1
|
Montesinos-Navarro A, López-Climent MF, Pérez-Clemente RM, Arenas-Sánchez C, Sánchez-Martín R, Gómez-Cadenas A, Verdú M. Plant metabolic response to stress in an arid ecosystem is mediated by the presence of neighbors. Ecology 2024; 105:e4247. [PMID: 38267011 DOI: 10.1002/ecy.4247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 01/26/2024]
Abstract
Plant neighbors in arid environments can ameliorate abiotic stress by reducing insolation, but they also attract herbivores and pathogens, especially when neighbors are close relatives that share similar antagonists. Plants' metabolic profiles provide a chemical fingerprint of the physiological processes behind plant responses to different environmental stresses. For example, abscisic acid and proline, mainly involved in stomatal closure and osmotic adjustment, can induce plant responses to abiotic stress, while jasmonic acid and salicylic acid primarily regulate plant defense to herbivory or pathogens. Neighbor plants can generate contrasting ecological contexts, modulating plant responses to abiotic and biotic stresses. We hypothesize that plant metabolic profile is modulated by its neighbors in a vegetation patch, expecting a higher investment in metabolites related to biotic-stress tolerance (i.e., herbivory or pathogens) when growing associated with other plants, especially to phylogenetically close relatives, compared to plants growing alone. We show that plants from five species growing with neighbors invest more in biotic-stress tolerance while their conspecifics, growing alone, invest more in abiotic-stress tolerance. This tendency in plants' metabolic profiles was not affected by the phylogenetic diversity of their neighborhood. Linking physiological snapshots with community processes can contribute to elucidating metabolic profiles derived from plant-plant interactions.
Collapse
Affiliation(s)
- Alicia Montesinos-Navarro
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera, Valencia, Spain
| | - Maria F López-Climent
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Castellón de la Plana, Spain
| | - Rosa M Pérez-Clemente
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Castellón de la Plana, Spain
| | - Cristina Arenas-Sánchez
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera, Valencia, Spain
| | - Ricardo Sánchez-Martín
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera, Valencia, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Castellón de la Plana, Spain
| | - Miguel Verdú
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera, Valencia, Spain
| |
Collapse
|
2
|
Rathore N, Hanzelková V, Dostálek T, Semerád J, Schnablová R, Cajthaml T, Münzbergová Z. Species phylogeny, ecology, and root traits as predictors of root exudate composition. THE NEW PHYTOLOGIST 2023. [PMID: 37421208 DOI: 10.1111/nph.19060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/04/2023] [Indexed: 07/10/2023]
Abstract
Root traits including root exudates are key factors affecting plant interactions with soil and thus play an important role in determining ecosystem processes. The drivers of their variation, however, remain poorly understood. We determined the relative importance of phylogeny and species ecology in determining root traits and analyzed the extent to which root exudate composition can be predicted by other root traits. We measured different root morphological and biochemical traits (including exudate profiles) of 65 plant species grown in a controlled system. We tested phylogenetic conservatism in traits and disentangled the individual and overlapping effects of phylogeny and species ecology on traits. We also predicted root exudate composition using other root traits. Phylogenetic signal differed greatly among root traits, with the strongest signal in phenol content in plant tissues. Interspecific variation in root traits was partly explained by species ecology, but phylogeny was more important in most cases. Species exudate composition could be partly predicted by specific root length, root dry matter content, root biomass, and root diameter, but a large part of variation remained unexplained. In conclusion, root exudation cannot be easily predicted based on other root traits and more comparative data on root exudation are needed to understand their diversity.
Collapse
Affiliation(s)
- Nikita Rathore
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Věra Hanzelková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Tomáš Dostálek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Renáta Schnablová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| |
Collapse
|
3
|
Cárdenas Pardo NJ, Rodriguez Robayo DE, Fernandez Lizarazo JC, Peña-Quemba DC, McGale E. Exploring the future of GM technology in sustainable local food systems in Colombia. Front Genome Ed 2023; 5:1181811. [PMID: 37457887 PMCID: PMC10349173 DOI: 10.3389/fgeed.2023.1181811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
The security of Earth's food systems is challenged by shifting regional climates. While agricultural processes are disrupted by climate change, they also play a large role in contributing to destabilizing greenhouse gases. Finding new strategies to increase yields while decreasing agricultural environmental impacts is essential. Tropical agriculture is particularly susceptible to climate change: local, smallholder farming, which provides a majority of the food supply, is high risk and has limited adaptation capacity. Rapid, inexpensive, intuitive solutions are needed, like the implementation of genetically modified (GM) crops. In the Latin American tropics, high awareness and acceptance of GM technologies, opportunities to test GM crops as part of local agricultural educations, and their known economic benefits, support their use. However, this is not all that is needed for the future of GM technologies in these areas: GM implementation must also consider environmental and social sustainability, which can be unique to a locality. Primarily from the perspective of its educators, the potential of a rural Colombian university in driving GM implementation is explored, including the role of this type of university in producing agricultural engineers who can innovate with GM to meet regionally-dependent environmental and cultural needs that could increase their sustainability.
Collapse
Affiliation(s)
| | | | | | - Diego Camilo Peña-Quemba
- Utopía, Universidad de La Salle, Yopal, Colombia
- Faculty of Natural Sciences and Engineering, Fundación Universitaria de San Gil, UNISANGIL, Yopal, Colombia
| | - Erica McGale
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Ou T, Gao H, Jiang K, Yu J, Zhao R, Liu X, Zhou Z, Xiang Z, Xie J. Endophytic Klebsiella aerogenes HGG15 stimulates mulberry growth in hydro-fluctuation belt and the potential mechanisms as revealed by microbiome and metabolomics. Front Microbiol 2022; 13:978550. [PMID: 36033884 PMCID: PMC9417544 DOI: 10.3389/fmicb.2022.978550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
Growth promotion and stress tolerance induced by endophytes have been observed in various plants, but their effects on mulberry regularly suffering flood in the hydro-fluctuation belt are less understood. In the present study, endophytic Klebsiella aerogenes HGG15 was screened out from 28 plant growth promotion (PGP) bacteria as having superior PGP traits in vitro and in planta as well as biosafety for silkworms. K. aerogenes HGG15 could actively colonize into roots of mulberry and subsequently transferred to stems and leaves. The 16S ribosomal RNA (V3–V4 variable regions) amplicon sequencing revealed that exogenous application of K. aerogenes HGG15 altered the bacterial community structures of mulberry roots and stems. Moreover, the genus of Klebsiella was particularly enriched in inoculated mulberry roots and was positively correlated with mulberry development and soil potassium content. Untargeted metabolic profiles uncovered 201 differentially abundant metabolites (DEMs) between inoculated and control mulberry, with lipids and organo-heterocyclic compounds being particularly abundant DEMs. In addition, a high abundance of abiotic stress response factors and promotion growth stimulators such as glycerolipid, sphingolipid, indole, pyridine, and coumarin were observed in inoculated mulberry. Collectively, the knowledge gained from this study sheds light on potential strategies to enhance mulberry growth in hydro-fluctuation belt, and microbiome and metabolite analyses provide new insights into the growth promotion mechanisms used by plant-associated bacteria.
Collapse
Affiliation(s)
- Ting Ou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Haiying Gao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Kun Jiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Jing Yu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Ruolin Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Xiaojiao Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Jie Xie
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
- *Correspondence: Jie Xie,
| |
Collapse
|
5
|
Abstract
Tradeoffs among plant traits help maintain relative fitness under unpredictable conditions and maximize reproductive success. However, modifying tradeoffs is a breeding challenge since many genes of minor effect are involved. The intensive crosstalk and fine-tuning between growth and defense responsive phytohormones via transcription factors optimizes growth, reproduction, and stress tolerance. There are regulating genes in grain crops that deploy diverse functions to overcome tradeoffs, e.g., miR-156-IPA1 regulates crosstalk between growth and defense to achieve high disease resistance and yield, while OsALDH2B1 loss of function causes imbalance among defense, growth, and reproduction in rice. GNI-A1 regulates seed number and weight in wheat by suppressing distal florets and altering assimilate distribution of proximal seeds in spikelets. Knocking out ABA-induced transcription repressors (AITRs) enhances abiotic stress adaptation without fitness cost in Arabidopsis. Deploying AITRs homologs in grain crops may facilitate breeding. This knowledge suggests overcoming tradeoffs through breeding may expose new ones.
Collapse
Affiliation(s)
| | | | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden
| |
Collapse
|