1
|
Thieme P, Reisser C, Bouvier C, Rieuvilleneuve F, Béarez P, Coleman RR, Anissa Volanandiana JJ, Pereira E, Nirchio-Tursellino M, Roldán MI, Heras S, Tirado-Sánchez N, Pulis E, Leprieur F, Durand JD. Historical biogeography of the Mugil cephalus species complex and its rapid global colonization. Mol Phylogenet Evol 2025; 205:108296. [PMID: 39884517 DOI: 10.1016/j.ympev.2025.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/12/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
Our understanding of speciation processes in marine environments remains very limited and the role of different reproductive barriers are still debated. While physical barriers were considered important drivers causing reproductive isolation, recent studies highlight the importance of climatic and hydrological changes creating unsuitable habitat conditions as factors promoting population isolation. Although speciation in marine fishes has been investigated from different perspectives, these studies often have a limited geographical extant. Therefore, data on speciation within widely distributed species are largely lacking. Species complexes offer valuable opportunities to study the initial stages of speciation. Herein we study speciation within the Mugil cephalus species complex (MCSC) which presents a unique opportunity due to its circumglobal distribution. We used a whole-genome shotgun analysis approach to identify SNPs among the 16 species within the MCSC. We inferred the phylogenetic relationships within the species complex followed by a time-calibration analysis. Subsequently, we estimated the ancestral ranges within the species complex to explore their biogeographical history. Herein, we present a fully resolved and well-supported phylogeny of the MCSC. Its origin is dated at around 3.79 Ma after which two main clades emerged: one comprising all West Atlantic and East Pacific species and the other all East Atlantic and Indo-Pacific species. Rapid dispersal following an initial founder colonization from the West to the East Atlantic led to the population of all major realms worldwide in less than 2 Myr. Physical and climatic barriers heavily impacted the ancestral distribution ranges within the MCSC and triggered the onset of speciation.
Collapse
Affiliation(s)
- Philipp Thieme
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, cc093, Place E. Bataillon, 34095 Montpellier Cedex 05, France; Deutsches Meeresmuseum, Katharinenberg 14-20, 18439 Stralsund, Germany.
| | - Celine Reisser
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, cc093, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Corinne Bouvier
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, cc093, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Fabien Rieuvilleneuve
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, cc093, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Philippe Béarez
- UMR 7209 AASPE, CNRS-MNHN, 43 rue Buffon, 75005 Paris, France
| | - Richard R Coleman
- Department of Marine Biology & Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Jean Jubrice Anissa Volanandiana
- Institut Halieutique et des Sciences Marines (IH SM), University of Toliara, BP 141 - Route du Port, Av. De France, Tulear 601, Madagascar
| | - Esmeralda Pereira
- MARE-Centro de Ciências do Mar e do Ambiente/ARNET-Rede de Investigação Aquática, Universidade de Évora, Largo Dos Colegiais N.2, 7004-516 Évora, Portugal
| | - Mauro Nirchio-Tursellino
- Universidad Técnica de Machala, Facultad de Ciencias Agropecuarias, Escuela de Medicina Veterinaria. Machala, El Oro, Ecuador
| | - María Inés Roldán
- Laboratori d'Ictiologia Genètica, Campus Montilivi, Universitat de Girona, 17003 Girona, Spain
| | - Sandra Heras
- Laboratori d'Ictiologia Genètica, Campus Montilivi, Universitat de Girona, 17003 Girona, Spain
| | | | - Eric Pulis
- Northern State University, 1200 S Jay Street, Aberdeen, SD 57401, USA
| | - Fabien Leprieur
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, cc093, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Jean-Dominique Durand
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, cc093, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
2
|
Genty G, Sandoval-Castillo J, Beheregaray LB, Möller LM. Into the Blue: Exploring genetic mechanisms behind the evolution of baleen whales. Gene 2024; 929:148822. [PMID: 39103058 DOI: 10.1016/j.gene.2024.148822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Marine ecosystems are ideal for studying evolutionary adaptations involved in lineage diversification due to few physical barriers and reduced opportunities for strict allopatry compared to terrestrial ecosystems. Cetaceans (whales, dolphins, and porpoises) are a diverse group of mammals that successfully adapted to various habitats within the aquatic environment around 50 million years ago. While the overall adaptive transition from terrestrial to fully aquatic species is relatively well understood, the radiation of modern whales is still unclear. Here high-quality genomes derived from previously published data were used to identify genomic regions that potentially underpinned the diversification of baleen whales (Balaenopteridae). A robust molecular phylogeny was reconstructed based on 10,159 single copy and complete genes for eight mysticetes, seven odontocetes and two cetacean outgroups. Analysis of positive selection across 3,150 genes revealed that balaenopterids have undergone numerous idiosyncratic and convergent genomic variations that may explain their diversification. Genes associated with aging, survival and homeostasis were enriched in all species. Additionally, positive selection on genes involved in the immune system were disclosed for the two largest species, blue and fin whales. Such genes can potentially be ascribed to their morphological evolution, allowing them to attain greater length and increased cell number. Further evidence is presented about gene regions that might have contributed to the extensive anatomical changes shown by cetaceans, including adaptation to distinct environments and diets. This study contributes to our understanding of the genomic basis of diversification in baleen whales and the molecular changes linked to their adaptive radiation, thereby enhancing our understanding of cetacean evolution.
Collapse
Affiliation(s)
- Gabrielle Genty
- Cetacean Ecology, Behaviour and Evolution Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; Molecular Ecology Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Luciana M Möller
- Cetacean Ecology, Behaviour and Evolution Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; Molecular Ecology Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| |
Collapse
|
3
|
Filatov DA. How does speciation in marine plankton work? Trends Microbiol 2023; 31:989-991. [PMID: 37500364 DOI: 10.1016/j.tim.2023.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Marine plankton species are ecologically important, yet, it remains unclear how they originate in the ocean, where few barriers are apparent to cause the most common type of speciation - divergence in isolation. Here I discuss the use of modern evolutionary genetic approaches to shed light on longstanding questions regarding their evolution.
Collapse
|
4
|
Beaugrand G. Towards an Understanding of Large-Scale Biodiversity Patterns on Land and in the Sea. BIOLOGY 2023; 12:biology12030339. [PMID: 36979031 PMCID: PMC10044889 DOI: 10.3390/biology12030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
This review presents a recent theory named ‘macroecological theory on the arrangement of life’ (METAL). This theory is based on the concept of the ecological niche and shows that the niche-environment (including climate) interaction is fundamental to explain many phenomena observed in nature from the individual to the community level (e.g., phenology, biogeographical shifts, and community arrangement and reorganisation, gradual or abrupt). The application of the theory in climate change biology as well as individual and species ecology has been presented elsewhere. In this review, I show how METAL explains why there are more species at low than high latitudes, why the peak of biodiversity is located at mid-latitudes in the oceanic domain and at the equator in the terrestrial domain, and finally why there are more terrestrial than marine species, despite the fact that biodiversity has emerged in the oceans. I postulate that the arrangement of planetary biodiversity is mathematically constrained, a constraint we previously called ‘the great chessboard of life’, which determines the maximum number of species that may colonise a given region or domain. This theory also makes it possible to reconstruct past biodiversity and understand how biodiversity could be reorganised in the context of anthropogenic climate change.
Collapse
Affiliation(s)
- Grégory Beaugrand
- CNRS, Univ. Littoral Côte d'Opale, Univ. Lille, UMR 8187 LOG, F-62930 Wimereux, France
| |
Collapse
|
5
|
Epibiotic fauna of the Antarctic minke whale as a reliable indicator of seasonal movements. Sci Rep 2022; 12:22214. [PMID: 36564393 PMCID: PMC9789092 DOI: 10.1038/s41598-022-25929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
Antarctic minke whales, Balaenoptera bonaerensis, breed in tropical and temperate waters of the Southern Hemisphere in winter and feed in Antarctic grounds in the austral summer. These seasonal migrations could be less defined than those of other whale species, but the evidence is scanty. We quantitatively describe the epibiotic fauna of Antarctic minke whales and explore its potential to trace migrations. Seven species were found on 125 out of 333 examined Antarctic minke whales captured during the last Antarctic NEWREP-A expedition in the Southern Ocean: the amphipod Balaenocyamus balaenopterae (prevalence = 22.2%), the copepod Pennella balaenoptera (0.6%); three coronulid, obligate barnacles, Xenobalanus globicipitis (11.1%), Coronula reginae (8.7%), C. diadema (0.9%); and two lepadid, facultative barnacles, Conchoderma auritum (9.0%) and C. virgatum (0.3%). Species with prevalence > 8% exhibited a modest increase in their probability of occurrence with whale body length. Data indicated positive associations between coronulid barnacles and no apparent recruitment in Antarctic waters. All specimens of X. globicipitis were dead, showing progressive degradation throughout the sampling period, and a geographic analysis indicated a marked drop of occurrence where the minimum sea surface temperature is < 12 °C. Thus, field detection -with non-lethal methodologies, such as drones- of coronulid barnacles, especially X. globicipitis, on whales in the Southern Ocean could evince seasonal migration. Future investigations on geographical distribution, growth rate, and degradation (for X. globicipitis) could also assist in timing whales' migration.
Collapse
|
6
|
Pickett BD, Glass JR, Ridge PG, Kauwe JSK. De novo genome assembly of the marine teleost, bluefin trevally (Caranx melampygus). G3 (BETHESDA, MD.) 2021; 11:jkab229. [PMID: 34568914 PMCID: PMC8473972 DOI: 10.1093/g3journal/jkab229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022]
Abstract
The bluefin trevally, Caranx melampygus, also known as the bluefin kingfish or bluefin jack, is known for its remarkable, bright-blue fins. This marine teleost is a widely prized sportfish, but few resources have been devoted to the genomics and conservation of this species because it is not targeted by large-scale commercial fisheries. Population declines from recreational and artisanal overfishing have been observed in Hawai'i, USA, resulting in both an interest in aquaculture and concerns about the long-term conservation of this species. Most research to-date has been performed in Hawai'i, raising questions about the status of bluefin trevally populations across its Indo-Pacific range. Genomic resources allow for expanded research on stock status, genetic diversity, and population demography. We present a high quality, 711 Mb nuclear genome assembly of a Hawaiian bluefin trevally from noisy long-reads with a contig NG50 of 1.2 Mb and longest contig length of 8.9 Mb. As measured by single-copy orthologs, the assembly was 95% complete, and the genome is comprised of 16.9% repetitive elements. The assembly was annotated with 33.1 K protein-coding genes, 71.4% of which were assigned putative functions, using RNA-seq data from eight tissues from the same individual. This is the first whole-genome assembly published for the carangoid genus Caranx. Using this assembled genome, a multiple sequentially Markovian coalescent model was implemented to assess population demography. Estimates of effective population size suggest population expansion has occurred since the Late Pleistocene. This genome will be a valuable resource for comparative phylogenomic studies of carangoid fishes and will help elucidate demographic history and delineate stock structure for bluefin trevally populations throughout the Indo-Pacific.
Collapse
Affiliation(s)
- Brandon D Pickett
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jessica R Glass
- South African Institute for Aquatic Biodiversity, Makhanda 6139, South Africa
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Perry G Ridge
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
- University President's Office, Brigham Young University-Hawai'i, Laie, HI 96762, U SA
| |
Collapse
|
7
|
Unique biodiversity in Arctic marine forests is shaped by diverse recolonization pathways and far northern glacial refugia. Proc Natl Acad Sci U S A 2020; 117:22590-22596. [PMID: 32843343 DOI: 10.1073/pnas.2002753117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Arctic is experiencing a rapid shift toward warmer regimes, calling for a need to understand levels of biodiversity and ecosystem responses to climate cycles. This study presents genetic data for 109 Arctic marine forest species (seaweeds), which revealed contiguous populations extending from the Bering Sea to the northwest Atlantic, with high levels of genetic diversity in the east Canadian Arctic. One-fifth of the species sampled appeared restricted to Arctic waters. Further supported by hindcasted species distributions during the Last Glacial Maximum, we hypothesize that Arctic coastal systems were recolonized from many geographically disparate refugia leading to enriched diversity levels in the east Canadian Arctic, with important contributions stemming from northerly refugia likely centered along southern Greenland. Our results suggest Arctic marine biomes persisted through cycles of glaciation, leading to unique assemblages in polar waters, rather than being entirely derived from southerly (temperate) areas following glaciation. As such, Arctic marine species are potentially born from selective pressures during Cenozoic global cooling and eventual ice conditions beginning in the Pleistocene. Arctic endemic diversity was likely additionally driven by repeated isolations into globally disparate refugia during glaciation. This study highlights the need to take stock of unique Arctic marine biodiversity. Amplification of warming and loss of perennial ice cover are set to dramatically alter available Arctic coastal habitat, with the potential loss of diversity and decline in ecosystem resilience.
Collapse
|
8
|
Ben-Yosef E, Liss B, Yagel OA, Tirosh O, Najjar M, Levy TE. Ancient technology and punctuated change: Detecting the emergence of the Edomite Kingdom in the Southern Levant. PLoS One 2019; 14:e0221967. [PMID: 31532811 PMCID: PMC6750566 DOI: 10.1371/journal.pone.0221967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/19/2019] [Indexed: 11/19/2022] Open
Abstract
While the punctuated equilibrium model has been employed in paleontological and archaeological research, it has rarely been applied for technological and social evolution in the Holocene. Using metallurgical technologies from the Wadi Arabah (Jordan/Israel) as a case study, we demonstrate a gradual technological development (13th-10th c. BCE) followed by a human agency-triggered punctuated “leap” (late-10th c. BCE) simultaneously across the entire region (an area of ~2000 km2). Here, we present an unparalleled, diachronic archaeometallurgical dataset focusing on elemental analysis of dozens of well-dated slag samples. Based on the results, we suggest punctuated equilibrium provides an innovative theoretical model for exploring ancient technological changes in relation to larger sociopolitical conditions—in the case at hand the emergence of biblical Edom–, exemplifying its potential for more general cross-cultural applications.
Collapse
Affiliation(s)
- Erez Ben-Yosef
- Department of Archaeology and Ancient Near Eastern Cultures, Tel Aviv University, Tel Aviv-Yafo, Israel
- * E-mail:
| | - Brady Liss
- Department of Anthropology, University of California, San Diego, La Jolla, California, United States of America
- Levantine and Cyber-Archaeology Lab, University of California, San Diego, La Jolla, California, United States of America
| | - Omri A. Yagel
- Department of Archaeology and Ancient Near Eastern Cultures, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Ofir Tirosh
- Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mohammad Najjar
- Department of Anthropology, University of California, San Diego, La Jolla, California, United States of America
| | - Thomas E. Levy
- Department of Anthropology, University of California, San Diego, La Jolla, California, United States of America
- Levantine and Cyber-Archaeology Lab, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
9
|
Haye PA, Segovia NI, Varela AI, Rojas R, Rivadeneira MM, Thiel M. Genetic and morphological divergence at a biogeographic break in the beach-dwelling brooder Excirolana hirsuticauda Menzies (Crustacea, Peracarida). BMC Evol Biol 2019; 19:118. [PMID: 31185884 PMCID: PMC6560899 DOI: 10.1186/s12862-019-1442-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND There is a biogeographic break located at 30°S in the southeast Pacific, in a coastal area of strong environmental discontinuities. Several marine benthic taxa with restricted dispersal have a coincident phylogeographic break at 30°S, indicating that genetic structure is moulded by life history traits that limit gene flow and thereby promote divergence and speciation. In order to evaluate intraspecific divergence at this biogeographic break, we investigated the genetic and morphological variation of the directly developing beach isopod Excirolana hirsuticauda along 1900 km of the southeast Pacific coast, across 30°S. RESULTS The COI sequences and microsatellite data both identified a strong discontinuity between populations of E. hirsuticauda to the north and south of 30°S, and a second weaker phylogeographic break at approximately 35°S. The three genetic groups were evidenced by different past demographic and genetic diversity signatures, and were also clearly distinguished with microsatellite data clustering. The COI sequences established that the genetic divergence of E. hirsuticauda at 30°S started earlier than divergence at 35°. Additionally, the three groups have different past demographic signatures, with probable demographic expansion occurring earlier in the southern group (south of 35°S), associated with Pleistocene interglacial periods. Interestingly, body length, multivariate morphometric analyses, and the morphology of a fertilization-related morphological character in males, the appendix masculina, reinforced the three genetic groups detected with genetic data. CONCLUSIONS The degree of divergence of COI sequences, microsatellite data, and morphology was concordant and showed two geographic areas in which divergence was promoted at differing historical periods. Variation in the appendix masculina of males has probably promoted reproductive isolation. This variation together with gene flow restrictions promoted by life history traits, small body size, oceanographic discontinuities and sandy-beach habitat continuity, likely influenced species divergence at 30°S in the southeast Pacific coast. The degree of genetic and morphological differentiation of populations to the north and south of 30°S suggests that E. hirsuticauda harbours intraspecific divergence consistent with reproductive isolation and an advanced stage of speciation. The speciation process within E. hirsuticauda has been shaped by both restrictions to gene flow and a prezygotic reproductive barrier.
Collapse
Affiliation(s)
- Pilar A. Haye
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo, 1281 Coquimbo, Chile
| | - Nicolás I. Segovia
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo, 1281 Coquimbo, Chile
| | - Andrea I. Varela
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo, 1281 Coquimbo, Chile
- Núcleo Milenio de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Universidad Católica del Norte, Coquimbo, Chile
| | - Rodrigo Rojas
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo, 1281 Coquimbo, Chile
| | - Marcelo M. Rivadeneira
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo, 1281 Coquimbo, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - Martin Thiel
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo, 1281 Coquimbo, Chile
- Núcleo Milenio de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Universidad Católica del Norte, Coquimbo, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| |
Collapse
|
10
|
Tavera JJ, Wainwright PC. Geography of speciation affects rate of trait divergence in haemulid fishes. Proc Biol Sci 2019; 286:20182852. [PMID: 30963939 PMCID: PMC6408603 DOI: 10.1098/rspb.2018.2852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/23/2019] [Indexed: 11/12/2022] Open
Abstract
Speciation and the interactions between recently diverged species are thought to be major causes of ecological and morphological divergence in evolutionary radiations. Here, we explore the extent to which geographical overlap and time since speciation may promote divergence in marine species, which represent a small fraction of currently published studies about the patterns and processes of speciation. A time-calibrated molecular phylogeny of New World haemulid fishes, a major radiation of reef and shore fishes in the tropical West Atlantic and East Pacific, reveals 21 sister species pairs, of which eight are fully sympatric and 13 are allopatric. Sister species comparisons show a non-significant relation between most of the phenotypic traits and time since divergence in allopatric taxa. Additionally, we find no difference between sympatric and allopatric pairs in the rate of divergence in colour pattern, overall body shape, or functional morphological traits associated with locomotion or feeding. However, sympatric pairs show a significant decrease in the rate of divergence in all of these traits with increasing time since their divergence, suggesting an elevated rate of divergence at the time of speciation, the effect of which attenuates as divergence time increases. Our results are consistent with an important role for geographical overlap driving phenotypic divergence early in the speciation process, but the lack of difference in rates between sympatric and allopatric pairs indicates that the interactions between closely related species are not dominant drivers of this divergence.
Collapse
Affiliation(s)
- José J. Tavera
- Departamento de Biología, Universidad del Valle, Cali, Colombia
| | - Peter C. Wainwright
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Fenberg PB, Rivadeneira MM. On the importance of habitat continuity for delimiting biogeographic regions and shaping richness gradients. Ecol Lett 2019; 22:664-673. [PMID: 30734458 DOI: 10.1111/ele.13228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 12/31/2022]
Abstract
The formation and maintenance of biogeographic regions and the latitudinal gradient of species richness are thought to be influenced, in part, by the spatial distribution of physical habitat (habitat continuity). But the importance of habitat continuity in relation to other variables for shaping richness gradients and delimiting biogeographic regions has not been well established. Here, we show that habitat continuity is a top predictor of biogeographic structure and the richness gradient of eastern Pacific rocky shore gastropods (spanning c. 23 000 km, from 43°S to 48°N). Rocky shore habitat continuity is generally low within tropical/subtropical regions (compared to extratropical regions), but particularly at biogeographic boundaries where steep richness gradients occur. Regions of high rocky shore habitat continuity are located towards the centres of biogeographic regions where species turnover tends to be relatively low. Our study highlights the importance of habitat continuity to help explain patterns and processes shaping the biogeographic organisation of species.
Collapse
Affiliation(s)
- Phillip B Fenberg
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, SO14 3ZH, UK.,Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Marcelo M Rivadeneira
- Laboratorio de Paleobiología, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Av. Bernardo Ossandón 877, C.P. 1781681, Coquimbo, Chile.,Departamento de Biología Marina, Universidad Católica del Norte, Av. Larrondo 1281, Coquimbo, Chile.,Departamento de Biología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile
| |
Collapse
|
12
|
Yıldırım Y, Anderson MJ, Hansson B, Patel S, Millar CD, Rainey PB. Genetic structure of the grey side-gilled sea slug (Pleurobranchaea maculata) in coastal waters of New Zealand. PLoS One 2018; 13:e0202197. [PMID: 30114275 PMCID: PMC6095540 DOI: 10.1371/journal.pone.0202197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 07/30/2018] [Indexed: 01/09/2023] Open
Abstract
Pleurobranchaea maculata is a rarely studied species of the Heterobranchia found throughout the south and western Pacific-and recently recorded in Argentina-whose population genetic structure is unknown. Interest in the species was sparked in New Zealand following a series of dog deaths caused by ingestions of slugs containing high levels of the neurotoxin tetrodotoxin. Here we describe the genetic structure and demographic history of P. maculata populations from five principle locations in New Zealand based on extensive analyses of 12 microsatellite loci and the COI and CytB regions of mitochondrial DNA (mtDNA). Microsatellite data showed significant differentiation between northern and southern populations with population structure being associated with previously described regional variations in tetrodotoxin concentrations. However, mtDNA sequence data did not support such structure, revealing a star-shaped haplotype network with estimates of expansion time suggesting a population expansion in the Pleistocene era. Inclusion of publicly available mtDNA sequence sea slugs from Argentina did not alter the star-shaped network. We interpret our data as indicative of a single founding population that fragmented following geographical changes that brought about the present day north-south divide in New Zealand waters. Lack of evidence of cryptic species supports data indicating that differences in toxicity of individuals among regions are a consequence of differences in diet.
Collapse
Affiliation(s)
- Yeşerin Yıldırım
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Marti J. Anderson
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| | - Selina Patel
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Craig D. Millar
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Paul B. Rainey
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI ParisTech), CNRS UMR 8231, PSL Research University, Paris, France
| |
Collapse
|
13
|
Mizuyama M, Masucci GD, Reimer JD. Speciation among sympatric lineages in the genus Palythoa (Cnidaria: Anthozoa: Zoantharia) revealed by morphological comparison, phylogenetic analyses and investigation of spawning period. PeerJ 2018; 6:e5132. [PMID: 30013833 PMCID: PMC6035721 DOI: 10.7717/peerj.5132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/06/2018] [Indexed: 11/20/2022] Open
Abstract
Zoantharians are sessile marine invertebrates and colonial organisms possessing sexual and asexual reproductive ability. The zooxanthellate zoantharian genus Palythoa is widely distributed in coral reef ecosystems. In the Ryukyu Archipelago, Japan, sympatric Palythoa tuberculosa and P. mutuki are the dominant species of this genus in the intertidal zone. Previous phylogenetic analyses have shown that these two species are closely related, and additionally revealed a putative sympatric hybrid species (designated as Palythoa sp. yoron). In this study, we attempted to delineate Palythoa species boundaries and to clarify the relationships among these three groups plus another additional putative sympatric species (P. aff. mutuki) by multiple independent criteria. The morphology of these four lineages was clearly different; for example the number of tentacles was significantly different for each species group in all pairwise comparisons. From observations of gonadal development conducted in 2010 and 2011, P. sp. yoron and P. aff. mutuki appear to be reproductively isolated from P. tuberculosa. In the phylogenetic tree resulting from maximum likelihood analyses of the ITS-rDNA sequence alignment, P. tuberculosa and P. sp. yoron formed a very well supported monophyletic clade (NJ = 100%, ML = 95%, Bayes = 0.99). This study demonstrates that despite clear morphological and/or reproductive differences, P. tuberculosa and P. sp. yoron are phylogenetically entangled and closely related to each other, as are P. mutuki and P. aff. mutuki. Additionally, no single molecular marker was able to divide these four lineages into monophyletic clades by themselves, and a marker that has enough resolution to solve this molecular phylogenetic species complex is required. In summary, the morphological and reproductive results suggest these lineages are four separate species, and that incomplete genetic lineage sorting may prevent the accurate phylogenetic detection of distinct species with the DNA markers utilized in this study, demonstrating the value of morphological and reproductive data when examining closely related lineages.
Collapse
Affiliation(s)
- Masaru Mizuyama
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Marine Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Giovanni D Masucci
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Marine Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - James D Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Department of Marine Sciences, Chemistry and Biology, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
14
|
Finding Evolutionary Processes Hidden in Cryptic Species. Trends Ecol Evol 2018; 33:153-163. [DOI: 10.1016/j.tree.2017.11.007] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022]
|
15
|
Neiva J, Paulino C, Nielsen MM, Krause-Jensen D, Saunders GW, Assis J, Bárbara I, Tamigneaux É, Gouveia L, Aires T, Marbà N, Bruhn A, Pearson GA, Serrão EA. Glacial vicariance drives phylogeographic diversification in the amphi-boreal kelp Saccharina latissima. Sci Rep 2018; 8:1112. [PMID: 29348650 PMCID: PMC5773594 DOI: 10.1038/s41598-018-19620-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/04/2018] [Indexed: 11/08/2022] Open
Abstract
Glacial vicariance is regarded as one of the most prevalent drivers of phylogeographic structure and speciation among high-latitude organisms, but direct links between ice advances and range fragmentation have been more difficult to establish in marine than in terrestrial systems. Here we investigate the evolution of largely disjunct (and potentially reproductively isolated) phylogeographic lineages within the amphi-boreal kelp Saccharina latissima s. l. Using molecular data (COI, microsatellites) we confirm that S. latissima comprises also the NE Pacific S. cichorioides complex and is composed of divergent lineages with limited range overlap and genetic admixture. Only a few genetic hybrids were detected throughout a Canadian Arctic/NW Greenland contact zone. The degree of genetic differentiation and sympatric isolation of phylogroups suggest that S. latissima s. l. represents a complex of incipient species. Phylogroup distributions compared with paleo-environmental reconstructions of the cryosphere further suggest that diversification within S. latissima results from chronic glacial isolation in disjunct persistence areas intercalated with ephemeral interglacial poleward expansions and admixture at high-latitude (Arctic) contact zones. This study thus supports a role for glaciations not just in redistributing pre-existing marine lineages but also as a speciation pump across multi-glacial cycles for marine organisms otherwise exhibiting cosmopolite amphi-boreal distributions.
Collapse
Affiliation(s)
- João Neiva
- CCMAR- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal.
| | - Cristina Paulino
- CCMAR- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Mette M Nielsen
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
| | - Dorte Krause-Jensen
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - Gary W Saunders
- Centre for Environmental and Molecular Algal Research, University of New Brunswick, Fredericton, Canada
| | - Jorge Assis
- CCMAR- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Ignacio Bárbara
- Biocost Research Group, Universidade de A Coruña, A Coruña, Spain
| | - Éric Tamigneaux
- NSERC Industrial Research Chair for Colleges in Marine Macroalgae, Cégep de la Gaspésie et des Îles, Grande-Rivière, Québec, Canada
| | - Licínia Gouveia
- CCMAR- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Tânia Aires
- CCMAR- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Núria Marbà
- Department of Global Change Research, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Annette Bruhn
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
| | - Gareth A Pearson
- CCMAR- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Ester A Serrão
- CCMAR- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal.
| |
Collapse
|
16
|
Comparative phylogeography of six red algae along the Antarctic Peninsula: extreme genetic depletion linked to historical bottlenecks and recent expansion. Polar Biol 2018. [DOI: 10.1007/s00300-017-2244-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Walter RP, Roy D, Hussey NE, Stelbrink B, Kovacs KM, Lydersen C, McMeans BC, Svavarsson J, Kessel ST, Biton Porsmoguer S, Wildes S, Tribuzio CA, Campana SE, Petersen SD, Grubbs RD, Heath DD, Hedges KJ, Fisk AT. Origins of the Greenland shark ( Somniosus microcephalus): Impacts of ice-olation and introgression. Ecol Evol 2017; 7:8113-8125. [PMID: 29043060 PMCID: PMC5632604 DOI: 10.1002/ece3.3325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/07/2017] [Accepted: 07/21/2017] [Indexed: 12/04/2022] Open
Abstract
Herein, we use genetic data from 277 sleeper sharks to perform coalescent‐based modeling to test the hypothesis of early Quaternary emergence of the Greenland shark (Somniosus microcephalus) from ancestral sleeper sharks in the Canadian Arctic‐Subarctic region. Our results show that morphologically cryptic somniosids S. microcephalus and Somniosus pacificus can be genetically distinguished using combined mitochondrial and nuclear DNA markers. Our data confirm the presence of genetically admixed individuals in the Canadian Arctic and sub‐Arctic, and temperate Eastern Atlantic regions, suggesting introgressive hybridization upon secondary contact following the initial species divergence. Conservative substitution rates fitted to an Isolation with Migration (IM) model indicate a likely species divergence time of 2.34 Ma, using the mitochondrial sequence DNA, which in conjunction with the geographic distribution of admixtures and Pacific signatures likely indicates speciation associated with processes other than the closing of the Isthmus of Panama. This time span coincides with further planetary cooling in the early Quaternary period followed by the onset of oscillating glacial‐interglacial cycles. We propose that the initial S. microcephalus–S. pacificus split, and subsequent hybridization events, were likely associated with the onset of Pleistocene glacial oscillations, whereby fluctuating sea levels constrained connectivity among Arctic oceanic basins, Arctic marginal seas, and the North Atlantic Ocean. Our data demonstrates support for the evolutionary consequences of oscillatory vicariance via transient oceanic isolation with subsequent secondary contact associated with fluctuating sea levels throughout the Quaternary period—which may serve as a model for the origins of Arctic marine fauna on a broad taxonomic scale.
Collapse
Affiliation(s)
- Ryan P Walter
- Department of Biological Science California State University Fullerton CA USA.,Great Lakes Institute for Environmental Research University of Windsor Windsor ON Canada
| | - Denis Roy
- Department of Natural Resources and the Environment Wildlife and Fisheries Conservation Center and Center for Environmental Sciences and Engineering University of Connecticut Storrs CT USA
| | - Nigel E Hussey
- Biological Sciences University of Windsor Windsor ON Canada
| | | | - Kit M Kovacs
- Fram Centre Norwegian Polar Institute Tromsø Norway
| | | | - Bailey C McMeans
- Great Lakes Institute for Environmental Research University of Windsor Windsor ON Canada.,Department of Biology University of Toronto Mississauga Mississauga ON Canada
| | - Jörundur Svavarsson
- Faculty of Life and Environmental Sciences University of Iceland Reykjavík Iceland
| | - Steven T Kessel
- Department of Fisheries and Wildlife Michigan State University East Lansing MI USA
| | - Sebastián Biton Porsmoguer
- Mediterranean Institute of Oceanography (MIO) UM 110 Aix-Marseille University CNRS/INSU Toulon University IRD Marseille France
| | - Sharon Wildes
- Auke Bay Laboratories AFSC/NMFS/NOAA/DOC Ted Stevens Marine Research Institute Juneau AK USA
| | - Cindy A Tribuzio
- Auke Bay Laboratories AFSC/NMFS/NOAA/DOC Ted Stevens Marine Research Institute Juneau AK USA
| | - Steven E Campana
- Faculty of Life and Environmental Sciences University of Iceland Reykjavík Iceland
| | - Stephen D Petersen
- Conservation and Research Department Assiniboine Park Zoo Winnipeg MB Canada
| | - R Dean Grubbs
- Coastal and Marine Laboratory Florida State University St. Teresa FL USA
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research University of Windsor Windsor ON Canada
| | - Kevin J Hedges
- Arctic Aquatic Research Division Fisheries and Oceans Canada Winnipeg MB Canada
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research University of Windsor Windsor ON Canada
| |
Collapse
|
18
|
Silva L, Lana P. Owenia caissara sp. n. (Annelida, Oweniidae) from Southern Brazil: addressing an identity crisis. ZOOLOGIA (CURITIBA) 2017. [DOI: 10.3897/zoologia.34.e12623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Gómez Daglio L, Dawson MN. Species richness of jellyfishes (Scyphozoa : Discomedusae) in the Tropical Eastern Pacific: missed taxa, molecules, and morphology match in a biodiversity hotspot. INVERTEBR SYST 2017. [DOI: 10.1071/is16055] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Species richness in the seas has been underestimated due to the combined challenges presented by the taxonomic impediment, delimitation of species, preponderance of cryptic species, and uneven sampling effort. The mismatch between actual and estimated diversity varies by region and by taxon, leaving open questions such as: are hotspots for well-known taxa also hotspots for poorly known taxa? We address these challenges and this question for shallow-water scyphozoan jellyfishes in the Tropical Eastern Pacific (TEP). We increased sampling effort at 34 coastal locations along the TEP, and combined analyses of four molecular markers and up to 53 morphological characters. We applied phylogenetic analyses under Bayesian and maximum likelihood frameworks, barcoding, and statistical multivariate analyses of morphological data to estimate species richness. Where only five Discomedusae were reported previously, we found a total of 25 species. Of these, 22 species are new to science, two are non-indigenous, and one is a previous record; the other four prior records had been misidentified. The new discoveries evince the need to evaluate the evolutionary relationships with neighbouring regions to understand fully the origins of jellyfish diversity in the TEP and will lead to revision of the systematics and taxonomy of Scyphozoa.
Collapse
|
20
|
Pogson GH. Studying the genetic basis of speciation in high gene flow marine invertebrates. Curr Zool 2016; 62:643-653. [PMID: 29491951 PMCID: PMC5804258 DOI: 10.1093/cz/zow093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/16/2016] [Indexed: 12/18/2022] Open
Abstract
A growing number of genes responsible for reproductive incompatibilities between species (barrier loci) exhibit the signals of positive selection. However, the possibility that genes experiencing positive selection diverge early in speciation and commonly cause reproductive incompatibilities has not been systematically investigated on a genome-wide scale. Here, I outline a research program for studying the genetic basis of speciation in broadcast spawning marine invertebrates that uses a priori genome-wide information on a large, unbiased sample of genes tested for positive selection. A targeted sequence capture approach is proposed that scores single-nucleotide polymorphisms (SNPs) in widely separated species populations at an early stage of allopatric divergence. The targeted capture of both coding and non-coding sequences enables SNPs to be characterized at known locations across the genome and at genes with known selective or neutral histories. The neutral coding and non-coding SNPs provide robust background distributions for identifying FST-outliers within genes that can, in principle, identify specific mutations experiencing diversifying selection. If natural hybridization occurs between species, the neutral coding and non-coding SNPs can provide a neutral admixture model for genomic clines analyses aimed at finding genes exhibiting strong blocks to introgression. Strongylocentrotid sea urchins are used as a model system to outline the approach but it can be used for any group that has a complete reference genome available.
Collapse
Affiliation(s)
- Grant H. Pogson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
21
|
Swift H, Gómez Daglio L, Dawson M. Three routes to crypsis: Stasis, convergence, and parallelism in the Mastigias species complex (Scyphozoa, Rhizostomeae). Mol Phylogenet Evol 2016; 99:103-115. [DOI: 10.1016/j.ympev.2016.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 01/17/2016] [Accepted: 02/17/2016] [Indexed: 01/16/2023]
|
22
|
Schiffer PH, Herbig HG. Endorsing Darwin: global biogeography of the epipelagic goose barnaclesLepas spp. (Cirripedia, Lepadomorpha) proves cryptic speciation. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philipp H. Schiffer
- Institute for Genetics; University of Cologne; Zülpicher Strasse 47 D-50674 Köln Germany
- EMBL; Meyerhofstraße 1 D-69117 Heidelberg Germany
| | - Hans-Georg Herbig
- Institute of Geology and Mineralogy; University of Cologne; Zülpicher Strasse 49a D-50674 Köln Germany
| |
Collapse
|
23
|
Resurrection of Indian Ocean humbug damselfish, Dascyllus abudafur (Forsskål) from synonymy with its Pacific Ocean sibling, Dascyllus aruanus (L.). C R Biol 2014; 337:709-16. [DOI: 10.1016/j.crvi.2014.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/02/2014] [Accepted: 09/10/2014] [Indexed: 11/24/2022]
|
24
|
Banguera-Hinestroza E, Hayano A, Crespo E, Hoelzel AR. Delphinid systematics and biogeography with a focus on the current genus Lagenorhynchus: multiple pathways for antitropical and trans-oceanic radiation. Mol Phylogenet Evol 2014; 80:217-30. [PMID: 25130419 DOI: 10.1016/j.ympev.2014.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 07/20/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
Abstract
The six species currently classified within the genus Lagenorhynchus exhibit a pattern of antitropical distribution common among marine taxa. In spite of their morphological similarities they are now considered an artificial grouping, and include both recent and the oldest representatives of the Delphinidae radiation. They are, therefore, a good model for studying questions about the evolutionary processes that have driven dolphin speciation, dispersion and distribution. Here we used two different approaches. First we constructed a multigenic phylogeny with a minimum amount of missing data (based on 9 genes, 11,030bp, using the 6 species of the genus and their closest relatives) to infer their relationships. Second, we built a supermatrix phylogeny (based on 33 species and 27 genes) to test the effect of taxon sampling on the phylogeny of the genus, to provide inference on biogeographic history, and provide inference on the main events shaping the dispersion and radiation of delphinids. Our analyses suggested an early evolutionary history of marine dolphins in the North Atlantic Ocean and revealed multiple pathways of migration and radiation, probably guided by paleoceanographic changes during the Miocene and Pliocene. L. acutus and L. albirostris likely shared a common ancestor that arose in the North Atlantic around the Middle Miocene, predating the radiation of subfamilies Delphininae, Globicephalinae and Lissodelphininae.
Collapse
Affiliation(s)
| | - Azusa Hayano
- Wildlife Research Center, Kyoto University, Sakyo, Kyoto 606-8203, Japan
| | - Enrique Crespo
- Centro Nacional Patagonico (CONICET), Blvd. Brown 3600 (9120), Puerto Madryn, Chubut, Argentina
| | - A Rus Hoelzel
- Department of Biological and Biomedical Sciences, University of Durham, South Road DH1 3LE, UK.
| |
Collapse
|
25
|
Thinking outside the barrier: neutral and adaptive divergence in Indo-Pacific coral reef faunas. Evol Ecol 2014. [DOI: 10.1007/s10682-014-9724-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Etienne RS, Morlon H, Lambert A. Estimating the duration of speciation from phylogenies. Evolution 2014; 68:2430-40. [PMID: 24758256 PMCID: PMC4262007 DOI: 10.1111/evo.12433] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/27/2014] [Indexed: 01/27/2023]
Abstract
Speciation is not instantaneous but takes time. The protracted birth–death diversification model incorporates this fact and predicts the often observed slowdown of lineage accumulation toward the present. The mathematical complexity of the protracted speciation model has barred estimation of its parameters until recently a method to compute the likelihood of phylogenetic branching times under this model was outlined (Lambert et al. 2014). Here, we implement this method and study using simulated phylogenies of extant species how well we can estimate the model parameters (rate of initiation of speciation, rate of extinction of incipient and good species, and rate of completion of speciation) as well as the duration of speciation, which is a combination of the aforementioned parameters. We illustrate our approach by applying it to a primate phylogeny. The simulations show that phylogenies often do not contain enough information to provide unbiased estimates of the speciation-initiation rate and the extinction rate, but the duration of speciation can be estimated without much bias. The estimate of the duration of speciation for the primate clade is consistent with literature estimates. We conclude that phylogenies combined with the protracted speciation model provide a promising way to estimate the duration of speciation.
Collapse
Affiliation(s)
- Rampal S Etienne
- Community and Conservation Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Box 11103, 9700 CC Groningen, The Netherlands.
| | | | | |
Collapse
|
27
|
Cotterill FPD, Taylor PJ, Gippoliti S, Bishop JM, Groves CP. Why One Century of Phenetics is Enough: Response to “Are There Really Twice As Many Bovid Species As We Thought?”. Syst Biol 2014; 63:819-32. [DOI: 10.1093/sysbio/syu003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Dynesius M, Jansson R. Persistence of within-species lineages: a neglected control of speciation rates. Evolution 2013; 68:923-34. [PMID: 24329123 DOI: 10.1111/evo.12316] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 11/07/2013] [Indexed: 11/30/2022]
Abstract
We present a framework distinguishing three principal controls of speciation rate: rate of splitting, level of persistence, and length of speciation duration. We contend that discussions on diversification become clearer in the light of this framework, because speciation rate variation could be attributed to any of these controls. In particular, we claim that the role of persistence of within-species lineages in controlling speciation rates has been greatly underappreciated. More emphasis on the persistence control would change expectations of the role of several biological traits and environmental factors, because they may drive speciation rate in one direction through the persistence control and in the opposite direction through the other two controls. Traits and environments have been little studied regarding their influence on speciation rate through the persistence control, with climatic fluctuations being a relatively well-studied exception. Considering the recent advances in genomic and phylogenetic analysis, we think that the time is ripe for applying the framework in empirical research. Variation among clades and areas (and thus among traits and environments) in the importance of the three rate controls could be addressed for example by dating splitting events, detecting within-species lineages, and scanning genomes for evidence of divergent selection.
Collapse
Affiliation(s)
- Mats Dynesius
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden.
| | | |
Collapse
|
29
|
Foote AD, Newton J, Ávila-Arcos MC, Kampmann ML, Samaniego JA, Post K, Rosing-Asvid A, Sinding MHS, Gilbert MTP. Tracking niche variation over millennial timescales in sympatric killer whale lineages. Proc Biol Sci 2013; 280:20131481. [PMID: 23945688 DOI: 10.1098/rspb.2013.1481] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Niche variation owing to individual differences in ecology has been hypothesized to be an early stage of sympatric speciation. Yet to date, no study has tracked niche width over more than a few generations. In this study, we show the presence of isotopic niche variation over millennial timescales and investigate the evolutionary outcomes. Isotopic ratios were measured from tissue samples of sympatric killer whale Orcinus orca lineages from the North Sea, spanning over 10 000 years. Isotopic ratios spanned a range similar to the difference in isotopic values of two known prey items, herring Clupea harengus and harbour seal Phoca vitulina. Two proxies of the stage of speciation, lineage sorting of mitogenomes and genotypic clustering, were both weak to intermediate indicating that speciation has made little progress. Thus, our study confirms that even with the necessary ecological conditions, i.e. among-individual variation in ecology, it is difficult for sympatric speciation to progress in the face of gene flow. In contrast to some theoretical models, our empirical results suggest that sympatric speciation driven by among-individual differences in ecological niche is a slow process and may not reach completion. We argue that sympatric speciation is constrained in this system owing to the plastic nature of the behavioural traits under selection when hunting either mammals or fish.
Collapse
Affiliation(s)
- Andrew D Foote
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Volgade 5-7, 1350 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ezard THG, Thomas GH, Purvis A. Inclusion of a near-complete fossil record reveals speciation-related molecular evolution. Methods Ecol Evol 2013. [DOI: 10.1111/2041-210x.12089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Thomas H. G. Ezard
- Centre for Biological Sciences; University of Southampton; Life Sciences Building 85, Highfield Campus; Southampton; SO17 1BJ; UK
| | - Gavin H. Thomas
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield; S10 2TN; UK
| | - Andy Purvis
- Department of Life Sciences; Imperial College London; Silwood Park Campus; Ascot; Berkshire; SL5 7PY; UK
| |
Collapse
|
31
|
Norris RD, Turner SK, Hull PM, Ridgwell A. Marine Ecosystem Responses to Cenozoic Global Change. Science 2013; 341:492-8. [DOI: 10.1126/science.1240543] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- R. D. Norris
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - S. Kirtland Turner
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - P. M. Hull
- Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA
| | - A. Ridgwell
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
| |
Collapse
|
32
|
Churchill CKC, Alejandrino A, Valdés A, Foighil DO. Parallel changes in genital morphology delineate cryptic diversification of planktonic nudibranchs. Proc Biol Sci 2013; 280:20131224. [PMID: 23825213 DOI: 10.1098/rspb.2013.1224] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The relative roles of geographical and non-geographical barriers in the genesis of genetic isolation are highly debated in evolutionary biology, yet knowing how speciation occurs is essential to our understanding of biodiversity. In the open ocean, differentiating between the two is particularly difficult, because of the high levels of gene flow found in pelagic communities. Here, we use molecular phylogenetics to test the hypothesis that geography is the primary isolating mechanism in a clade of pelagic nudibranchs, Glaucinae. Our results contradict allopatric expectations: the cosmopolitan Glaucus atlanticus is panmictic, whereas the Indo-Pacific Glaucus marginatus contains two pairs of cryptic species with overlapping distributions. Within the G. marginatus species complex, a parallel reproductive change has occurred in each cryptic species pair: the loss of a bursa copulatrix. Available G. marginatus data are most consistent with non-geographical speciation events, but we cannot rule out the possibility of allopatric speciation, followed by iterative range extension and secondary overlap. Irrespective of ancestral range distributions, our results implicate a central role for reproductive character differentiation in glaucinin speciation-a novel result in a planktonic system.
Collapse
Affiliation(s)
- Celia K C Churchill
- Museum of Zoology, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1079, USA.
| | | | | | | |
Collapse
|
33
|
Weiner A, Aurahs R, Kurasawa A, Kitazato H, Kucera M. Vertical niche partitioning between cryptic sibling species of a cosmopolitan marine planktonic protist. Mol Ecol 2012; 21:4063-73. [PMID: 22738662 DOI: 10.1111/j.1365-294x.2012.05686.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A large portion of the surface-ocean biomass is represented by microscopic unicellular plankton. These organisms are functionally and morphologically diverse, but it remains unclear how their diversity is generated. Species of marine microplankton are widely distributed because of passive transport and lack of barriers in the ocean. How does speciation occur in a system with a seemingly unlimited dispersal potential? Recent studies using planktonic foraminifera as a model showed that even among the cryptic genetic diversity within morphological species, many genetic types are cosmopolitan, lending limited support for speciation by geographical isolation. Here we show that the current two-dimensional view on the biogeography and potential speciation mechanisms in the microplankton may be misleading. By depth-stratified sampling, we present evidence that sibling genetic types in a cosmopolitan species of marine microplankton, the planktonic foraminifer Hastigerina pelagica, are consistently separated by depth throughout their global range. Such strong separation between genetically closely related and morphologically inseparable genetic types indicates that niche partitioning in marine heterotrophic microplankton can be maintained in the vertical dimension on a global scale. These observations indicate that speciation along depth (depth-parapatric speciation) can occur in vertically structured microplankton populations, facilitating diversification without the need for spatial isolation.
Collapse
Affiliation(s)
- Agnes Weiner
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359 Bremen, Germany.
| | | | | | | | | |
Collapse
|