1
|
Saulsbury JG, Parins-Fukuchi CT, Wilson CJ, Reitan T, Liow LH. Age-dependent extinction and the neutral theory of biodiversity. Proc Natl Acad Sci U S A 2024; 121:e2307629121. [PMID: 38150497 PMCID: PMC10769858 DOI: 10.1073/pnas.2307629121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023] Open
Abstract
Red Queen (RQ) theory states that adaptation does not protect species from extinction because their competitors are continually adapting alongside them. RQ was founded on the apparent independence of extinction risk and fossil taxon age, but analytical developments have since demonstrated that age-dependent extinction is widespread, usually most intense among young species. Here, we develop ecological neutral theory as a general framework for modeling fossil species survivorship under incomplete sampling. We show that it provides an excellent fit to a high-resolution dataset of species durations for Paleozoic zooplankton and more broadly can account for age-dependent extinction seen throughout the fossil record. Unlike widely used alternative models, the neutral model has parameters with biological meaning, thereby generating testable hypotheses on changes in ancient ecosystems. The success of this approach suggests reinterpretations of mass extinctions and of scaling in eco-evolutionary systems. Intense extinction among young species does not necessarily refute RQ or require a special explanation but can instead be parsimoniously explained by neutral dynamics operating across species regardless of age.
Collapse
Affiliation(s)
- James G. Saulsbury
- Natural History Museum, University of Oslo, Oslo0187, Norway
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS66045
| | - C. Tomomi Parins-Fukuchi
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ONM5S 3B2, Canada
| | - Connor J. Wilson
- Natural History Museum, University of Oslo, Oslo0187, Norway
- School of Geography and the Environment, University of Oxford, OxfordOX1 3QY, United Kingdom
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ85721
| | - Trond Reitan
- Natural History Museum, University of Oslo, Oslo0187, Norway
- Center for Planetary Habitability, Department of Geosciences, University of Oslo, Oslo0371, Norway
| | - Lee Hsiang Liow
- Natural History Museum, University of Oslo, Oslo0187, Norway
- Center for Planetary Habitability, Department of Geosciences, University of Oslo, Oslo0371, Norway
| |
Collapse
|
2
|
Huang Y, Chen ZQ, Roopnarine PD, Benton MJ, Yang W, Liu J, Zhao L, Li Z, Guo Z. Ecological dynamics of terrestrial and freshwater ecosystems across three mid-Phanerozoic mass extinctions from northwest China. Proc Biol Sci 2021; 288:20210148. [PMID: 33726593 PMCID: PMC8059510 DOI: 10.1098/rspb.2021.0148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Earth has been beset by many crises during its history, and yet comparing the ecological impacts of these mass extinctions has been difficult. Key questions concern the kinds of species that go extinct and survive, how communities rebuild in the post-extinction recovery phase, and especially how the scaling of events affects these processes. Here, we explore ecological impacts of terrestrial and freshwater ecosystems in three mass extinctions through the mid-Phanerozoic, a span of 121 million years (295–174 Ma). This critical duration encompasses the largest mass extinction of all time, the Permian–Triassic (P–Tr) and is flanked by two smaller crises, the Guadalupian–Lopingian (G–L) and Triassic–Jurassic (T–J) mass extinctions. Palaeocommunity dynamics modelling of 14 terrestrial and freshwater communities through a long sedimentary succession from the lower Permian to the lower Jurassic in northern Xinjiang, northwest China, shows that the P–Tr mass extinction differed from the other two in two ways: (i) ecological recovery from this extinction was prolonged and the three post-extinction communities in the Early Triassic showed low stability and highly variable and unpredictable responses to perturbation primarily following the huge losses of species, guilds and trophic space; and (ii) the G–L and T–J extinctions were each preceded by low-stability communities, but post-extinction recovery was rapid. Our results confirm the uniqueness of the P–Tr mass extinction and shed light on the trophic structure and ecological dynamics of terrestrial and freshwater ecosystems across the three mid-Phanerozoic extinctions, and how complex communities respond to environmental stress and how communities recovered after the crisis. Comparisons with the coeval communities from the Karoo Basin, South Africa show that geographically and compositionally different communities of terrestrial ecosystems were affected in much the same way by the P–Tr extinction.
Collapse
Affiliation(s)
- Yuangeng Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, People's Republic of China.,Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Zhong-Qiang Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Peter D Roopnarine
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, People's Republic of China.,Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Michael J Benton
- School of Earth Sciences, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, UK
| | - Wan Yang
- Geology and Geophysics Program, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Jun Liu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, People's Republic of China
| | - Laishi Zhao
- State Key Laboratory of Geological Processes and Resource Geology, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Zhenhua Li
- School of Computer Science, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Zhen Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, People's Republic of China
| |
Collapse
|
3
|
|
4
|
Voje KL, Holen ØH, Liow LH, Stenseth NC. The role of biotic forces in driving macroevolution: beyond the Red Queen. Proc Biol Sci 2015; 282:20150186. [PMID: 25948685 PMCID: PMC4455800 DOI: 10.1098/rspb.2015.0186] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/14/2015] [Indexed: 11/12/2022] Open
Abstract
A multitude of hypotheses claim that abiotic factors are the main drivers of macroevolutionary change. By contrast, Van Valen's Red Queen hypothesis is often put forward as the sole representative of the view that biotic forcing is the main evolutionary driver. This imbalance of hypotheses does not reflect our current knowledge: theoretical work demonstrates the plausibility of biotically driven long-term evolution, whereas empirical work suggests a central role for biotic forcing in macroevolution. We call for a more pluralistic view of how biotic forces may drive long-term evolution that is compatible with both phenotypic stasis in the fossil record and with non-constant extinction rates. Promising avenues of research include contrasting predictions from relevant theories within ecology and macroevolution, as well as embracing both abiotic and biotic proxies while modelling long-term evolutionary data. By fitting models describing hypotheses of biotically driven macroevolution to data, we could dissect their predictions and transcend beyond pattern description, possibly narrowing the divide between our current understanding of micro- and macroevolution.
Collapse
Affiliation(s)
- Kjetil L Voje
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway
| | - Øistein H Holen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway
| | - Lee Hsiang Liow
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway
| |
Collapse
|
5
|
Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America. Proc Natl Acad Sci U S A 2012; 109:18857-61. [PMID: 23112149 DOI: 10.1073/pnas.1202196109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America.
Collapse
|
6
|
Irmis RB, Whiteside JH. Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle. Proc Biol Sci 2011; 279:1310-8. [PMID: 22031757 PMCID: PMC3282377 DOI: 10.1098/rspb.2011.1895] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During the end-Permian mass extinction, marine ecosystems suffered a major drop in diversity, which was maintained throughout the Early Triassic until delayed recovery during the Middle Triassic. This depressed diversity in the Early Triassic correlates with multiple major perturbations to the global carbon cycle, interpreted as either intrinsic ecosystem or external palaeoenvironmental effects. In contrast, the terrestrial record of extinction and recovery is less clear; the effects and magnitude of the end-Permian extinction on non-marine vertebrates are particularly controversial. We use specimen-level data from southern Africa and Russia to investigate the palaeodiversity dynamics of non-marine tetrapods across the Permo-Triassic boundary by analysing sample-standardized generic richness, evenness and relative abundance. In addition, we investigate the potential effects of sampling, geological and taxonomic biases on these data. Our analyses demonstrate that non-marine tetrapods were severely affected by the end-Permian mass extinction, and that these assemblages did not begin to recover until the Middle Triassic. These data are congruent with those from land plants and marine invertebrates. Furthermore, they are consistent with the idea that unstable low-diversity post-extinction ecosystems were subject to boom-bust cycles, reflected in multiple Early Triassic perturbations of the carbon cycle.
Collapse
Affiliation(s)
- Randall B Irmis
- Utah Museum of Natural History, 1390 E. Presidents Circle, Salt Lake City, UT 84112-0050, USA.
| | | |
Collapse
|