macrophysiology, provides a significant illustration of the similarity of these areas. Both adopt trait-based informatics approaches which are not only providing fundamental biological insights, but are also delivering new information on how environmental change is affecting diversity and how such change may perhaps be mitigated. Such trait-based conservation physiology is illustrated here for each of the major environmental change drivers, specifically: the consequences of overexploitation for body size and physiological variation; the impacts of vegetation change on thermal safety margins; the consequences of changing net primary productivity and human use thereof for physiological variation and ecosystem functioning; the impacts of rising temperatures on water loss in ectotherms; how hemisphere-related variation in traits may affect responses to changing rainfall regimes and pollution; and how trait-based approaches may enable interactions between climate change and biological invasions to be elucidated.
Collapse
Affiliation(s)
- Steven L Chown
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
18
|
Rocha FB, Klaczko LB. CONNECTING THE DOTS OF NONLINEAR REACTION NORMS UNRAVELS THE THREADS OF GENOTYPE-ENVIRONMENT INTERACTION INDROSOPHILA. Evolution 2012; 66:3404-16. [DOI: 10.1111/j.1558-5646.2012.01702.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Terauds A, Chown SL, Bergstrom DM. Spatial scale and species identity influence the indigenous–alien diversity relationship in springtails. Ecology 2011; 92:1436-47. [DOI: 10.1890/10-2216.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|