1
|
Colom SM, Baucom RS. Below-ground competition favors character convergence but not character displacement in root traits. THE NEW PHYTOLOGIST 2021; 229:3195-3207. [PMID: 33220075 DOI: 10.1111/nph.17100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Character displacement can play a major role in species ecology and evolution; however, research testing whether character displacement can influence the evolution of root traits in plant systems remains scarce in the literature. Here we investigated the potential that character displacement may influence the evolution of root traits using two closely related morning glory species, Ipomoea purpurea and Ipomoea hederacea. We performed a field experiment where we grew the common morning glory, I. purpurea, in the presence and absence of competition from I. hederacea and examined the potential that the process of character displacement could influence the evolution of root traits. We found maternal line variation in root phenotypes and evidence that below-ground competition acts as an agent of selection on these traits. Our test of character displacement, however, showed evidence of character convergence on our measure of root architecture rather than displacement. These results suggest that plants may be constrained by their local environments to express a phenotype that enhances fitness. Therefore, the conditions of the competitive environment experienced by a plant may influence the potential for character convergence or displacement to influence the evolution of root traits.
Collapse
Affiliation(s)
- Sara M Colom
- University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
| | - Regina S Baucom
- University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Abstract
Although root traits play a critical role in mediating plant-plant interactions and resource acquisition from the soil environment, research examining whether and how belowground competition can influence the evolution of root traits remains largely unexplored. Here we examine the possibility that root traits may evolve as a target of selection from interspecific competition using Ipomoea purpurea and I. hederacea, two closely related morning glory species that commonly co-occur in the United States, as a model system. We show that belowground competitive interactions between the two species can alter the pattern of selection on root traits in each species. Specifically, competition with I. purpurea changes the pattern of selection on root angle in I. hederacea, and competitive interactions with I. hederacea change the pattern of selection on root size in I. purpurea. However, we did not uncover evidence that intraspecific competition altered the pattern of selection on any root traits within I. hederacea. Overall, our results suggest that belowground competition between closely related species can influence the phenotypic evolution of root traits in natural populations. Our findings provide a microevolutionary perspective of how competitive belowground interactions may impact plant fitness, potentially leading to patterns of plant community structure.
Collapse
|
3
|
Murren CJ, Alt CHS, Kohler C, Sancho G. Natural variation on whole-plant form in the wild is influenced by multivariate soil nutrient characteristics: natural selection acts on root traits. AMERICAN JOURNAL OF BOTANY 2020; 107:319-328. [PMID: 32002983 DOI: 10.1002/ajb2.1420] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/23/2019] [Indexed: 05/22/2023]
Abstract
PREMISE In the complex soil nutrient environments of wild populations of annual plants, in general, low nutrient availability restricts growth and alters root-shoot relationships. However, our knowledge of natural selection on roots in field settings is limited. We sought to determine whether selection acts directly on root traits and to identify which components of the soil environment were potential agents of selection. METHODS We studied wild native populations of Arabidopsis thaliana across 4 years, measuring aboveground and belowground traits and analyzing soil nutrients. Using multivariate methods, we examined patterns of natural selection and identified soil attributes that contributed to whole-plant form. In a common garden experiment at two field sites with contrasting soil texture, we examined patterns of selection on root and shoot traits. RESULTS In wild populations, we uncovered selection for above- and belowground size and architectural traits. We detected variation through time and identified soil components that influenced fruit production. In the garden experiment, we detected a distinct positive selection for total root length at the site with greater water-holding capacity and negative selection for measures of root architecture at the field site with reduced nutrient availability and water holding capacity. CONCLUSIONS Patterns of natural selection on belowground traits varied through time, across field sites and experimental gardens. Simultaneous investigations of above- and belowground traits reveal trait functional relationships on which natural selection can act, highlighting the influence of edaphic features on evolutionary processes in wild annual plant populations.
Collapse
Affiliation(s)
- Courtney J Murren
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| | - Claudia H S Alt
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
- Department of Earth Sciences, University of Bristol, Bristol, UK
| | - Clare Kohler
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
- Environmental Sciences Initiative, CUNY ASRC, New York, NY, 10031, USA
| | - Gorka Sancho
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| |
Collapse
|
4
|
Rutter MT, Murren CJ, Callahan HS, Bisner AM, Leebens-Mack J, Wolyniak MJ, Strand AE. Distributed phenomics with the unPAK project reveals the effects of mutations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:199-211. [PMID: 31155775 DOI: 10.1111/tpj.14427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/01/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Determining how genes are associated with traits in plants and other organisms is a major challenge in modern biology. The unPAK project - undergraduates phenotyping Arabidopsis knockouts - has generated phenotype data for thousands of non-lethal insertion mutation lines within a single Arabidopsis thaliana genomic background. The focal phenotypes examined by unPAK are complex macroscopic fitness-related traits, which have ecological, evolutionary and agricultural importance. These phenotypes are placed in the context of the wild-type and also natural accessions (phytometers), and standardized for environmental differences between assays. Data from the unPAK project are used to describe broad patterns in the phenotypic consequences of insertion mutation, and to identify individual mutant lines with distinct phenotypes as candidates for further study. Inclusion of undergraduate researchers is at the core of unPAK activities, and an important broader impact of the project is providing students an opportunity to obtain research experience.
Collapse
Affiliation(s)
- Matthew T Rutter
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC, 29424, USA
| | - Courtney J Murren
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC, 29424, USA
| | - Hilary S Callahan
- Department of Biology, Barnard College, 3009 Broadway, New York, NY, 10027, USA
| | - April M Bisner
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC, 29424, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, 120 Carlton St, Athens, GA, 30602, USA
| | | | - Allan E Strand
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC, 29424, USA
| |
Collapse
|
5
|
Samis KE, Stinchcombe JR, Murren CJ. Population climatic history predicts phenotypic responses in novel environments for Arabidopsis thaliana in North America. AMERICAN JOURNAL OF BOTANY 2019; 106:1068-1080. [PMID: 31364776 DOI: 10.1002/ajb2.1334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/28/2019] [Indexed: 05/28/2023]
Abstract
PREMISE Determining how species perform in novel climatic environments is essential for understanding (1) responses to climate change and (2) evolutionary consequences of biological invasions. For the vast majority of species, the number of population characteristics that will predict performance and patterns of natural selection in novel locations in the wild remains limited. METHODS We evaluated phenological, vegetative, architectural, and fitness-related traits in experimental gardens in contrasting climates (Ontario, Canada, and South Carolina, USA) in the North American non-native distribution of Arabidopsis thaliana. We assessed the effects of climatic distance, geographic distance, and genetic features of history on performance and patterns of natural selection in the novel garden settings. RESULTS We found that plants had greater survivorship, flowered earlier, were larger, and produced more fruit in the south, and that genotype-by-environment interactions were significant between gardens. However, our analyses revealed similar patterns of natural selection between gardens in distinct climate zones. After accounting for genetic ancestry, we also detected that population climatic distance best predicted performance within gardens. CONCLUSIONS These data suggest that colonization success in novel, non-native environments is determined by a combination of climate and genetic history. When performance at novel sites was assessed with seed sources from geographically and genetically disparate, established non-native populations, proximity to the garden alone was insufficient to predict performance. Our study highlights the need to evaluate seed sources from diverse origins to describe comprehensively phenotypic responses to novel environments, particularly for taxa in which many source populations may contribute to colonization.
Collapse
Affiliation(s)
- Karen E Samis
- Department of Biology, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Koffler Scientific Reserve at Joker's Hill, University of Toronto, Toronto, Ontario, Canada
| | - Courtney J Murren
- Department of Biology, College of Charleston, Charleston, South Carolina, 29424, USA
| |
Collapse
|
6
|
Cousins EA, Murren CJ. Edaphic history over seedling characters predicts integration and plasticity of integration across geologically variable populations of Arabidopsis thaliana. AMERICAN JOURNAL OF BOTANY 2017; 104:1802-1815. [PMID: 29196342 DOI: 10.3732/ajb.1700220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
PREMISE OF THE STUDY Studies on phenotypic plasticity and plasticity of integration have uncovered functionally linked modules of aboveground traits and seedlings of Arabidopsis thaliana, but we lack details about belowground variation in adult plants. Functional modules can be comprised of additional suites of traits that respond to environmental variation. We assessed whether shoot and root responses to nutrient environments in adult A. thaliana were predictable from seedling traits or population-specific geologic soil characteristics at the site of origin. METHODS We compared 17 natural accessions from across the native range of A. thaliana using 14-day-old seedlings grown on agar or sand and plants grown to maturity across nutrient treatments in sand. We measured aboveground size, reproduction, timing traits, root length, and root diameter. Edaphic characteristics were obtained from a global-scale dataset and related to field data. KEY RESULTS We detected significant among-population variation in root traits of seedlings and adults and in plasticity in aboveground and belowground traits of adult plants. Phenotypic integration of roots and shoots varied by population and environment. Relative integration was greater in roots than in shoots, and integration was predicted by edaphic soil history, particularly organic carbon content, whereas seedling traits did not predict later ontogenetic stages. CONCLUSIONS Soil environment of origin has significant effects on phenotypic plasticity in response to nutrients, and on phenotypic integration of root modules and shoot modules. Root traits varied among populations in reproductively mature individuals, indicating potential for adaptive and integrated functional responses of root systems in annuals.
Collapse
Affiliation(s)
- Elsa A Cousins
- Department of Biology, College of Charleston, Charleston, South Carolina 29424, USA
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts 01002, USA
| | - Courtney J Murren
- Department of Biology, College of Charleston, Charleston, South Carolina 29424, USA
| |
Collapse
|
7
|
Khare R, Kumar S, Shukla T, Ranjan A, Trivedi PK. Differential sulphur assimilation mechanism regulates response of Arabidopsis thaliana natural variation towards arsenic stress under limiting sulphur condition. JOURNAL OF HAZARDOUS MATERIALS 2017; 337:198-207. [PMID: 28525880 DOI: 10.1016/j.jhazmat.2017.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
Arsenic (As) is a ubiquitous element, which imposes threat to crops productivity and human health through contaminated food chain. As a part of detoxification mechanism, As is chelated and sequestered into the vacuoles via sulphur containing compounds glutathione (GSH) and phytochelatins (PCs). Under limiting sulphur (LS) conditions, exposure of As leads to enhanced toxic effects in plants. Therefore, it is a prerequisite to understand molecular mechanisms involved in As stress response under sulphur deficiency conditions in plants. In recent years, natural variation has been utilized to explore the genetic determinants linked to plant development and stress response. In this study, natural variation in Arabidopsis has been utilized to understand the molecular mechanisms underlying LS and As(III) stress response. Analysis of different accession of Arabidopsis led to the identification of Koz2-2 and Ri-0 as the most tolerant and sensitive accessions, respectively, towards As(III) and LS+As(III) stress. Biochemical analysis and expression profiling of the genes responsible for sulphur transport and assimilation as well as metal detoxification and accumulation revealed significantly enhanced sulphur assimilation mechanism in Koz2-2 as compared to Ri-0. Analyses suggest that genetic variation regulates differential response of accessions towards As(III) under LS condition.
Collapse
Affiliation(s)
- Ria Khare
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Smita Kumar
- Centre of Bio-Medical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raibareli Road, Lucknow, 226014, India.
| | - Tapsi Shukla
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Avriti Ranjan
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226 001, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India.
| |
Collapse
|
8
|
Rutter MT, Wieckowski YM, Murren CJ, Strand AE. Fitness effects of mutation: testing genetic redundancy in Arabidopsis thaliana. J Evol Biol 2017; 30:1124-1135. [PMID: 28387971 DOI: 10.1111/jeb.13081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/09/2017] [Indexed: 01/05/2023]
Abstract
Screens of organisms with disruptive mutations in a single gene often fail to detect phenotypic consequences for the majority of mutants. One explanation for this phenomenon is that the presence of paralogous loci provides genetic redundancy. However, it is also possible that the assayed traits are affected by few loci, that effects could be subtle or that phenotypic effects are restricted to certain environments. We assayed a set of T-DNA insertion mutant lines of Arabidopsis thaliana to determine the frequency with which mutation affected fitness-related phenotypes. We found that between 8% and 42% of the assayed lines had altered fitness from the wild type. Furthermore, many of these lines exhibited fitness greater than the wild type. In a second experiment, we grew a subset of the lines in multiple environments and found whether a T-DNA insert increased or decreased fitness traits depended on the assay environment. Overall, our evidence contradicts the hypothesis that genetic redundancy is a common phenomenon in A. thaliana for fitness traits. Evidence for redundancy from prior screens of knockout mutants may often be an artefact of the design of the phenotypic assays which have focused on less complex phenotypes than fitness and have used single environments. Finally, our study adds to evidence that beneficial mutations may represent a significant component of the mutational spectrum of A. thaliana.
Collapse
Affiliation(s)
- M T Rutter
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Y M Wieckowski
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - C J Murren
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - A E Strand
- Department of Biology, College of Charleston, Charleston, SC, USA
| |
Collapse
|