1
|
Cheng X, Gao Z, Liu S, Hu Y, Li W, Zhang L, Ru X. Characteristic noise of offshore wind turbine impacts the behavior and muscle physiology of sea cucumber Apostichopus japonicus. MARINE POLLUTION BULLETIN 2025; 215:117902. [PMID: 40157208 DOI: 10.1016/j.marpolbul.2025.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Sea cucumbers plays a crucial role in maintaining ecological balance through their unique behaviors and physiological functions. However, the noise from offshore wind turbines disrupts the habitat environment of the sea cucumber, potentially altering their behavior and physiology. Nevertheless, limited research exists on how noise from offshore wind turbines affects the sea cucumbers. In our study, we explored the effects of specific wind turbine noise frequencies on the behavior and muscle metabolism of sea cucumbers through four experimental groups: control, 125 Hz, 250 Hz, and 2500 Hz. Statistical analysis of the sea cucumber's ingestion rate, fecal production rate, step frequency and total step length showed that low-frequency noise (125 Hz and 250 Hz) significantly enhanced their locomotion and feeding activity compared to the control group. Further examination demonstrated that low-frequency noise significantly changed the metabolic products in sea cucumber's muscles, altering levels of nine metabolites, excluding tetraazecyclododecane tetraacetic acid. Furthermore, four key metabolic pathways showed marked alterations: pantothenate and CoA biosynthesis, glycerophospholipid metabolism, pyrimidine metabolism, and purine metabolism. These findings demonstrate that sea cucumbers adapt behaviorally and metabolically to anthropogenic noise disturbances.
Collapse
Affiliation(s)
- Xiaochen Cheng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoming Gao
- Binzhou Ocean Development Research Institute, Binzhou 256600, China
| | - Shuai Liu
- Binzhou Ocean Development Research Institute, Binzhou 256600, China
| | - Yongchao Hu
- Dongying Municipal Bureau of Marine Development and Fisheries, Dongying 257067, China
| | - Wanyi Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaoshang Ru
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
2
|
Zilio G, Deshpande JN, Duncan AB, Fronhofer EA, Kaltz O. Dispersal evolution and eco-evolutionary dynamics in antagonistic species interactions. Trends Ecol Evol 2024; 39:666-676. [PMID: 38637209 DOI: 10.1016/j.tree.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Dispersal evolution modifies diverse spatial processes, such as range expansions or biological invasions of single species, but we are currently lacking a realistic vision for metacommunities. Focusing on antagonistic species interactions, we review existing theory of dispersal evolution between natural enemies, and explain how this might be relevant for classic themes in host-parasite evolutionary ecology, namely virulence evolution or local adaptation. Specifically, we highlight the importance of considering the simultaneous (co)evolution of dispersal and interaction traits. Linking such multi-trait evolution with reciprocal demographic and epidemiological feedbacks might change basic predictions about coevolutionary processes and spatial dynamics of interacting species. Future challenges concern the integration of system-specific disease ecology or spatial modifiers, such as spatial network structure or environmental heterogeneity.
Collapse
Affiliation(s)
- Giacomo Zilio
- Institut des Sciences de l'Evolution - Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France; Centre d'Ecologie Fonctionelle et Evolutive (CEFE), University of Montpellier, CNRS, Montpellier, France.
| | - Jhelam N Deshpande
- Institut des Sciences de l'Evolution - Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Alison B Duncan
- Institut des Sciences de l'Evolution - Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Emanuel A Fronhofer
- Institut des Sciences de l'Evolution - Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Oliver Kaltz
- Institut des Sciences de l'Evolution - Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France.
| |
Collapse
|
3
|
Rufo HP, Ferreira LG, Ottoni EB, Falótico T. Toxic tasting: how capuchin monkeys avoid grasshoppers' chemical defenses. Primates 2024; 65:235-241. [PMID: 38795206 PMCID: PMC11219405 DOI: 10.1007/s10329-024-01133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/20/2024] [Indexed: 05/27/2024]
Abstract
Platyrrhines consume many species of arthropods in the order Orthoptera. Some species of orthopterans can produce chemical defenses that render them toxic or unpalatable and thus act as predator deterrents. These species include the stick grasshoppers (family Proscopiidae), which are widely distributed in the Caatinga biome in northeastern Brazil, which comprises part of the distribution of capuchin monkeys. Capuchin monkeys are omnivores and consume a wide variety of foods, including unpleasant-tasting, potentially toxic items, which they need to learn how to process. We describe the processing of stick grasshoppers (Stiphra sp.) by wild capuchin monkeys (Sapajus libidinosus) that live in Serra da Capivara National Park, Brazil, and compare how individuals of different age classes handle these potentially toxic food items. S. libidinosus predominantly avoided consuming the digestive tract, which contains toxic compounds, when feeding on stick grasshoppers. Immatures took longer than adults to process the stick grasshoppers, indicating that capuchins need to learn how to process the toxic digestive tract of these prey to avoid consuming it.
Collapse
Affiliation(s)
- Henrique P Rufo
- Institute of Psychology, University of São Paulo, São Paulo, Brazil
- Capuchin Culture Project, Neotropical Primates Research Group, São Paulo, Brazil
| | - Luiza G Ferreira
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Eduardo B Ottoni
- Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - Tiago Falótico
- Capuchin Culture Project, Neotropical Primates Research Group, São Paulo, Brazil.
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil.
- Technological Primates Research Group, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
4
|
Long X, Weissing FJ. Transient polymorphisms in parental care strategies drive divergence of sex roles. Nat Commun 2023; 14:6805. [PMID: 37884497 PMCID: PMC10603145 DOI: 10.1038/s41467-023-42607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
The parental roles of males and females differ considerably between and within species. By means of individual-based evolutionary simulations, we strive to explain this diversity. We show that the conflict between the sexes creates a sex bias (towards maternal or paternal care), even if the two sexes are initially identical. When including sexual selection, there are two outcomes: either female mate choice and maternal care or no mate choice and paternal care. Interestingly, the care pattern drives sexual selection and not vice versa. Longer-term simulations exhibit rapid switches between alternative parental care patterns, even in constant environments. Hence, the evolutionary lability of sex roles observed in phylogenetic studies is not necessarily caused by external changes. Overall, our findings are in striking contrast to the predictions of mathematical models. We show that the discrepancies are caused by transient within-sex polymorphisms in parental strategies, a factor largely neglected in current sex-role theory.
Collapse
Affiliation(s)
- Xiaoyan Long
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747AG, The Netherlands
- Institute of Biology I, University of Freiburg, Freiburg im Breisgau, 79104, Germany
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747AG, The Netherlands.
| |
Collapse
|
5
|
Gupte PR, Netz C, Weissing FJ. The Joint Evolution of Animal Movement and Competition Strategies. Am Nat 2023; 202:E65-E82. [PMID: 37606946 DOI: 10.1086/725394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
AbstractCompetition typically takes place in a spatial context, but eco-evolutionary models rarely address the joint evolution of movement and competition strategies. Here we investigate a spatially explicit forager-kleptoparasite model where consumers can either forage on a heterogeneous resource landscape or steal resource items from conspecifics (kleptoparasitism). We consider three scenarios: (1) foragers without kleptoparasites, (2) consumers specializing as foragers or as kleptoparasites, and (3) consumers that can switch between foraging and kleptoparasitism depending on local conditions. We model movement strategies as individual-specific combinations of preferences for environmental cues, similar to step-selection coefficients. Using mechanistic, individual-based simulations, we study the joint evolution of movement and competition strategies, and we investigate the implications for the distribution of consumers over this landscape. Movement and competition strategies evolve rapidly and consistently across scenarios, with marked differences among scenarios, leading to differences in resource exploitation patterns. In scenario 1, foragers evolve considerable individual variation in movement strategies, while in scenario 2, movement strategies show a swift divergence between foragers and kleptoparasites. In scenario 3, where individuals' competition strategies are conditional on local cues, movement strategies facilitate kleptoparasitism, and individual consistency in competition strategy also emerges. Even in the absence of kleptoparasitism (scenario 1), the distribution of consumers deviates considerably from predictions of ideal free distribution models because of the intrinsic difficulty of moving effectively on a depleted resource landscape with few reliable cues. Our study emphasizes the advantages of a mechanistic approach when studying competition in a spatial context and suggests how evolutionary modeling can be integrated with current work in animal movement ecology.
Collapse
|
6
|
Borger MJ, Komdeur J, Richardson DS, Weissing FJ. The estimation of reproductive values from pedigrees. Behav Ecol 2023; 34:850-861. [PMID: 37744170 PMCID: PMC10516676 DOI: 10.1093/beheco/arad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 09/26/2023] Open
Abstract
Quantifying fitness is important to understand adaptive evolution. Reproductive values are useful for making fitness comparisons involving different categories of individuals, like males and females. By definition, the reproductive value of a category is the expected per capita contribution of the members of that category to the gene pool of future generations. Life history theory reveals how reproductive values can be determined via the estimation of life-history parameters, but this requires an adequate life-history model and intricate algebraic calculations. Recently, an alternative pedigree-based method has become popular, which estimates the expected genetic contribution of individuals to future generations by tracking their descendants down the pedigree. This method is versatile and intuitively appealing, but it is unknown if the method produces estimates of reproductive values that are accurate and precise. To investigate this, we implement various life-history scenarios (for which the "true" reproductive values can be calculated) in individual-based simulations, use the simulation data to estimate reproductive values with the pedigree method, and compare the results with the true target values. We show that the pedigree-based estimation of reproductive values is either biased (in the short term) or imprecise (in the long term). This holds even for simple life histories and under idealized conditions. We conclude that the pedigree method is not a good substitute for the traditional method to quantify reproductive values.
Collapse
Affiliation(s)
- Mirjam J Borger
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - David S Richardson
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| |
Collapse
|
7
|
Gupte PR, Albery GF, Gismann J, Sweeny A, Weissing FJ. Novel pathogen introduction triggers rapid evolution in animal social movement strategies. eLife 2023; 12:e81805. [PMID: 37548365 PMCID: PMC10449382 DOI: 10.7554/elife.81805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2023] [Indexed: 08/08/2023] Open
Abstract
Animal sociality emerges from individual decisions on how to balance the costs and benefits of being sociable. Novel pathogens introduced into wildlife populations should increase the costs of sociality, selecting against gregariousness. Using an individual-based model that captures essential features of pathogen transmission among social hosts, we show how novel pathogen introduction provokes the rapid evolutionary emergence and coexistence of distinct social movement strategies. These strategies differ in how they trade the benefits of social information against the risk of infection. Overall, pathogen-risk-adapted populations move more and have fewer associations with other individuals than their pathogen-risk-naive ancestors, reducing disease spread. Host evolution to be less social can be sufficient to cause a pathogen to be eliminated from a population, which is followed by a rapid recovery in social tendency. Our conceptual model is broadly applicable to a wide range of potential host-pathogen introductions and offers initial predictions for the eco-evolutionary consequences of wildlife pathogen spillover scenarios and a template for the development of theory in the ecology and evolution of animals' movement decisions.
Collapse
Affiliation(s)
- Pratik Rajan Gupte
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| | - Gregory F Albery
- Georgetown UniversityWashingtonUnited States
- Wissenschaftskolleg zu BerlinBerlinGermany
| | - Jakob Gismann
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| | - Amy Sweeny
- Institute of Evolutionary Biology, University of EdinburghEdinburghUnited Kingdom
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| |
Collapse
|
8
|
Riederer JM, Tiso S, van Eldijk TJ, Weissing FJ. Capturing the facets of evolvability in a mechanistic framework. Trends Ecol Evol 2022; 37:430-439. [DOI: 10.1016/j.tree.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
|